RESUMO
Hypoallometric (slope<1) scaling between metabolic rate and body mass is often regarded as near-universal across organisms. However, there are compelling reasons to question hypoallometric scaling in woody plants, where metabolic rate is directly proportional to leaf area. This leaf area must provide carbon to the volume of the metabolically active sapwood (VMASW). Within populations of a species, variants in which VMASW increases per unit leaf area with height growth (e.g. â or ¾ scaling) would have proportionally less carbon for growth and reproduction as they grow taller. Therefore, selection should favor individuals in which, as they grow taller, leaf area scales isometrically with shoot VMASW (slope=1). Using tetrazolium staining, we measured total VMASW and total leaf area (LAtot) across 22 individuals of Ricinus communis and confirmed that leaf area scales isometrically with VMASW, and that VMASW is much smaller than total sapwood volume. With the potential of the LAtot-VMASW relationship to shape factors as diverse as the crown area-stem diameter relationship, conduit diameter scaling, reproductive output, and drought-induced mortality, our work indicates that the notion that sapwood increases per unit leaf area with height growth requires revision.
Assuntos
Biomassa , Folhas de Planta , Árvores , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/anatomia & histologia , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Ricinus/crescimento & desenvolvimento , Ricinus/metabolismo , Madeira/crescimento & desenvolvimento , Madeira/metabolismoRESUMO
Non-structural carbohydrates (NSC) are crucial for forest resilience, but little is known regarding the role of bark in NSC storage. However, bark's abundance in woody stems and its large living fraction make it potentially key for NSC storage. We quantified total NSC, soluble sugar (SS) and starch concentrations in the most living region of bark (inner bark, IB), and sapwood of twigs, trunks and roots of 45 woody species from three contrasting tropical climates spanning global extremes of bark diversity and wide phylogenetic diversity. NSC concentrations were similar (total NSC, starch) or higher (SS) in IB than wood, with concentrations co-varying strongly. NSC concentrations varied widely across organs and species within communities and were not significantly affected by climate, leaf habit or the presence of photosynthetic bark. Starch concentration tended to increase with density, but only in wood. IB contributed substantially to NSC storage, accounting for 17-36% of total NSC, 23-47% of SS and 15-33% of starch pools. Further examination of the drivers of variation in IB NSC concentration, and taking into account the substantial contribution of IB to NSC pools, will be crucial to understand the role of storage in plant environmental adaptation.
Assuntos
Metabolismo dos Carboidratos , Casca de Planta/metabolismo , Árvores/metabolismo , Bursera/metabolismo , Carboidratos/análise , Diospyros/metabolismo , Lamiaceae/metabolismo , Casca de Planta/anatomia & histologia , Casca de Planta/química , Clima Tropical , Água/metabolismo , Madeira/metabolismoRESUMO
Understanding how plants survive drought and cold is increasingly important as plants worldwide experience dieback with drought in moist places and grow taller with warming in cold ones. Crucial in plant climate adaptation are the diameters of water-transporting conduits. Sampling 537 species across climate zones dominated by angiosperms, we find that plant size is unambiguously the main driver of conduit diameter variation. And because taller plants have wider conduits, and wider conduits within species are more vulnerable to conduction-blocking embolisms, taller conspecifics should be more vulnerable than shorter ones, a prediction we confirm with a plantation experiment. As a result, maximum plant size should be short under drought and cold, which cause embolism, or increase if these pressures relax. That conduit diameter and embolism vulnerability are inseparably related to plant size helps explain why factors that interact with conduit diameter, such as drought or warming, are altering plant heights worldwide.
Assuntos
Aclimatação , Temperatura Baixa , Magnoliopsida/crescimento & desenvolvimento , Tundra , DesidrataçãoRESUMO
Background and aims: Corner's rules describe a global spectrum from large-leaved plants with thick, sparingly branched twigs with low-density stem tissues and thick piths to plants with thin, highly branched stems with high-density stem tissues and thin piths. The hypothesis was tested that, if similar crown areas fix similar amounts of carbon regardless of leaf size, then large-leaved species, with their distantly spaced leaves, require higher stem growth rates, lower stem tissue densities and stiffnesses, and therefore thicker twigs. Methods: Structural equation models were used to test the compatibility of this hypothesis with a dataset on leaf size, shoot tip spacing, stem growth rate and dimensions, and tissue density and mechanics, sampling 55 species drawn from across the angiosperm phylogeny from a morphologically diverse dry tropical community. Key results: Very good fit of structural equation models showed that the causal model is highly congruent with the data. Conclusions: Given similar amounts of carbon to allocate to stem growth, larger-leaved species require greater leaf spacing and therefore greater stem extension rates and longer stems, in turn requiring lower-density, more flexible, stem tissues than small-leaved species. A given stem can have high resistance to bending because it is thick (has high second moment of area I) or because its tissues are stiff (high Young's modulus E), the so-called E-I trade-off. Because of the E-I trade-off, large-leaved species have fast stem growth rates, low stem tissue density and tissue stiffness, and thick twigs with wide piths and thick bark. The agreement between hypothesis and data in structural equation analyses strongly suggests that Corner's rules emerge as the result of selection favouring the avoidance of self-shading in the context of broadly similar rates of carbon fixation per unit crown area across species.
Assuntos
Carbono/metabolismo , Magnoliopsida/fisiologia , Modelos Biológicos , Adaptação Fisiológica , Fenômenos Biomecânicos , Magnoliopsida/anatomia & histologia , Magnoliopsida/genética , Magnoliopsida/crescimento & desenvolvimento , Filogenia , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Caules de Planta/anatomia & histologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Árvores , MadeiraRESUMO
Although produced by meristems that are continuous along the stem length, marked differences in bark morphology and in microenvironment would suggest that main stem and twig bark might differ ecologically. Here, we examined: (1) how closely associated main stem and twig bark traits were, (2) how these associations varied across sites, and (3) used these associations to infer functional and ecological differences between twig and main stem bark. We measured density, water content, photosynthesis presence/absence, total, outer, inner, and relative thicknesses of main stem and twig bark from 85 species of angiosperms from six sites of contrasting precipitation, temperature, and fire regimes. Density and water content did not differ between main stems and twigs across species and sites. Species with thicker twig bark had disproportionately thicker main stem bark in most sites, but the slope and degree of association varied. Disproportionately thicker main stem bark for a given twig bark thickness in most fire-prone sites suggested stem protection near the ground. The savanna had the opposite trend, suggesting that selection also favors twig protection in these fire-prone habitats. A weak main stem-twig bark thickness association was observed in non fire-prone sites. The near-ubiquity of photosynthesis in twigs highlighted its likely ecological importance; variation in this activity was predicted by outer bark thickness in main stems. It seems that the ecology of twig bark can be generalized to main stem bark, but not for functions depending on the amount of bark, such as protection, storage, or photosynthesis.
Assuntos
Ecologia , Magnoliopsida/fisiologia , Casca de Planta/fisiologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Árvores/fisiologia , Ecossistema , Incêndios , Magnoliopsida/anatomia & histologia , Magnoliopsida/crescimento & desenvolvimento , Fotossíntese , Casca de Planta/anatomia & histologia , Casca de Planta/crescimento & desenvolvimento , Caules de Planta/anatomia & histologia , Especificidade da Espécie , Árvores/anatomia & histologia , Árvores/crescimento & desenvolvimento , Água/metabolismoRESUMO
Angiosperm hydraulic performance is crucially affected by the diameters of vessels, the water conducting conduits in the wood. Hydraulic optimality models suggest that vessels should widen predictably from stem tip to base, buffering hydrodynamic resistance accruing as stems, and therefore conductive path, increase in length. Data from 257 species (609 samples) show that vessels widen as predicted with distance from the stem apex across angiosperm orders, habits and habitats. Standardising for stem length, vessels are only slightly wider in warm/moist climates and in lianas, showing that, rather than climate or habit, plant size is by far the main driver of global variation in mean vessel diameter. Terminal twig vessels become wider as plant height increases, while vessel density decreases slightly less than expected tip to base. These patterns lead to testable predictions regarding evolutionary strategies allowing plants to minimise carbon costs per unit leaf area even as height increases.
Assuntos
Clima , Magnoliopsida/anatomia & histologia , Magnoliopsida/fisiologia , Evolução Biológica , Ecossistema , Modelos Lineares , Magnoliopsida/classificação , Caules de Planta/anatomia & histologia , Caules de Planta/fisiologiaRESUMO
Biologists increasingly rely on computer code to collect and analyze their data, reinforcing the importance of published code for transparency, reproducibility, training, and a basis for further work. Here, we conduct a literature review estimating temporal trends in code sharing in ecology and evolution publications since 2010, and test for an influence of code sharing on citation rate. We find that code is rarely published (only 6% of papers), with little improvement over time. We also found there may be incentives to publish code: Publications that share code have tended to be low-impact initially, but accumulate citations faster, compensating for this deficit. Studies that additionally meet other Open Science criteria, open-access publication, or data sharing, have still higher citation rates, with publications meeting all three criteria (code sharing, data sharing, and open access publication) tending to have the most citations and highest rate of citation accumulation.
RESUMO
Alpine grassland vegetation supports globally important biodiversity and ecosystems that are increasingly threatened by climate warming and other environmental changes. Trait-based approaches can support understanding of vegetation responses to global change drivers and consequences for ecosystem functioning. In six sites along a 1314 m elevational gradient in Puna grasslands in the Peruvian Andes, we collected datasets on vascular plant composition, plant functional traits, biomass, ecosystem fluxes, and climate data over three years. The data were collected in the wet and dry season and from plots with different fire histories. We selected traits associated with plant resource use, growth, and life history strategies (leaf area, leaf dry/wet mass, leaf thickness, specific leaf area, leaf dry matter content, leaf C, N, P content, C and N isotopes). The trait dataset contains 3,665 plant records from 145 taxa, 54,036 trait measurements (increasing the trait data coverage of the regional flora by 420%) covering 14 traits and 121 plant taxa (ca. 40% of which have no previous publicly available trait data) across 33 families.
Assuntos
Ecossistema , Pradaria , Plantas , Biodiversidade , Peru , Clima , Altitude , IncêndiosRESUMO
Scaling approaches in ecology assume that traits are the main attributes by which organisms influence ecosystem functioning. However, several recent empirical papers have found only weak links between traits and ecosystem functioning, questioning the usefulness of trait-based ecology (TBE). We argue that these studies often suffer from one or more widespread misconceptions. Specifically, these studies often (i) conflict with the conceptual foundations of TBE, (ii) lack theory- or hypothesis-driven selection and use of traits, (iii) tend to ignore intraspecific variation, and (iv) use experimental or study designs that are not well suited to make strong tests of TBE assumptions. Addressing these aspects could significantly improve our ability to scale from traits to ecosystem functioning.
Assuntos
Ecologia , Ecossistema , Fenótipo , BiodiversidadeRESUMO
The Arctic is warming at a rate four times the global average, while also being exposed to other global environmental changes, resulting in widespread vegetation and ecosystem change. Integrating functional trait-based approaches with multi-level vegetation, ecosystem, and landscape data enables a holistic understanding of the drivers and consequences of these changes. In two High Arctic study systems near Longyearbyen, Svalbard, a 20-year ITEX warming experiment and elevational gradients with and without nutrient input from nesting seabirds, we collected data on vegetation composition and structure, plant functional traits, ecosystem fluxes, multispectral remote sensing, and microclimate. The dataset contains 1,962 plant records and 16,160 trait measurements from 34 vascular plant taxa, for 9 of which these are the first published trait data. By integrating these comprehensive data, we bridge knowledge gaps and expand trait data coverage, including on intraspecific trait variation. These data can offer insights into ecosystem functioning and provide baselines to assess climate and environmental change impacts. Such knowledge is crucial for effective conservation and management in these vulnerable regions.
Assuntos
Clima , Ecossistema , Animais , Aves , Conhecimento , SvalbardRESUMO
Plant life-history variation reflects different outcomes of natural selection given the strictures of resource allocation trade-offs. However, there is limited theory of selection predicting how leaves, stems, roots, and reproductive organs should evolve in concert across environments. Here, we synthesize two optimality theories to offer a general theory of plant carbon economics, named as Gmax theory, that shows how life-history variation is limited to phenotypes that have an approximately similar lifetime net carbon gain per body mass. In consequence, fast-slow economics spectra are the result of trait combinations obtaining similar lifetime net carbon gains from leaves and similar net carbon investment costs in stems, roots, and reproductive organs. Gmax theory also helps explain ecosystem and crop productivity and even helps guide carbon conservation strategies.
Assuntos
Carbono , Características de História de Vida , Ecossistema , Folhas de Planta , PlantasRESUMO
Replicated radiations, in which sets of similar forms evolve repeatedly within different regions, can provide powerful insights into parallel evolution and the assembly of functional diversity within communities. Several cases have been described in animals, but in plants we lack well-documented cases of replicated radiation that combine comprehensive phylogenetic and biogeographic analyses, the delimitation of geographic areas within which a set of 'ecomorphs' evolved independently and the identification of potential underlying mechanisms. Here we document the repeated evolution of a set of leaf ecomorphs in a group of neotropical plants. The Oreinotinus lineage within the angiosperm clade Viburnum spread from Mexico to Argentina through disjunct cloud forest environments. In 9 of 11 areas of endemism, species with similar sets of leaf forms evolved in parallel. We reject gene-flow-mediated evolution of similar leaves and show, instead, that species with disparate leaf forms differ in their climatic niches, supporting ecological adaptation as the driver of parallelism. Our identification of a case of replicated radiation in plants sets the stage for comparative analyses of such phenomena across the tree of life.