Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Eur J Neurol ; 28(10): 3339-3347, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33474816

RESUMO

OBJECTIVE: To describe the spectrum of neurological complications observed in a hospital-based cohort of COVID-19 patients who required a neurological assessment. METHODS: We conducted an observational, monocentric, prospective study of patients with a COVID-19 diagnosis hospitalized during the 3-month period of the first wave of the COVID-19 pandemic in a tertiary hospital in Madrid (Spain). We describe the neurological diagnoses that arose after the onset of COVID-19 symptoms. These diagnoses could be divided into different groups. RESULTS: Only 71 (2.6%) of 2750 hospitalized patients suffered at least one neurological complication (77 different neurological diagnoses in total) during the timeframe of the study. The most common diagnoses were neuromuscular disorders (33.7%), cerebrovascular diseases (CVDs) (27.3%), acute encephalopathy (19.4%), seizures (7.8%), and miscellanea (11.6%) comprising hiccups, myoclonic tremor, Horner syndrome and transverse myelitis. CVDs and encephalopathy were common in the early phase of the COVID-19 pandemic compared to neuromuscular disorders, which usually appeared later on (p = 0.005). Cerebrospinal fluid severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction was negative in 15/15 samples. The mortality was higher in the CVD group (38.1% vs. 8.9%; p = 0.05). CONCLUSIONS: The prevalence of neurological complications is low in patients hospitalized for COVID-19. Different mechanisms appear to be involved in these complications, and there was no evidence of direct invasion of the nervous system in our cohort. Some of the neurological complications can be classified into early and late neurological complications of COVID-19, as they occurred at different times following the onset of COVID-19 symptoms.


Assuntos
COVID-19 , Doenças do Sistema Nervoso , Neurologia , Teste para COVID-19 , Humanos , Doenças do Sistema Nervoso/epidemiologia , Pandemias , Estudos Prospectivos , Sistema de Registros , SARS-CoV-2
2.
Mov Disord ; 34(10): 1547-1561, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31433872

RESUMO

BACKGROUND: Pathogenic variants in the spastic paraplegia type 7 gene cause a complicated hereditary spastic paraplegia phenotype associated with classical features of mitochondrial diseases, including ataxia, progressive external ophthalmoplegia, and deletions of mitochondrial DNA. OBJECTIVES: To better characterize spastic paraplegia type 7 disease with a clinical, genetic, and functional analysis of a Spanish cohort of spastic paraplegia type 7 patients. METHODS: Genetic analysis was performed in patients suspecting hereditary spastic paraplegia and in 1 patient with parkinsonism and Pisa syndrome, through next-generation sequencing, whole-exome sequencing, targeted Sanger sequencing, and multiplex ligation-dependent probe analysis, and blood mitochondrial DNA levels determined by quantitative polymerase chain reaction. RESULTS: Thirty-five patients were found to carry homozygous or compound heterozygous pathogenic variants in the spastic paraplegia type 7 gene. Mean age at onset was 40 years (range, 12-63); 63% of spastic paraplegia type 7 patients were male, and three-quarters of all patients had at least one allele with the c.1529C>T (p.Ala510Val) mutation. Eighty percent of the cohort showed a complicated phenotype, combining ataxia and progressive external ophthalmoplegia (65% and 26%, respectively). Parkinsonism was observed in 21% of cases. Analysis of blood mitochondrial DNA indicated that both patients and carriers of spastic paraplegia type 7 pathogenic variants had markedly lower levels of mitochondrial DNA than control subjects (228 per haploid nuclear DNA vs. 176 vs. 573, respectively; P < 0.001). CONCLUSIONS: Parkinsonism is a frequent finding in spastic paraplegia type 7 patients. Spastic paraplegia type 7 pathogenic variants impair mitochondrial DNA homeostasis irrespective of the number of mutant alleles, type of variant, and patient or carrier status. Thus, spastic paraplegia type 7 supports mitochondrial DNA maintenance, and variants in the gene may cause parkinsonism owing to mitochondrial DNA abnormalities. Moreover, mitochondrial DNA blood analysis could be a useful biomarker to detect at risk families. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Paraplegia/genética , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Transtornos Parkinsonianos/genética , Fenótipo , Adulto Jovem
4.
Hum Mutat ; 34(1): 79-82, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22936364

RESUMO

A hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9orf72) can cause amyotrophic lateral sclerosis (ALS) and/or frontotemporal dementia (FTD). We assessed its frequency in 781 sporadic ALS (sALS) and 155 familial ALS (fALS) cases, and in 248 Spanish controls. We tested the presence of the reported founder haplotype among mutation carriers and in 171 Ceph Europeans from Utah (CEU), 170 Yoruba Africans, 81 Han Chinese, and 85 Japanese subjects. The C9orf72 expansion was present in 27.1% of fALS and 3.2% of sALS. Mutation carriers showed lower age at onset (P = 0.04), shorter survival (P = 0.02), greater co-occurrence of FTD (P = 8.2 × 10(-5)), and more family history of ALS (P = 1.4 × 10(-20)), than noncarriers. No association between alleles within the normal range and the risk of ALS was found (P = 0.12). All 61 of the mutation carriers were tested and a patient carrying 28 hexanucleotide repeats presented with the founder haplotype. This haplotype was found in 5.6% Yoruba Africans, 8.9% CEU, 3.9% Japanese, and 1.6% Han Chinese chromosomes.


Assuntos
Esclerose Lateral Amiotrófica/genética , Expansão das Repetições de DNA/genética , Predisposição Genética para Doença/genética , Proteínas/genética , África/etnologia , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/etnologia , Povo Asiático/genética , Proteína C9orf72 , China/etnologia , Análise Mutacional de DNA , Etnicidade/genética , Europa (Continente)/etnologia , Feminino , Frequência do Gene , Predisposição Genética para Doença/etnologia , Haplótipos , Heterozigoto , Humanos , Japão/etnologia , Estimativa de Kaplan-Meier , Masculino , Mutação , Polimorfismo de Nucleotídeo Único , Espanha
5.
J Neurol ; 269(6): 3189-3203, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34999956

RESUMO

BACKGROUND: SPG4 is a subtype of hereditary spastic paraplegia (HSP), an upper motor neuron disorder characterized by axonal degeneration of the corticospinal tracts and the fasciculus gracilis. The few neuroimaging studies that have focused on the spinal cord in HSP are based mainly on the analysis of structural characteristics. METHODS: We assessed diffusion-related characteristics of the spinal cord using diffusion tensor imaging (DTI), as well as structural and shape-related properties in 12 SPG4 patients and 14 controls. We used linear mixed effects models up to T3 in order to analyze the global effects of 'group' and 'clinical data' on structural and diffusion data. For DTI, we carried out a region of interest (ROI) analysis in native space for the whole spinal cord, the anterior and lateral funiculi, and the dorsal columns. We also performed a voxelwise analysis of the spinal cord to study local diffusion-related changes. RESULTS: A reduced cross-sectional area was observed in the cervical region of SPG4 patients, with significant anteroposterior flattening. DTI analyses revealed significantly decreased fractional anisotropy (FA) and increased radial diffusivity at all the cervical and thoracic levels, particularly in the lateral funiculi and dorsal columns. The FA changes in SPG4 patients were significantly related to disease severity, measured as the Spastic Paraplegia Rating Scale score. CONCLUSIONS: Our results in SPG4 indicate tract-specific axonal damage at the level of the cervical and thoracic spinal cord. This finding is correlated with the degree of motor disability.


Assuntos
Pessoas com Deficiência , Transtornos Motores , Paraplegia Espástica Hereditária , Anisotropia , Imagem de Tensor de Difusão/métodos , Humanos , Tratos Piramidais , Paraplegia Espástica Hereditária/diagnóstico por imagem , Medula Espinal/diagnóstico por imagem
6.
Artigo em Inglês | MEDLINE | ID: mdl-34396852

RESUMO

Objective: SPG4 is an autosomal dominant pure form of hereditary spastic paraplegia (HSP) caused by mutations in the SPAST gene. HSP is considered an upper motor neuron disorder characterized by progressive retrograde degeneration, or "dying-back" phenomenon, of the corticospinal tract's longest axons. Neuroimaging studies mainly focus on white matter changes and, although previous studies reported cortical thinning in complicated HSP forms, cortical changes remain unclear in SPG4 patients. This work aimed to compare changes in white matter microstructure and cortical thickness between 12 SPG4 patients and 22 healthy age-matched controls. We also explore whether white matter alterations are related to cortical thickness and their correlation with clinical symptoms. Methods: we used fixel-based analysis, an advanced diffusion-weighted imaging technique, and probabilistic tractography of the corticospinal tracts. We also analyzed cortical morphometry using whole-brain surface-based and atlas-based methods in sensorimotor areas. Results: SPG4 patients showed bilateral involvement in the corticospinal tracts; this was more intense in the distal portion than in the upper segments and was associated with the degree of clinical impairment. We found a significant correlation between disease severity and fiber density and cross-section of the corticospinal tracts. Furthermore, corticospinal tract changes were significantly correlated with bilateral cortical thinning in the precentral gyrus in SPG4 patients. Conclusions: Our data point to axonal damage of the corticospinal motor neurons in SPG4 patients might be related to cortical thinning in motor regions.


Assuntos
Esclerose Lateral Amiotrófica , Córtex Motor , Paraparesia Espástica , Paraplegia Espástica Hereditária , Humanos , Córtex Motor/diagnóstico por imagem , Tratos Piramidais/diagnóstico por imagem , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/genética , Espastina/genética
7.
J Neurol ; 268(7): 2429-2440, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33507371

RESUMO

SPG4 is an autosomal dominant pure form of hereditary spastic paraplegia (HSP) caused by mutations in the SPAST gene. HSP is considered an upper motor neuron disorder characterized by progressive spasticity and weakness of the lower limbs caused by degeneration of the corticospinal tract. In other neurodegenerative motor disorders, the thalamus and basal ganglia are affected, with a considerable impact on disease progression. However, only a few works have studied these brain structures in HSP, mainly in complex forms of this disease. Our research aims to detect potential alterations in the volume and shape of the thalamus and various basal ganglia structures by comparing 12 patients with pure HSP and 18 healthy controls. We used two neuroimaging procedures: automated segmentation of the subcortical structures (thalamus, hippocampus, caudate nucleus, globus pallidus, and putamen) in native space and shape analysis of the structures. We found a significant reduction in thalamic volume bilaterally, as well as an inward deformation, mainly in the sensory-motor thalamic regions in patients with pure HSP and a mutation in SPG4. We also observed a significant negative correlation between the shape of the thalamus and clinical scores (the Spastic Paraplegia Rating Scale score and disease duration). Moreover, we found a 'Group × Age' interaction that was closely related to the severity of the disease. No differences in volume or in shape were found in the remaining subcortical structures studied. Our results suggest that changes in structure of the thalamus could be an imaging biomarker of disease progression in pHSP.


Assuntos
Paraplegia Espástica Hereditária , Atrofia , Gânglios da Base , Humanos , Mutação/genética , Paraplegia , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/genética , Espastina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA