Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Magn Reson Med ; 89(6): 2255-2263, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36669874

RESUMO

PURPOSE: To develop and test compressed sensing-based multiframe 3D MRI of grid-tagged hyperpolarized gas in the lung. THEORY AND METHODS: Applying grid-tagging RF pulses to inhaled hyperpolarized gas results in images in which signal intensity is predictably and sparsely distributed. In the present work, this phenomenon was used to produce a sampling pattern in which k-space is undersampled by a factor of approximately seven, yet regions of high k-space energy remain densely sampled. Three healthy subjects received multiframe 3D 3 He tagging MRI using this undersampling method. Images were collected during a single exhalation at eight timepoints spanning the breathing cycle from end-of-inhalation to end-of-exhalation. Grid-tagged images were used to generate 3D displacement maps of the lung during exhalation, and time-resolved maps of principal strains and fractional volume change were generated from these displacement maps using finite-element analysis. RESULTS: Tags remained clearly resolvable for 4-6 timepoints (5-8 s) in each subject. Displacement maps revealed noteworthy temporal and spatial nonlinearities in lung motion during exhalation. Compressive normal strains occurred along all three principal directions but were primarily oriented in the head-foot direction. Fractional volume changes displayed clear bilateral symmetry, but with the lower lobes displaying slightly higher change than the upper lobes in 2 of the 3 subjects. CONCLUSION: We developed a compressed sensing-based method for multiframe 3D MRI of grid-tagged hyperpolarized gas in the lung during exhalation. This method successfully overcomes previous challenges for 3D dynamic grid-tagging, allowing time-resolved biomechanical readouts of lung function to be generated.


Assuntos
Compressão de Dados , Pulmão , Masculino , Humanos , Pulmão/diagnóstico por imagem , Respiração , Imageamento por Ressonância Magnética/métodos
2.
Nature ; 537(7622): 652-5, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27680938

RESUMO

Magnetic resonance imaging (MRI) provides fine spatial resolution, spectral sensitivity and a rich variety of contrast mechanisms for diagnostic medical applications. Nuclear imaging using γ-ray cameras offers the benefits of using small quantities of radioactive tracers that seek specific targets of interest within the body. Here we describe an imaging and spectroscopic modality that combines favourable aspects of both approaches. Spatial information is encoded into the spin orientations of tiny amounts of a polarized radioactive tracer using pulses of both radio-frequency electromagnetic radiation and magnetic-field gradients, as in MRI. However, rather than detecting weak radio-frequency signals, imaging information is obtained through the detection of γ-rays. A single γ-ray detector can be used to acquire an image; no γ-ray camera is needed. We demonstrate the feasibility of our technique by producing images and spectra from a glass cell containing only about 4 × 10(13) atoms (about 1 millicurie) of the metastable isomer (131m)Xe that were polarized using the laser technique of spin-exchange optical pumping. If the cell had instead been filled with water and imaged using conventional MRI, then it would have contained more than 10(24) water molecules. The high sensitivity of our modality expands the breadth of applications of magnetic resonance, and could lead to a new class of radioactive tracers.


Assuntos
Raios gama , Imageamento por Ressonância Magnética , Imagem Molecular/métodos , Análise Espectral/métodos , Traçadores Radioativos , Isótopos de Xenônio
3.
Radiology ; 297(1): 201-210, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32779976

RESUMO

Background Apparent diffusion coefficient (ADC) maps of inhaled hyperpolarized gases have shown promise in the characterization of emphysema in patients with chronic obstructive pulmonary disease (COPD), yet an easily interpreted quantitative metric beyond mean and standard deviation has not been established. Purpose To introduce a quantitative framework with which to characterize emphysema burden based on hyperpolarized helium 3 (3He) and xenon 129 (129Xe) ADC maps and compare its diagnostic performance with CT-based emphysema metrics and pulmonary function tests (PFTs). Materials and Methods Twenty-seven patients with mild, moderate, or severe COPD and 13 age-matched healthy control subjects participated in this retrospective study. Participants underwent CT and multiple b value diffusion-weighted 3He and 129Xe MRI examinations and standard PFTs between August 2014 and November 2017. ADC-based emphysema index was computed separately for each gas and b value as the fraction of lung voxels with ADC values greater than in the healthy group 99th percentile. The resulting values were compared with quantitative CT results (relative lung area <-950 HU) as the reference standard. Diagnostic performance metrics included area under the receiver operating characteristic curve (AUC). Spearman rank correlations and Wilcoxon rank sum tests were performed between ADC-, CT-, and PFT-based metrics, and intraclass correlation was performed between repeated measurements. Results Thirty-six participants were evaluated (mean age, 60 years ± 6 [standard deviation]; 20 women). ADC-based emphysema index was highly repeatable (intraclass correlation coefficient > 0.99) and strongly correlated with quantitative CT (r = 0.86, P < .001 for 3He; r = 0.85, P < .001 for 129Xe) with high AUC (≥0.93; 95% confidence interval [CI]: 0.85, 1.00). ADC emphysema indices were also correlated with percentage of predicted diffusing capacity of lung for carbon monoxide (r = -0.81, P < .001 for 3He; r = -0.80, P < .001 for 129Xe) and percentage of predicted residual lung volume divided by total lung capacity (r = 0.65, P < .001 for 3He; r = 0.61, P < .001 for 129Xe). Conclusion Emphysema index based on hyperpolarized helium 3 or xenon 129 diffusion MRI provides a repeatable measure of emphysema burden, independent of gas or b value, with similar diagnostic performance as quantitative CT or pulmonary function metrics. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Schiebler and Fain in this issue.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Enfisema Pulmonar/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Estudos de Casos e Controles , Feminino , Hélio , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Função Respiratória , Isótopos de Xenônio
4.
Magn Reson Med ; 78(4): 1458-1463, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27791285

RESUMO

PURPOSE: To evaluate T2 , T2*, and signal-to-noise ratio (SNR) for hyperpolarized helium-3 (3 He) MRI of the human lung at three magnetic field strengths ranging from 0.43T to 1.5T. METHODS: Sixteen healthy volunteers were imaged using a commercial whole body scanner at 0.43T, 0.79T, and 1.5T. Whole-lung T2 values were calculated from a Carr-Purcell-Meiboom-Gill spin-echo-train acquisition. T2* maps and SNR were determined from dual-echo and single-echo gradient-echo images, respectively. Mean whole-lung SNR values were normalized by ventilated lung volume and administered 3 He dose. RESULTS: As expected, T2 and T2* values demonstrated a significant inverse relationship to field strength. Hyperpolarized 3 He images acquired at all three field strengths had comparable SNR values and thus appeared visually very similar. Nonetheless, the relatively small SNR differences among field strengths were statistically significant. CONCLUSIONS: Hyperpolarized 3 He images of the human lung with similar image quality were obtained at three field strengths ranging from 0.43T and 1.5T. The decrease in susceptibility effects at lower fields that are reflected in longer T2 and T2* values may be advantageous for optimizing pulse sequences inherently sensitive to such effects. The three-fold increase in T2* at lower field strength would allow lower receiver bandwidths, providing a concomitant decrease in noise and relative increase in SNR. Magn Reson Med 78:1458-1463, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Hélio/química , Processamento de Imagem Assistida por Computador/métodos , Isótopos/química , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Administração por Inalação , Adulto , Hélio/administração & dosagem , Humanos , Isótopos/administração & dosagem , Campos Magnéticos , Razão Sinal-Ruído , Adulto Jovem
5.
Magn Reson Med ; 74(4): 1110-5, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25335080

RESUMO

PURPOSE: To develop and validate a method for acquiring helium-3 ((3) He) and proton ((1) H) three-dimensional (3D) image sets of the human lung with isotropic spatial resolution within a 10-s breath-hold by using compressed sensing (CS) acceleration, and to assess the fidelity of undersampled images compared with fully sampled images. METHODS: The undersampling scheme for CS acceleration was optimized and tested using (3) He ventilation data. Rapid 3D acquisition of both (3) He and (1) H data during one breath-hold was then implemented, based on a balanced steady-state free-precession pulse sequence, by random undersampling of k-space with reconstruction by means of minimizing the L1 norm and total variance. CS-reconstruction fidelity was evaluated quantitatively by comparing fully sampled and retrospectively undersampled image sets. RESULTS: Helium-3 and (1) H 3D image sets of the lung with isotropic 3.9-mm resolution were acquired during a single breath-hold in 12 s and 8 s using acceleration factors of 2 and 3, respectively. Comparison of fully sampled and retrospectively undersampled (3) He and (1) H images yielded mean absolute errors <10% and structural similarity indices >0.9. CONCLUSION: By randomly undersampling k-space and using CS reconstruction, high-quality (3) He and (1) H 3D image sets with isotropic 3.9-mm resolution can be acquired within an 8-s breath-hold.


Assuntos
Suspensão da Respiração , Imageamento Tridimensional/métodos , Pulmão/fisiologia , Imageamento por Ressonância Magnética/métodos , Prótons , Adulto , Fibrose Cística , Feminino , Hélio/administração & dosagem , Hélio/química , Humanos , Masculino , Adulto Jovem
6.
J Magn Reson Imaging ; 42(6): 1777-82, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26012720

RESUMO

PURPOSE: To evaluate regional anisotropy of lung-airspace orientation by assessing the dependence of helium-3 ((3) He) apparent diffusion coefficient (ADC) values on the direction of diffusion sensitization at two field strengths. MATERIALS AND METHODS: Hyperpolarized (3) He diffusion-weighted magnetic resonance imaging (MRI) of the lung was performed at 0.43T and 1.5T in 12 healthy volunteers. A gradient-echo pulse sequence was used with a bipolar diffusion-sensitization gradient applied separately along three orthogonal directions. ADC maps, median ADC values, and signal-to-noise ratios were calculated from the diffusion-weighted images. Two readers scored the ADC maps for increased values at lung margins, major fissures, or within focal central regions. RESULTS: ADC values were found to depend on the direction of diffusion sensitization (P < 0.01, except for craniocaudal vs. anteroposterior directions at 1.5T) and were increased at the lateral and medial surfaces for left-right diffusion sensitization (12 of 12 subjects); at the apex and base (9 of 12), and along the major fissure (8 of 12), for craniocaudal diffusion sensitization; and at the most anterior and posterior lung (10 of 12) for anteroposterior diffusion sensitization. Median ADC values at 0.43T (0.201 ± 0.017, left-right; 0.193 ± 0.019, craniocaudal; and 0.187 ± 0.017 cm(2) /s, anteroposterior) were slightly lower than those at 1.5T (0.205 ± 0.017, 0.197 ± 0.017 and 0.194 ± 0.016 cm(2) /s, respectively; P < 0.05). CONCLUSION: These findings indicate that diffusion-weighted hyperpolarized (3) He MRI can detect regional anisotropy of lung-airspace orientation, including that associated with preferential orientation of terminal airways near pleural surfaces.


Assuntos
Meios de Contraste , Imagem de Difusão por Ressonância Magnética/métodos , Hélio , Interpretação de Imagem Assistida por Computador/métodos , Pulmão/anatomia & histologia , Modelos Biológicos , Adulto , Anisotropia , Simulação por Computador , Feminino , Humanos , Isótopos , Campos Magnéticos , Masculino , Compostos Radiofarmacêuticos , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
Magn Reson Med ; 63(1): 127-36, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19918891

RESUMO

A pulse-sequence strategy was developed for generating regional maps of alveolar oxygen partial pressure (pO2) in a single 6-sec breath hold, for use in human subjects with impaired lung function. Like previously described methods, pO2 values are obtained by measuring the oxygen-induced T1 relaxation of inhaled hyperpolarized 3He. Unlike other methods, only two 3He images are acquired: one with reverse-centric and the other with centric phase-encoding order. This phase-encoding arrangement minimizes the effects of regional flip-angle variations, so that an accurate map of instantaneous pO2 can be calculated from two images acquired a few seconds apart. By combining this phase-encoding strategy with variable flip angles, the vast majority of the hyperpolarized magnetization goes directly into the T1 measurement, minimizing noise in the resulting pO2 map. The short-breath-hold pulse sequence was tested in phantoms containing known O2 concentrations. The mean difference between measured and prepared pO2 values was 1 mm Hg. The method was also tested in four healthy volunteers and three lung-transplant patients. Maps of healthy subjects were largely uniform, whereas focal regions of abnormal pO2 were observed in diseased subjects. Mean pO2 values varied with inhaled O2 concentration. Mean pO2 was consistent with normal steady-state values in subjects who inhaled 3He diluted only with room air.


Assuntos
Hélio , Interpretação de Imagem Assistida por Computador/métodos , Pulmão/metabolismo , Imageamento por Ressonância Magnética/métodos , Consumo de Oxigênio/fisiologia , Oxigênio/metabolismo , Mecânica Respiratória , Adolescente , Algoritmos , Feminino , Humanos , Isótopos , Compostos Radiofarmacêuticos , Distribuição Tecidual , Adulto Jovem
8.
Phys Med Biol ; 64(10): 105019, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30947154

RESUMO

The aim of this work was to develop a novel hybrid 3D hyperpolarized (HP) gas tagging MRI (t-MRI) technique and to evaluate it for lung respiratory motion measurement with comparison to deformable image registrations (DIR) methods. Three healthy subjects underwent a hybrid MRI which combines 3D HP gas t-MRI with a low resolution (Low-R, 4.5 mm isotropic voxels) 3D proton MRI (p-MRI), plus a high resolution (High-R, 2.5 mm isotropic voxels) 3D p-MRI, during breath-holds at the end-of-inhalation (EOI) and the end-of-exhalation (EOE). Displacement vector field (DVF) of the lung motion was determined from the t-MRI images by tracking tagging grids and from the High-R p-MRI using three DIR methods (B-spline based method implemented by Velocity, Free Form Deformation by MIM, and B-spline by an open source software Elastix: denoted as A, B, and C, respectively), labeled as tDVF and dDVF, respectively. The tDVF from the HP gas t-MRI was used as ground-truth reference to evaluate performance of the three DIR methods. Differences in both magnitude and angle between the tDVF and dDVFs were analyzed. The mean lung motion of the three subjects was 37.3 mm, 8.9 mm and 12.9 mm, respectively. Relatively large discrepancies were observed between the tDVF and the dDVFs as compared to previously reported DIR errors. The mean ± standard deviation (SD) DVF magnitude difference was 8.3 ± 5.6 mm, 9.2 ± 4.5 mm, and 9.3 ± 6.1 mm, and the mean ± SD DVF angular difference was 29.1 ± 12.1°, 50.1 ± 28.6°, and 39.0 ± 6.3°, for the DIR Methods A, B, and C, respectively. These preliminary results showed that the hybrid HP gas t-MRI technique revealed different lung motion patterns as compared to the DIR methods. It may provide unique perspectives in developing and evaluating DIR of the lungs. Novelty and Significance We designed a MRI protocol that includes a novel hybrid MRI technique (3D HP gas t-MRI with a low resolution 3D p-MRI) plus a high resolution 3D p-MRI. We tested the novel hybrid MRI technique on three healthy subjects for measuring regional lung respiratory motion with comparison to deformable image registrations (DIR) methods, and observed relatively large discrepancies in lung motion between HP gas t-MRI and DIR methods.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Pulmão/fisiologia , Imageamento por Ressonância Magnética/métodos , Prótons , Adulto , Estudos de Viabilidade , Feminino , Voluntários Saudáveis , Humanos , Pulmão/diagnóstico por imagem , Masculino , Projetos Piloto , Ventilação Pulmonar , Mecânica Respiratória , Adulto Jovem
9.
Acad Radiol ; 15(6): 693-701, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18486006

RESUMO

RATIONALE AND OBJECTIVES: Diffusion magnetic resonance imaging (MRI) with hyperpolarized (3)He gas is a powerful technique for probing the characteristics of the lung microstructure. A key parameter for this technique is the diffusion time, which is the period during which the atoms are allowed to diffuse within the lung for measurement of the signal attenuation. The relationship between diffusion time and the length scales that can be explored is discussed, and representative, preliminary results are presented from ongoing studies of the human lung for diffusion times ranging from milliseconds to several seconds. MATERIALS AND METHODS: (3)He diffusion MRI of the human lung was performed on a 1.5T Siemens Sonata scanner. Using gradient echo-based and stimulated echo-based techniques for short and medium-to-long diffusion times, respectively, measurements were performed for times ranging from 2 milliseconds to 6.5 seconds in two healthy subjects, a subject with subclinical chronic obstructive pulmonary disease and a subject with bronchopulmonary dysplasia. RESULTS: In healthy subjects, the apparent diffusion coefficient decreased by about 10-fold, from approximately 0.2 to 0.02 cm(2)/second, as the diffusion time increased from approximately 1 millisecond to 1 second. Results in subjects with disease suggest that measurements made at diffusion times substantially longer than 1 millisecond may provide improved sensitivity for detecting certain pathologic changes in the lung microstructure. CONCLUSIONS: With appropriately designed pulse sequences it is possible to explore the diffusion of hyperpolarized (3)He in the human lung over more than a 1,000-fold variation of the diffusion time. Such measurements provide a new opportunity for exploring and characterizing the microstructure of the healthy and diseased lung.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Hélio , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Idoso , Feminino , Humanos , Isótopos , Masculino , Pessoa de Meia-Idade , Capacidade de Difusão Pulmonar/fisiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fatores de Tempo
10.
Med Phys ; 45(12): 5535-5542, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30276819

RESUMO

BACKGROUND: Deformable image registration (DIR)-based lung ventilation mapping is attractive due to its simplicity, and also challenging due to its susceptibility to errors and uncertainties. In this study, we explored the use of 3D Hyperpolarized (HP) gas tagging MRI to evaluate DIR-based lung ventilation. METHOD AND MATERIAL: Three healthy volunteers included in this study underwent both 3D HP gas tagging MRI (t-MRI) and 3D proton MRI (p-MRI) using balanced steady-state free precession pulse sequence at end of inhalation and end of exhalation. We first obtained the reference displacement vector fields (DVFs) from the t-MRIs by tracking the motion of each tagging grid between the exhalation and the inhalation phases. Then, we determined DIR-based DVFs from the p-MRIs by registering the images at the two phases with two commercial DIR algorithms. Lung ventilations were calculated from both the reference DVFs and the DIR-based DVFs using the Jacobian method and then compared using cross correlation and mutual information. RESULTS: The DIR-based lung ventilations calculated using p-MRI varied considerably from the reference lung ventilations based on t-MRI among all three subjects. The lung ventilations generated using Velocity AI were preferable for the better spatial homogeneity and accuracy compared to the ones using MIM, with higher average cross correlation (0.328 vs 0.262) and larger average mutual information (0.528 vs 0.323). CONCLUSION: We demonstrated that different DIR algorithms resulted in different lung ventilation maps due to underlining differences in the DVFs. HP gas tagging MRI provides a unique platform for evaluating DIR-based lung ventilation.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Imageamento por Ressonância Magnética , Ventilação Pulmonar , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
11.
Int J Radiat Oncol Biol Phys ; 68(3): 650-3, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17445997

RESUMO

PURPOSE: To measure lung motion between end-inhalation and end-exhalation using a hyperpolarized helium-3 (HP (3)He) magnetic resonance (MR) tagging technique. METHODS AND MATERIALS: Three healthy volunteers underwent MR tagging studies after inhalation of 1 L HP (3)He gas diluted with nitrogen. Multiple-slice two-dimensional and volumetric three-dimensional MR tagged images of the lungs were obtained at end-inhalation and end-exhalation, and displacement vector maps were computed. RESULTS: The grids of tag lines in the HP (3)He MR images were well defined at end-inhalation and remained evident at end-exhalation. Displacement vector maps clearly demonstrated the regional lung motion and deformation that occurred during exhalation. Discontinuity and differences in motion pattern between two adjacent lung lobes were readily resolved. CONCLUSIONS: Hyperpolarized helium-3 MR tagging technique can be used for direct in vivo measurement of respiratory lung motion on a regional basis. This technique may lend new insights into the regional pulmonary biomechanics and thus provide valuable information for the deformable registration of lung.


Assuntos
Meios de Contraste/administração & dosagem , Hélio , Interpretação de Imagem Assistida por Computador/métodos , Pulmão/fisiologia , Imageamento por Ressonância Magnética/métodos , Movimento/fisiologia , Mecânica Respiratória/fisiologia , Administração por Inalação , Adulto , Feminino , Hélio/administração & dosagem , Humanos , Aumento da Imagem/métodos , Isótopos/administração & dosagem , Pulmão/anatomia & histologia , Masculino , Compostos Radiofarmacêuticos/administração & dosagem , Sensibilidade e Especificidade
12.
J Appl Physiol (1985) ; 102(3): 1273-80, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17110518

RESUMO

The apparent diffusion coefficients (ADCs) of hyperpolarized (3)He and (129)Xe gases were measured in the lungs of rabbits with elastase-induced emphysema and correlated against the mean chord length from lung histology. In vivo measurements were performed at baseline and 2, 4, 6, and 8 wk after instillation of elastase (mild and moderate emphysema groups) or saline (control group). ADCs were determined from acquisitions that used two b values. To investigate the effect of b value on the results, b-value pairs of 0 and 1.6 s/cm(2) and 0 and 4.0 s/cm(2) were used for (3)He, and b-value pairs of 0 and 5.0 s/cm(2) and 0 and 10.0 s/cm(2) were used for (129)Xe. At 8 wk after instillation, the rabbits were euthanized, and the lungs were analyzed histologically and morphometrically. ADCs for the rabbits in the control group did not change significantly from baseline to week 8, whereas ADCs for the rabbits in the emphysema groups increased significantly (P < 0.05) for all gas and b-value combinations except (129)Xe with the b-value pair of 0 and 5.0 s/cm(2). The largest percent change in mean ADC from baseline to week 8 (15.3%) occurred with (3)He and the b-value pair of 0 and 1.6 s/cm(2) for rabbits in the moderate emphysema group. ADCs (all b values) were strongly correlated (r = 0.62-0.80, P < 0.001) with mean chord lengths from histology. These results further support the ability of diffusion-weighted MRI with hyperpolarized gases to detect regional and global structural changes of emphysema within the lung.


Assuntos
Imagem de Difusão por Ressonância Magnética , Enfisema/patologia , Hélio , Pulmão/patologia , Isótopos de Xenônio , Animais , Peso Corporal , Modelos Animais de Doenças , Isótopos , Coelhos , Reprodutibilidade dos Testes , Fatores de Tempo
13.
J Magn Reson ; 189(2): 228-40, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17936048

RESUMO

We present a new pulse sequence for measuring very-short-time-scale restricted diffusion of hyperpolarized noble gases. The pulse sequence is based on concatenating a large number of bipolar diffusion-sensitizing gradients to increase the diffusion attenuation of the MR signal while maintaining a fundamentally short diffusion time. However, it differs in several respects from existing methods that use oscillating diffusion gradients for this purpose. First, a wait time is inserted between neighboring pairs of gradient pulses; second, consecutive pulse pairs may be applied along orthogonal axes; and finally, the diffusion-attenuated signal is not simply read out at the end of the gradient train but is periodically sampled during the wait times between neighboring pulse pairs. The first two features minimize systematic differences between the measured (apparent) diffusion coefficient and the actual time-dependent diffusivity, while the third feature optimizes the use of the available MR signal to improve the precision of the diffusivity measurement in the face of noise. The benefits of this technique are demonstrated using theoretical calculations, Monte-Carlo simulations of gas diffusion in simple geometries, and experimental phantom measurements in a glass sphere containing hyperpolarized (3)He gas. The advantages over the conventional single-bipolar approach were found to increase with decreasing diffusion time, and thus represent a significant step toward making accurate surface-to-volume measurements in the lung airspaces.


Assuntos
Algoritmos , Difusão , Gases/química , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Eletricidade Estática , Fatores de Tempo
14.
IEEE Trans Med Imaging ; 26(11): 1456-63, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18041261

RESUMO

We demonstrate a method for simulating restricted diffusion of hyperpolarized gases in lung airspaces that does not rely on an idealized analytic model of alveolar structure. Instead, the restricting geometry was generated from digital representations of histological sections of actual lung tissue obtained from a rabbit model of emphysema. Monte-Carlo simulations of restricted diffusion were performed in the short-time-scale regime, for which the time-dependent diffusivity is quantitatively related to the surface-to-volume ratio (S/V) of the pore space. In each of the eight samples studied, the S/V extracted from the simulated time-dependent diffusivity curves differed by less than 3% from direct assessment of S/V using image-processing methods. Simulated MRI measurements of apparent diffusion coefficients (ADCs) were performed in three representative lung sections to determine the effect of realistic gradient pulse shapes on the extracted S/V values. It was confirmed that ADCs measured at short diffusion times using either narrow or square gradient pulses yield accurate S/V values based on previously derived theoretical relationships. Simulations of triangular and sinusoidal diffusion-sensitizing gradients were then used to quantify the modifications required to extract accurate S/V values from ADC measurements obtained using more realistic gradient waveforms.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Modelos Biológicos , Gases Nobres/farmacocinética , Alvéolos Pulmonares/fisiologia , Troca Gasosa Pulmonar/fisiologia , Simulação por Computador , Difusão , Humanos
15.
J Magn Reson ; 249: 108-117, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25462954

RESUMO

We describe a homebuilt MRI system for imaging laser-polarized xenon-129 at a very low holding field of 2.2mT. A unique feature of this system was the use of Maxwell coils oriented at so-called "magic angles" to generate the transverse magnetic field gradients, which provided a simple alternative to Golay coils. We used this system to image a laser-polarized xenon-129 phantom with both a conventional gradient-echo and a fully phase-encoded pulse sequence. In other contexts, a fully phase-encoded acquisition, also known as single-point or constant-time imaging, has been used to enable distortion-free imaging of short-T2∗ species. Here we used this technique to overcome imperfections associated with our homebuilt MRI system while also taking full advantage of the long T2∗ available at very low field. Our results demonstrate that xenon-129 image quality can be dramatically improved at low field by combining a fully phase-encoded k-space acquisition with auxiliary measurements of system imperfections including B0 field drift and gradient infidelity.

16.
Int J Radiat Oncol Biol Phys ; 75(1): 276-84, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19540059

RESUMO

PURPOSE: To develop a dynamic magnetic resonance imaging (MRI) tagging technique using hyperpolarized helium-3 (HP He-3) to track lung motion. METHODS AND MATERIALS: An accelerated non-Cartesian k-space trajectory was used to gain acquisition speed, at the cost of introducing image artifacts, providing a viable strategy for obtaining whole-lung coverage with adequate temporal resolution. Multiple-slice two-dimensional dynamic images of the lung were obtained in three healthy subjects after inhaling He-3 gas polarized to 35%-40%. Displacement, strain, and ventilation maps were computed from the observed motion of the grid peaks. RESULTS: Both temporal and spatial variations of pulmonary mechanics were observed in normal subjects, including shear motion between different lobes of the same lung. CONCLUSION: These initial results suggest that dynamic imaging of grid-tagged hyperpolarized magnetization may potentially be a powerful tool for observing and quantifying pulmonary biomechanics on a regional basis and for assessing, validating, and improving lung deformable image registration algorithms.


Assuntos
Hélio , Pulmão/fisiologia , Imageamento por Ressonância Magnética/métodos , Movimento , Respiração , Adulto , Algoritmos , Feminino , Humanos , Isótopos , Mecânica Respiratória , Decúbito Dorsal , Adulto Jovem
17.
Magn Reson Med ; 59(3): 673-8, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18306375

RESUMO

A stimulated-echo-based technique was developed to measure the regional apparent diffusion coefficient (ADC) of hyperpolarized 3He during a single breathhold for diffusion times of 25 ms or greater. Compared to previous methods, a substantially shorter minimum diffusion time was achieved by decoupling diffusion sensitization from image acquisition. A hyperpolarized-gas phantom was used to validate the method, which was then tested in four healthy subjects in whom regional ADC maps were acquired with diffusion times of 50, 200, and 1500 ms and a tag wavelength of 5 or 10 mm. ADC values from healthy subjects were in good agreement with reported literature values and decreased with increasing diffusion time. Mean ADC values were approximately 0.07, 0.03, and 0.015 cm2/s for diffusion times of 50, 200, and 1500 ms, respectively. ADC maps were generally homogeneous, with similar mean values when measured with the same parameters in different subjects.


Assuntos
Asma/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Hélio , Pulmão/anatomia & histologia , Humanos , Processamento de Imagem Assistida por Computador , Isótopos , Masculino , Imagens de Fantasmas
18.
J Magn Reson Imaging ; 28(1): 80-8, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18581381

RESUMO

PURPOSE: To investigate short- and long-time-scale (3)He diffusion in asthma. MATERIALS AND METHODS: A hybrid MRI sequence was developed to obtain co-registered short- and long-time-scale apparent diffusion coefficient (ADC) maps during a single breath-hold. The study groups were: asthma (n = 14); healthy (n = 14); chronic obstructive pulmonary disease (COPD) (n = 9). Correlations were made between mean-ADC and %ADC-abn (abnormal) (%pixels with ADC > mean +2 SD of healthy) at both time scales and spirometry. Sensitivities were determined using receiver operating characteristic (ROC) analysis. RESULTS: For asthmatics, the short- and long-time-scale group-mean ADCs were 0.254 +/- 0.032 cm(2)/s and 0.0237 +/- 0.0055 cm(2)/s, respectively, representing a 9% and 27% (P = 0.038 and P = 0.005) increase compared to the healthy group. The group-mean %ADC-abn were 6.4% +/- 3.7% and 17.5% +/- 14.2%, representing a 107% and 272% (P = 0.004 and P = 0.006) increase. For COPD much greater elevations were observed. %ADC-abn provided better discrimination than mean-ADC between asthmatic and healthy subjects. In asthmatics ADC did not correlate with spirometry. CONCLUSION: With long-time scale (3)He diffusion magnetic resonance imaging (MRI) changes in lung microstructure were detected in asthma that more conspicuous regionally than at the short time scale. The hybrid diffusion method is a novel means of identifying small airway disease.


Assuntos
Asma/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Espirometria
19.
Magn Reson Med ; 57(6): 1099-109, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17534927

RESUMO

Xenon polarization Transfer Contrast (XTC) MRI pulse sequences permit the gas exchange of hyperpolarized xenon-129 in the lung to be measured quantitatively. However, the pulse sequence parameter values employed in previously published work were determined empirically without considering the now-known gas exchange rates and the underlying lung physiology. By using a theoretical model for the consumption of magnetization during data acquisition, the noise intensity in the computed gas-phase depolarization maps was minimized as a function of the gas-phase depolarization rate. With such optimization the theoretical model predicted an up to threefold improvement in precision. Experiments in rabbits demonstrated that for typical imaging parameter values the optimized XTC pulse sequence yielded a median noise intensity of only about 3% in the depolarization maps. Consequently, the reliable detection of variations in the average alveolar wall thickness of as little as 300 nm can be expected. This improvement in the precision of the XTC MRI technique should lead to a substantial increase in its sensitivity for detecting pathological changes in lung function.


Assuntos
Pulmão/anatomia & histologia , Pulmão/metabolismo , Imageamento por Ressonância Magnética/métodos , Xenônio/metabolismo , Animais , Processamento de Imagem Assistida por Computador , Troca Gasosa Pulmonar/fisiologia , Coelhos , Ondas de Rádio , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Xenônio/farmacocinética
20.
Magn Reson Med ; 56(2): 296-309, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16791861

RESUMO

A stimulated-echo-based technique was developed to measure the long-time-scale apparent diffusion coefficient (ADC) of hyperpolarized 3He during a single breath-hold acquisition. Computer simulations were used to evaluate the performance of the technique and guide the selection of appropriate parameter values for obtaining accurate ADC values. The technique was used in 10 healthy subjects and two subjects with chronic obstructive pulmonary disease (COPD) to measure the global ADC for diffusion times between a few tenths of a second and several seconds, and to acquire spatial maps of the ADC for a diffusion time of 1.5 s. The reproducibility of the technique and its sensitivity to the direction of diffusion sensitization were also investigated. In healthy subjects, global ADC values decreased by severalfold over the range of diffusion times measured (mean values = 0.039 and 0.023 cm2/s at diffusion times of 0.61 and 1.54 s, respectively). ADC maps were generally uniform, with mean values similar to the corresponding global values. For the two COPD subjects, global ADC values were substantially greater than those of every healthy subject at all diffusion times measured. In addition, regional elevations of ADC values were far more conspicuous on long-time-scale ADC maps than on short-time-scale ADC maps.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Hélio , Pulmão/anatomia & histologia , Doença Pulmonar Obstrutiva Crônica/patologia , Adulto , Idoso , Simulação por Computador , Feminino , Humanos , Isótopos , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Fumar/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA