Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Biomol NMR ; 75(4-5): 167-178, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33856612

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological cause of the coronavirus disease 2019, for which no effective antiviral therapeutics are available. The SARS-CoV-2 main protease (Mpro) is essential for viral replication and constitutes a promising therapeutic target. Many efforts aimed at deriving effective Mpro inhibitors are currently underway, including an international open-science discovery project, codenamed COVID Moonshot. As part of COVID Moonshot, we used saturation transfer difference nuclear magnetic resonance (STD-NMR) spectroscopy to assess the binding of putative Mpro ligands to the viral protease, including molecules identified by crystallographic fragment screening and novel compounds designed as Mpro inhibitors. In this manner, we aimed to complement enzymatic activity assays of Mpro performed by other groups with information on ligand affinity. We have made the Mpro STD-NMR data publicly available. Here, we provide detailed information on the NMR protocols used and challenges faced, thereby placing these data into context. Our goal is to assist the interpretation of Mpro STD-NMR data, thereby accelerating ongoing drug design efforts.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus , Inibidores de Proteases/química , SARS-CoV-2/enzimologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Humanos , Inibidores de Proteases/uso terapêutico
2.
Science ; 382(6671): eabo7201, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37943932

RESUMO

We report the results of the COVID Moonshot, a fully open-science, crowdsourced, and structure-enabled drug discovery campaign targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease. We discovered a noncovalent, nonpeptidic inhibitor scaffold with lead-like properties that is differentiated from current main protease inhibitors. Our approach leveraged crowdsourcing, machine learning, exascale molecular simulations, and high-throughput structural biology and chemistry. We generated a detailed map of the structural plasticity of the SARS-CoV-2 main protease, extensive structure-activity relationships for multiple chemotypes, and a wealth of biochemical activity data. All compound designs (>18,000 designs), crystallographic data (>490 ligand-bound x-ray structures), assay data (>10,000 measurements), and synthesized molecules (>2400 compounds) for this campaign were shared rapidly and openly, creating a rich, open, and intellectual property-free knowledge base for future anticoronavirus drug discovery.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus , Inibidores de Protease de Coronavírus , Descoberta de Drogas , SARS-CoV-2 , Humanos , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Simulação de Acoplamento Molecular , Inibidores de Protease de Coronavírus/síntese química , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/farmacologia , Relação Estrutura-Atividade , Cristalografia por Raios X
3.
Comput Struct Biotechnol J ; 19: 3491-3506, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194673

RESUMO

The L-arginine biosynthesis pathway consists of eight enzymes that catalyse the conversion of L-glutamate to L-arginine. Arginine auxotrophs (argB/argF deletion mutants) of Mycobacterium tuberculosis are rapidly sterilised in mice, while inhibition of ArgJ with Pranlukast was found to clear chronic M. tuberculosis infection in a mouse model. Enzymes in the arginine biosynthetic pathway have therefore emerged as promising targets for anti-tuberculosis drug discovery. In this work, the ligandability of four enzymes of the pathway ArgB, ArgC, ArgD and ArgF is assessed using a fragment-based approach. We identify several hits against these enzymes validated with biochemical and biophysical assays, as well as X-ray crystallographic data, which in the case of ArgB were further confirmed to have on-target activity against M. tuberculosis. These results demonstrate the potential for more enzymes in this pathway to be targeted with dedicated drug discovery programmes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA