Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Appl Microbiol ; 134(5)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37133419

RESUMO

AIM: Frozen, breaded chicken products have been implicated in Salmonella outbreaks, and may be incorrectly perceived as ready-to-eat, leading to mishandling or undercooking by consumers. This study aimed to assess the prevalence of Salmonella and antimicrobial resistant (AMR) Escherichia coli in these products. METHODS AND RESULTS: Samples of frozen, raw, or partly cooked, coated chicken products were collected between April and July 2021 from retailers in the UK and tested for Salmonella spp., generic E. coli, extended spectrum beta-lactamase-producing, colistin-resistant, and carbapenem-resistant E. coli. One isolate of each bacterial type from each sample was selected for minimum inhibitory concentration determination for a range of antimicrobials. Salmonella was detected in 5 of 310 (1.6%) samples, identified as Salmonella Infantis in three samples and Salm. Java in two. One Salm. Infantis isolate was multidrug resistant, while the other Salmonella isolates were each resistant to at least one class of antimicrobials. Generic E. coli were detected in 113 samples (36.4%), with multidrug resistance being demonstrated in 20.0% of these. Escherichia coli with the ESBL phenotype were detected in 15 (4.8%) of samples and the AmpC phenotype in 2 (0.6%). A colistin-resistant E. coli was isolated from one sample; this possessed the mcr-1 gene. No carbapenem-resistant E. coli were detected. The five Salmonella-positive samples from this study, together with 20 Salmonella-positive products from an earlier study in 2020/2021, were cooked according to the manufacturers' instructions. Following cooking, Salmonella was not detected in any samples. CONCLUSIONS: This survey demonstrates continued contamination of frozen, coated chicken products with Salmonella, and provides data on the prevalence of AMR in these products.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Animais , Antibacterianos/farmacologia , Galinhas/microbiologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Carbapenêmicos , Reino Unido , beta-Lactamases/genética , Testes de Sensibilidade Microbiana , Proteínas de Escherichia coli/genética
2.
BMC Microbiol ; 19(1): 148, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266463

RESUMO

BACKGROUND: UK public health organisations perform routine antimicrobial susceptibility tests (ASTs) to characterise the potential for antimicrobial resistance in Salmonella enterica serovars. Genetic determinants of these resistance mechanisms are detectable by whole genome sequencing (WGS), however the viability of WGS-based genotyping as an alternative resistance screening tool remains uncertain. We compared WGS-based genotyping, disk diffusion and agar dilution to the broth microdilution reference AST for 102 Salmonella enterica serovar Typhimurium (S. Typhimurium) isolates across 11 antimicrobial compounds. RESULTS: Genotyping concordance, interpreted using epidemiological cut-offs (ECOFFs), was 89.8% (1007/1122) with 0.83 sensitivity and 0.96 specificity. For seven antimicrobials interpreted using Salmonella clinical breakpoints, genotyping produced 0.84 sensitivity and 0.88 specificity. Although less accurate than disk diffusion (0.94 sensitivity, 0.93 specificity) and agar dilution (0.83 sensitivity, 0.98 specificity), genotyping performance improved to 0.89 sensitivity and 0.97 specificity when two antimicrobials with relatively high very major error rates were excluded (streptomycin and sulfamethoxazole). CONCLUSIONS: An 89.8% concordance from WGS-based AST predictions using ECOFF interpretations suggest that WGS would serve as an effective screening tool for the tracking of antimicrobial resistance mechanisms in S. Typhimurium. For use as a standalone clinical diagnostic screen, further work is required to reduce the error rates for specific antimicrobials.


Assuntos
Testes de Sensibilidade Microbiana/métodos , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genética , Sequenciamento Completo do Genoma , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano , Genótipo , Humanos , Fenótipo , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Sensibilidade e Especificidade , Sorogrupo
4.
Microb Genom ; 10(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38294872

RESUMO

Campylobacter spp. are a leading cause of bacterial foodborne zoonosis worldwide, with poultry meat and products recognised as a significant source of human infection. In Vietnam there are few data regarding the occurrence, antimicrobial resistance, and genomic diversity of Campylobacter in poultry and poultry meat. The aim of this study was to estimate the prevalence of Campylobacter in chicken meat at retail in Hanoi, determine antimicrobial sensitivities of the Campylobacter isolated, and assess their genetic diversity. A total of 120 chicken meat samples were collected from eight traditional retail markets (n=80) and four supermarkets (n=40). Campylobacter was isolated following ISO 10272-1 : 2017 and identification verified by PCR. The prevalence of Campylobacter was 38.3 % (46/120) and C. coli was the most prevalent species in both retail markets (74 %) and supermarkets (88 %). The minimum inhibitory concentrations for ciprofloxacin, erythromycin, gentamicin, nalidixic acid, streptomycin, and tetracycline were determined by broth microdilution for 32 isolates. All characterised Campylobacter were resistant to ciprofloxacin, nalidixic acid, and tetracycline, with corresponding resistance determinants detected in the sequenced genomes. Most C. coli were multidrug resistant (24/28) and two harboured the erythromycin resistance gene ermB on a multiple drug-resistance genomic island, a potential mechanism for dissemination of resistance. The 32 isolates belonged to clonal complexes associated with both poultry and people, such as CC828 for C. coli. These results contribute to the One Health approach for addressing Campylobacter in Vietnam by providing detailed new insights into a main source of human infection and can inform the design of future surveillance approaches.


Assuntos
Campylobacter , Galinhas , Humanos , Animais , Prevalência , Vietnã/epidemiologia , Ácido Nalidíxico , Genômica , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia , Ciprofloxacina , Eritromicina , Tetraciclina , Campylobacter/genética
5.
Front Microbiol ; 14: 1327739, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38293556

RESUMO

Introduction: Salmonella Enteritidis and S. Typhimurium are the two most clinically important zoonotic Salmonella serovars and vaccination of breeding and laying hens affords effective Salmonella control. The use of live vaccines has proven beneficial for a number of reasons, including ease of application, protection from the first day of life onwards and initiation of a strong local immune response. Live vaccines can be applied in the drinking water from the first day of life onwards, but some rearers choose to wait until the end of the first week to ensure sufficient water consumption. However, this practice leaves the birds unprotected during the crucial first week of life, where they are most susceptible to colonization by field strains. The aim of this study was to determine if successful vaccine uptake is achieved when layer pullets are vaccinated as early as day one. Methods: Three pullet flocks were vaccinated at 1, 2, 3 or 5 days-of-age with AviPro™ Salmonella DUO, a live vaccine containing attenuated strains of S. Enteritidis and S. Typhimurium (Elanco Animal Health, Cuxhaven, Germany). The vaccine was administered via the drinking water following manufacturer's instructions. Two days post-vaccination, 10 birds per flock were culled and caecal and liver samples taken, along with two pools of faeces per flock. Levels of vaccine strains were determined by quantitative and qualitative bacteriology. Results: Vaccine strains were detected in all birds from all age groups indicating successful uptake of the vaccine. Levels of the S. Enteritidis vaccine were higher than levels of the S. Typhimurium vaccine, with the latter frequently only detectable following enrichment. There was an inverse correlation between age and caecal levels of vaccines, with the highest numbers seen in birds vaccinated at 1-day-of-age. Interestingly, S. Enteritidis vaccine strain levels in liver samples were highest when birds were vaccinated at 5 days-of-age. Discussion: These results show that successful uptake of both vaccine strains was evident in all age groups. The earlier the chicks were vaccinated, the higher the vaccine levels in caecal contents. We therefore recommend vaccination of pullets as early as practicably possible to ensure protection against exposure to field strains.

6.
Vet Microbiol ; 284: 109819, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37390703

RESUMO

The development of alternatives to antibiotics is essential for the treatment of animal infections and as a measure to reduce the selective pressure on antibiotics that are critical for human medicine. Metal complexes have been highlighted for their antimicrobial activity against several bacterial pathogens. In particular, manganese carbonyl complexes have shown efficacy against multidrug-resistant Gram-negative pathogens, and relatively low cytotoxicity against avian macrophages and in wax moth larval models. They are thus potential candidates for deployment against Avian Pathogenic Escherichia coli (APEC), the aetiological agent of avian colibacillosis, which results in severe animal welfare issues and financial losses worldwide. This study aimed to determine the efficacy of [Mn(CO)3(tqa-κ3N)]Br in Galleria mellonella and chick models of infection against APEC. The results demonstrated in vitro and in vivo antibacterial activity against all antibiotic-resistant APEC test isolates screened in the study.


Assuntos
Anti-Infecciosos , Infecções por Escherichia coli , Doenças das Aves Domésticas , Animais , Humanos , Manganês/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Escherichia coli , Antibacterianos/farmacologia , Galinhas , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/microbiologia
7.
Infect Immun ; 80(7): 2361-70, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22508861

RESUMO

Campylobacter jejuni is a major cause of bacterial food-borne enteritis worldwide, and invasion into intestinal epithelial cells is an important virulence mechanism. Recently we reported the identification of hyperinvasive C. jejuni strains and created a number of transposon mutants of one of these strains, some of which exhibited reduced invasion into INT-407 and Caco-2 cells. In one such mutant the transposon had inserted into a homologue of cj1136, which encodes a putative galactosyltransferase according to the annotation of the C. jejuni NCTC11168 genome. In the current study, we investigated the role of cj1136 in C. jejuni virulence, lipooligosaccharide (LOS) biosynthesis, and host colonization by targeted mutagenesis and complementation of the mutation. The cj1136 mutant showed a significant reduction in invasion into human intestinal epithelial cells compared to the wild-type strain 01/51. Invasion levels were partially restored on complementing the mutation. The inactivation of cj1136 resulted in the production of truncated LOS, while biosynthesis of a full-length LOS molecule was restored in the complemented strain. The cj1136 mutant showed an increase in sensitivity to the bile salts sodium taurocholate and sodium deoxycholate and significantly increased sensitivity to polymyxin B compared to the parental strain. Importantly, the ability of the mutant to colonize 1-day-old chicks was also significantly impaired. This study confirms that a putative galactosyltransferase encoded by cj1136 is involved in LOS biosynthesis and is important for C. jejuni virulence, as disruption of this gene and the resultant truncation of LOS affect both colonization in vivo and invasiveness in vitro.


Assuntos
Campylobacter jejuni/enzimologia , Campylobacter jejuni/patogenicidade , Galactosiltransferases/metabolismo , Lipopolissacarídeos/biossíntese , Fatores de Virulência/metabolismo , Animais , Campylobacter jejuni/genética , Campylobacter jejuni/crescimento & desenvolvimento , Linhagem Celular , Galinhas/microbiologia , Elementos de DNA Transponíveis , Modelos Animais de Doenças , Células Epiteliais/microbiologia , Galactosiltransferases/genética , Deleção de Genes , Teste de Complementação Genética , Humanos , Mutagênese Insercional , Fatores de Virulência/genética
8.
Animals (Basel) ; 12(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36290166

RESUMO

The growing threat of antimicrobial resistance worldwide has led to an increasing concern in the human, veterinary, and environmental fields, highlighting the need for strategies to effectively control bacterial contamination. Correct biosecurity practices, including the appropriate use of disinfectants, play a crucial role in controlling bacterial contamination. This study aimed to verify whether the recommended concentrations defined according to the Defra General Orders concentration (GO, published by the UK Department for Environment, Food and Rural Affairs' disinfectant-approval scheme) of five commercial disinfectant preparations (peroxygen-based, phenol-based, two halogen-releasing agents, and glutaraldehyde/quaternary ammonium compound-based; disinfectants A to E, respectively) were sufficient to inhibit growth and inactivate selected bacterial strains, including some that carry known phenotypic patterns of multidrug resistance. The effectiveness of each disinfectant was expressed as the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values, determined by the broth-microdilution method. The results indicate that the type of disinfectant and its concentration influence the inhibitory and bactericidal efficacy. The glutaraldehyde/quaternary ammonium compound-based (disinfectant D) and chlorocresol-based products (disinfectant B) were the most effective, and the GO concentration was bactericidal in all the strains tested. The efficacy of the other compounds varied, depending on the bacterial species tested. The GO concentrations were at least able to inhibit the bacterial growth in all the products and bacterial strains tested. A greater tolerance to the compounds was observed in the strains of E. coli with multidrug-resistance profiles compared to the strains that were sensitive to the same antimicrobials.

9.
Zoonoses Public Health ; 69(5): 487-498, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35304827

RESUMO

Salmonella can enter hatcheries via contaminated eggs and other breaches of biosecurity. The study examined the prevalence and distribution of Salmonella in commercial hatcheries and assessed the effects of providing advice on Salmonella control. Intensive swab sampling was performed throughout 23 broiler hatcheries in Great Britain (GB). Swabs were cultured using a modified ISO6579:2017 method. After each visit, tailored advice on biosecurity and cleaning and disinfection procedures was provided to the hatchery managers. Repeat sampling was carried out in 10 of the 23 hatcheries. Salmonella prevalence ranged between 0% and 33.5%, with the chick handling areas, hatcher areas, macerator area, tray wash/storage areas, external areas and other waste handling areas being more contaminated than the setter areas. Salmonella Senftenberg and Salmonella 13,23:i:- were the most commonly isolated serovars. There was a reduction in Salmonella prevalence at the second visit in eight out of 10 premises, but prevalence values had increased again in all of the improved hatcheries that were visited a third time. One hatchery harboured a difficult-to-control resident Salmonella 13,23:i:- strain and was visited six times; by the final visit, Salmonella prevalence was 2.3%, reduced from a high of 23.1%. In conclusion, the study found low-level Salmonella contamination in some GB broiler hatcheries, with certain hatcheries being more severely affected. Furthermore, it was shown that Salmonella typically is difficult to eradicate from contaminated hatcheries, but substantial reductions in prevalence are possible with improvements to biosecurity, cleaning and disinfection.


Assuntos
Doenças das Aves Domésticas , Salmonelose Animal , Animais , Galinhas , Óvulo , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/prevenção & controle , Salmonella , Salmonelose Animal/epidemiologia , Salmonelose Animal/prevenção & controle , Reino Unido/epidemiologia
10.
Microb Genom ; 8(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35344479

RESUMO

Food animals may be reservoirs of antimicrobial resistance (AMR) passing through the food chain, but little is known about AMR prevalence in bacteria when selective pressure from antimicrobials is low or absent. We monitored antimicrobial-resistant Escherichia coli over 1 year in a UK outdoor pig farm with low antimicrobial usage (AMU) compared to conventional pig farms in the United Kingdom. Short and selected long-read whole-genome sequencing (WGS) was performed to identify AMR genes, phylogeny and mobile elements in 385 E. coli isolates purified mainly from pig and some seagull faeces. Generally, low levels of antimicrobial-resistant E. coli were present, probably due to low AMU. Those present were likely to be multi-drug resistant (MDR) and belonging to particular Sequence Types (STs) such as ST744, ST88 or ST44, with shared clones (<14 Single Nucleotide Polymorphisms (SNPs) apart) isolated from different time points indicating epidemiological linkage within pigs of different ages, and between pig and the wild bird faeces. Although importance of horizontal transmission of AMR is well established, there was limited evidence of plasmid-mediated dissemination between different STs. Non-conjugable MDR plasmids or large AMR gene-bearing transposons were stably integrated within the chromosome and remained associated with particular STs/clones over the time period sampled. Heavy metal resistance genes were also detected within some genetic elements. This study highlights that although low levels of antimicrobial-resistant E. coli correlates with low AMU, a basal level of MDR E. coli can still persist on farm potentially due to transmission and recycling of particular clones within different pig groups. Environmental factors such as wild birds and heavy metal contaminants may also play important roles in the recycling and dissemination, and hence enabling persistence of MDR E. coli. All such factors need to be considered as any rise in AMU on low usage farms, could in future, result in a significant increase in their AMR burden.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Fazendas , Genômica , Suínos
11.
Microorganisms ; 10(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35889081

RESUMO

The aim of this study was to develop a multiplex bead assay using a Brucella rLPS antigen, a Brucella suis smooth antigen, and a Yersinia enterocolitica O:9 antigen that not only discriminates Brucella-infected from Brucella-uninfected pigs and wild boar, but also overcomes the cross reactivity with Y. enterocolitica O:9. Sera from 126 domestic pigs were tested: 29 pigs were Brucella infected, 80 were non-infected and 17 were confirmed to be false positive serological reactors (FPSR). Sera from 49 wild boar were tested: 18 were positive and 31 were negative. Using the rLPS antigen, 26/29 Brucella-infected domestic pigs and 15/18 seropositive wild boar were positive, while 75/80 non-Brucella infected domestic pigs, all FPSR, and all seronegative wild boar were negative. Using the smooth B. suis 1330 antigen, all Brucella-infected domestic pigs, 9/17 FPSR and all seropositive wild boar were positive, while all non-infected pigs and 30/31 seronegative wild boar were negative. The ratio of the readouts from the smooth B. suis antigen and Y. enterocolitica O:9 antigen enabled discriminating all Brucella infected individuals from the FPSR domestic pigs. These results demonstrate the potential of this assay for use in the surveillance of brucellosis, overcoming the cross-reactivity with Y. enterocolitica.

12.
Microb Genom ; 8(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35997596

RESUMO

Plasmids are mobile elements that can carry genes encoding traits of clinical concern, including antimicrobial resistance (AMR) and virulence. Population-level studies of Enterobacterales, including Escherichia coli, Shigella and Klebsiella, indicate that plasmids are important drivers of lineage expansions and dissemination of AMR genes. Salmonella Typhimurium is the second most common cause of salmonellosis in humans and livestock in the UK and Europe. The long-term dynamics of plasmids between S. Typhimurium were investigated using isolates collected through national surveillance of animals in England and Wales over a 25-year period. The population structure of S. Typhimurium and its virulence plasmid (where present) were inferred through phylogenetic analyses using whole-genome sequence data for 496 isolates. Antimicrobial resistance genes and plasmid markers were detected in silico. Phenotypic plasmid characterization, using the Kado and Liu method, was used to confirm the number and size of plasmids. The differences in AMR and plasmids between clades were striking, with livestock clades more likely to carry one or more AMR plasmid and be multi-drug-resistant compared to clades associated with wildlife and companion animals. Multiple small non-AMR plasmids were distributed across clades. However, all hybrid AMR-virulence plasmids and most AMR plasmids were highly clade-associated and persisted over decades, with minimal evidence of horizontal transfer between clades. This contrasts with the role of plasmids in the short-term dissemination of AMR between diverse strains in other Enterobacterales in high-antimicrobial-use settings, with implications for predicting plasmid dissemination amongst S. Typhimurium.


Assuntos
Anti-Infecciosos , Salmonella typhimurium , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Humanos , Filogenia , Plasmídeos/genética , Salmonella typhimurium/genética , Virulência/genética
13.
Appl Environ Microbiol ; 77(1): 98-107, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21037294

RESUMO

Improved understanding of the ecology and epidemiology of Campylobacter in the poultry farm environment is key to developing appropriate farm-based strategies for preventing flock colonization. The sources of Campylobacter causing broiler flock colonization were investigated on one poultry farm and its environment, from which samples were obtained on three occasions during each of 15 crop cycles. The farm was adjacent to a dairy farm, with which there was a shared concreted area and secondary entrance. There was considerable variation in the Campylobacter status of flocks at the various sampling times, at median ages of 20, 26, and 35 days, with 3 of the 15 flocks remaining negative at slaughter. Campylobacters were recoverable from various locations around the farm, even while the flock was Campylobacter negative, but the degree of environmental contamination increased substantially once the flock was positive. Molecular typing showed that strains from house surroundings and the dairy farm were similar to those subsequently detected in the flock and that several strains intermittently persisted through multiple crop cycles. The longitudinal nature of the study suggested that bovine fecal Campylobacter strains, initially recovered from the dairy yard, may subsequently colonize poultry. One such strain, despite being repeatedly recovered from the dairy areas, failed to colonize the concomitant flock during later crop cycles. The possibility of host adaptation of this strain was investigated with 16-day-old chickens experimentally exposed to this strain naturally present in, or spiked into, bovine feces. Although the birds became colonized by this infection model, the strain may preferentially infect cattle. The presence of Campylobacter genotypes in the external environment of the poultry farm, prior to their detection in broiler chickens, confirms the horizontal transmission of these bacteria into the flock and highlights the risk from multispecies farms.


Assuntos
Infecções por Campylobacter/veterinária , Campylobacter/classificação , Campylobacter/isolamento & purificação , Portador Sadio/veterinária , Animais , Infecções por Campylobacter/epidemiologia , Portador Sadio/epidemiologia , Bovinos , Galinhas , Análise por Conglomerados , Microbiologia Ambiental , Estudos Longitudinais , Epidemiologia Molecular , Tipagem Molecular
14.
Prev Vet Med ; 197: 105498, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34583208

RESUMO

Salmonella is a major cause of foodborne illness across Europe but there has been little recent research on its control in broiler production in Great Britain. Investigations of Salmonella presence on 20 broiler farms and a separate exploratory risk factor analysis involving 36 Salmonella-positive farms and 22 Salmonella-negative farms were carried out to investigate Salmonella contamination and control on broiler farms in Great Britain. Sources of Salmonella persistence on farm and potential risk factors for on-farm contamination were identified, enabling provision of up-to-date advice on Salmonella control to farmers. Twenty broiler farms across England and Wales were intensively sampled over time. Most farms were included in the study after routine testing as part of the Salmonella National Control Programmes (NCPs) identified regulated Salmonella serovars or potential associations with outbreak cases of significance for human health. Across all farms and visits, the highest proportion of Salmonella-positive samples were from areas exterior to broiler houses compared to anterooms or house interiors. Exterior Salmonella-positive samples were primarily collected from the immediate areas around the houses, with the highest proportions being from drainage, farm tracks/driveways, and pooled water. Elimination of Salmonella was variable but was most successful inside affected houses (compared to exterior areas) and for regulated Salmonella serovars under the Salmonella NCPs and high priority Salmonella strains with multi-drug resistances. It is likely that the financial and reputational concerns associated with regulated Salmonella serovars and those of greater public health significance underlie the reason that these serovars were more effectively controlled at farm level, as effective elimination of Salmonella can involve a considerable investment in infrastructure, time and resources. Without perceived direct benefits in eliminating non-regulated Salmonella serovars at farm level it can be challenging to maintain the required motivation and investment. A separate farm-level risk factor analysis was carried out using data collected from 58 broiler farms representing six GB broiler companies. Risk of testing positive for Salmonella via NCP sampling in the previous year was greater in the absence of house-specific anterooms and if at least some poultry houses were surrounded by soil/grass compared to if all were surrounded by concrete or a mixture of concrete and stones/gravel. Odds of testing positive for Salmonella in the previous year was also greater for farms whose maximum holding capacity was >100,000 birds, and farms where the usual number of visitors per day was 0-1 compared to 2-3. The analysis was exploratory and caution is required with interpretation, but results provide preliminary insight into aspects of farm management that may be important, practicable targets for Salmonella control on broiler farms in GB.


Assuntos
Doenças das Aves Domésticas , Salmonelose Animal , Animais , Galinhas , Análise Fatorial , Fazendas , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/prevenção & controle , Fatores de Risco , Salmonella , Salmonelose Animal/epidemiologia , Salmonelose Animal/prevenção & controle , Reino Unido/epidemiologia
15.
Prev Vet Med ; 196: 105492, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34560366

RESUMO

Salmonellosis is the second most commonly reported zoonosis in the European Union and contaminated meat from broiler chickens (Gallus gallus) is an important source of human infection. In Great Britain (GB), prevalence of Salmonella enterica in broiler flocks is low, having declined considerably since the introduction of the Salmonella National Control Programme in 2010. However, this decreasing trend has stabilised in recent years and serovars with known ability to persistently colonise hatcheries have been isolated from broiler flocks with increasing frequency, indicating that further controls on hatchery contamination are required. The broiler industry in GB has changed dramatically over the last 15 years, with greater intensification and dominance by a small number of very large companies which rely on relatively few hatcheries. An investigation of risk factors for Salmonella contamination in GB broiler hatcheries was therefore carried out so that relevant up-to-date advice on Salmonella control can be provided. Twenty-two hatcheries, representing most commercial scale GB broiler hatcheries, were visited between 2015 and 2018. Salmonella contamination was comprehensively investigated at each hatchery by collecting between 108 and 421 environmental swab samples per hatchery (6990 samples in total from all hatcheries). An in-depth questionnaire on hatchery operations was completed for each hatchery, and results were incorporated into a risk factor analysis (univariable followed by multivariable mixed effects logistic regression) to identify factors associated with Salmonella occurrence. Overall, 6.0 % (416/6990) of environmental samples were Salmonella-positive and Salmonella was isolated from 17/22 hatcheries. Ten different serovars were isolated, the most common being S. Senftenberg and S. Mbandaka which are known hatchery colonisers. Sixty-four risk factor variables were investigated. Twenty-two of these were initially retained based on univariable analyses (p ≤ 0.25) and six were ultimately left in the final multivariable model (p ≤ 0.05). Salmonella detection was positively associated with having ≥30 hatchers in regular use compared to fewer (Odds ratio [OR] 23.7, 95 % confidence interval [CI] 6.7-84.2), storing trays in process rooms (OR 28.8, CI 7.8-106.3), drying set-up trolleys in corridors (OR 15.6, CI 5.9-41.4) and having skips located in enclosed areas (OR 8.99, CI 5.89-41.35). Using a closed waste disposal system was negatively associated with Salmonella detection (OR 0.08, CI 0.04-0.18) and the odds of detecting Salmonella in hatcheries with 31-60 total workers was lower compared to hatcheries with ≤30 staff (OR 0.16, CI 0.06-0.40). Despite the complexities of hatchery enterprises, changes to a relatively small number of features may significantly reduce the occurrence of hatchery contamination.


Assuntos
Contaminação de Alimentos , Carne/microbiologia , Doenças das Aves Domésticas , Salmonelose Animal , Animais , Galinhas , Análise Fatorial , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/microbiologia , Fatores de Risco , Salmonella , Salmonelose Animal/epidemiologia , Reino Unido/epidemiologia
16.
Animals (Basel) ; 11(8)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34438865

RESUMO

Oral fluid (OF) can be a simple, cheap and non-invasive alternative to serum or meat juice for the diagnosis and surveillance of important pathogens in pigs. This study was conducted on four Salmonella Typhimurium-positive farrow-to-finish pig farms: two Salmonella-vaccinated (V) and two non-vaccinated (NV). Gilts and sows in the V farms were vaccinated with a live, attenuated vaccine prior to farrowing. Pooled faecal and OF samples were collected from the sows and their offspring. Salmonella was isolated according to ISO6579-1:2017. In parallel, IgG and IgA levels were assessed in OF samples using a commercial ELISA assay. Salmonella was detected in 90.9% of the pooled faecal samples from the NV farms and in 35.1% of the pooled faecal samples from the V farms. Overall, a higher prevalence was observed in the pooled faecal samples from the offspring (76.3%) compared to the sows (36.4%). IgG antibodies measured in V farms are likely to be related to vaccination, as well as exposure to Salmonella field strains. The detection of IgA antibodies in OF was unreliable with the method used. The results of this study show that IgG is the most reliable isotype for monitoring Salmonella-specific antibody immunity in vaccinated/infected animals via OF.

17.
Microorganisms ; 9(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922494

RESUMO

The aim of this study was to evaluate the diagnostic performance of a multiplex bead assay for the simultaneous detection of antibodies against Mycobacterium bovis, Brucella suis, and Trichinella spiralis. Sera from Eurasian wild boar of known serological status for TB (64 seropositive, 106 seronegative), Brucella (30 seropositive, 39 seronegative), and Trichinella (21 seropositive, 97 seronegative) were used for the development and evaluation of the assay. Magnetic beads coated with recombinant MPB83 antigen (TB), a whole-cell B. suis 1330 antigen, and an E/S T. spiralis antigen were used for the detection of specific antibodies using Bio-Rad Bio-Plex technology. The sensitivities (Se) and specificities (Sp) of the multiplex assay were, for M. bovis, 0.98 and 0.86; for B. suis, 1.00 and 0.97; and for T. spiralis, 0.90 and 0.99 (Se and Sp, respectively). The results show the diagnostic potential of this assay for the simultaneous detection of antibodies against M. bovis, B. suis, and T. spiralis in wild boar.

18.
Clin Microbiol Rev ; 21(3): 505-18, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18625685

RESUMO

Campylobacter is a major cause of acute bacterial diarrhea in humans worldwide. This study was aimed at summarizing the current understanding of host mechanisms involved in the defense against Campylobacter by evaluating data available from three sources: (i) epidemiological observations, (ii) observations of patients, and (iii) experimental observations including observations of animal models and human volunteer studies. Analysis of available data clearly indicates that an effective immune system is crucial for the host defense against Campylobacter infection. Innate, cell-mediated, and humoral immune responses are induced during Campylobacter infection, but the relative importance of these mechanisms in conferring protective immunity against reinfection is unclear. Frequent exposure to Campylobacter does lead to the induction of short-term protection against disease but most probably not against colonization. Recent progress in the development of more suitable animal models for studying Campylobacter infection has opened up possibilities to study the importance of innate and adaptive immunity during infection and in protection against reinfection. In addition, advances in genomics and proteomics technologies will enable more detailed molecular studies. Such studies combined with better integration of host and pathogen research driven by epidemiological findings may truly advance our understanding of Campylobacter infection in humans.


Assuntos
Infecções por Campylobacter/imunologia , Campylobacter jejuni/imunologia , Campylobacter jejuni/fisiologia , Interações Hospedeiro-Patógeno , Animais , Vacinas Bacterianas/uso terapêutico , Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/patologia , Infecções por Campylobacter/prevenção & controle , Campylobacter jejuni/patogenicidade , Modelos Animais de Doenças , Humanos
19.
Mol Microbiol ; 68(2): 474-91, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18284594

RESUMO

Campylobacter jejuni is a gastrointestinal pathogen of humans but can asymptomatically colonize the avian gut. C. jejuni therefore grows at both 37 degrees C and 42 degrees C, the internal temperatures of humans and birds respectively. Microarray and proteomic studies on temperature regulation in C. jejuni strain 81-176 revealed the upregulation at 42 degrees C of two proteins, Cj0414 and Cj0415, orthologous to gluconate dehydrogenase (GADH) from Pectobacterium cypripedii. 81-176 demonstrated GADH activity, converting d-gluconate to 2-keto-d-gluconate, that was higher at 42 degrees C than at 37 degrees C. In contrast, cj0414 and cj0415 mutants lacked GADH activity. Wild-type but not cj0415 mutant bacteria exhibited gluconate-dependent respiration. Neither strain grew in defined media with d-gluconate or 2-keto-d-gluconate as a sole carbon source, revealing that gluconate was used as an electron donor rather than as a carbon source. When administered to chicks individually or in competition with wild-type, the cj0415 mutant was impaired in establishing colonization. In contrast, there were few significant differences in colonization of BALB/c-ByJ mice in single or mixed infections. These results suggest that the ability of C. jejuni to use gluconate as an electron donor via GADH activity is an important metabolic characteristic that is required for full colonization of avian but not mammalian hosts.


Assuntos
Proteínas de Bactérias/metabolismo , Campylobacter jejuni/enzimologia , Gluconatos/metabolismo , Oxirredutases/metabolismo , Animais , Proteínas de Bactérias/genética , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/química , Campylobacter jejuni/crescimento & desenvolvimento , Campylobacter jejuni/metabolismo , Ceco/microbiologia , Galinhas , Contagem de Colônia Microbiana , Eletroforese em Gel Bidimensional , Deleção de Genes , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredutases/genética , Oxigênio/metabolismo , Pectobacterium/enzimologia , Pectobacterium/genética , Proteoma/análise , Homologia de Sequência de Aminoácidos , Temperatura , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
20.
Front Vet Sci ; 6: 489, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998766

RESUMO

Saliva samples obtained by using absorptive devices, can provide an alternative diagnostic matrix to serum for monitoring disease status in pigs. The aim of this study was to investigate the correlation of anti-Salmonella antibodies between serum and saliva samples collected from pigs. Twenty individual paired serum and saliva samples were collected from a single farm. Anti-Salmonella IgG was detected in individual serum samples using a commercial Salmonella ELISA kit, validated for sera. The same kit was used with a protocol modified by extending incubation time and increasing temperature to test individual saliva samples. Anti-Salmonella IgG antibodies in pig saliva were always detected at a lower level than in the matching serum samples. A correlation (rho = 0.66; p = 0.002) and a moderate agreement (K > 0.62 p = 0.003) was found between individual Salmonella IgG in serum and saliva samples. Both correlation and the agreement levels are moderate. The size of this investigation was small, and further studies are necessary to further confirm these findings. The results of this work provide some evidence that saliva samples have the potential to be used for the diagnosis of Salmonella infection in pig farms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA