RESUMO
INTRODUCTION: Idiopathic polyhydramnios (IPH) is an abnormal increase in amniotic fluid volume (AFV). This condition has unknown etiologies and is associated with various adverse pregnancy outcomes including maternal and fetal complication. This study aims to establish a comparative proteome profile for the human amniotic fluid (AF) of IPH and normal pregnancies and identify the responsible mediators and pathways that regulate AFV. METHODS: We first employed coupled isobaric tags for relative and absolute quantitation (iTRAQ) proteomics and bioinformatics analysis to examine the differentially expression proteins (DEPs) in the AF of IPH and normal pregnancies. Second, CUL5, HIP1, FSTL3, and LAMP2 proteins were selected for verification in amnion, chorion, and placental tissues by Western blot analysis. RESULTS: We identified 357 DEPs with 282 upregulated and 75 downregulated. Bioinformatics analysis revealed that cell, cellular process, and binding were the most enriched Gene Ontology terms. Amoebiasis, hematopoietic cell lineage, and NF-kappa B signaling pathway were the top significant pathways. In the verification procedure, FSTL3 protein had a highly significant expression in the amnion, chorion, and placentas of IPH and normal AFV groups (pâ¯<â¯0.05). DISCUSSION: Our results provide new insights into idiopathic polyhydramnios and offer fundamental points for future studies on AFV.