Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Nano Lett ; 24(20): 5944-5951, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38588536

RESUMO

DNA is an ideal template for the design of nanoarchitectures with molecular-like features. Here, we present an optimized assembly strategy for the concatenation of DNA quasi-rings into long scaffolds. Ionic strength, which played a major role during self-assembly, produced the expected high quality only at 15 mM MgCl2. Atomic force microscopy (AFM) characterization showed several micrometer long tubular structures that were used as templates for the positioning of plasmonic nanoparticles (NPs) along a three-dimensional helical path using DNA tethers. As imaged by high-resolution scanning transmission electron microscopy (HR-STEM) and modeled by theoretical calculations, the NPs distributed into a "fusilli" fashion (i.e., a helical pasta shape), displaying chiroptical activity as revealed by a bisignated CD absorption, centered at the plasmon resonance wavelength. The present structures contribute to enrich the ever-developing arena of chiroplasmonic DNA-based nanomaterials and demonstrate that large assemblies are attainable for their future application to develop metamaterials.


Assuntos
DNA , DNA/química , Nanoestruturas/química , Microscopia de Força Atômica , Conformação de Ácido Nucleico , Nanotecnologia/métodos
2.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338952

RESUMO

In 1961, USA's blues legend Howlin' Wolf released the single entitled "Down in the Bottom" (Figure 1) [...].

3.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273312

RESUMO

The dispersion of antibiotics in livestock farming represents a health concern worldwide, contributing to the spread of antimicrobial-resistant bacteria through animals, the environment, and humans. Phenolic compounds could be alternatives to antibiotics, once drawbacks such as their low water solubility, bioavailability, and reduced stability are overcome. Although nano- or micro-sized formulations could counter these shortcomings, they do not represent cost-effective options. In this study, three phenolic compounds, obtained from wood-processing manufacturers, were characterized, revealing suitable features such as their antioxidant activity, size, and chemical and colloidal stability for in-field applications. The minimum inhibitory concentration (MIC) of these colloidal suspensions was measured against six bacterial strains isolated from livestock. These particles showed different inhibition behaviors: Colloidal chestnut was effective against one of the most threatening antibiotic-resistant pathogens, i.e., S. aureus, but ineffective toward E. coli. Instead, colloidal pine showed a weak effect on S. aureus but specificity toward E. coli. The present proof-of-concept points at colloidal polyphenols as valuable alternatives for antimicrobial substitutes in the livestock context.


Assuntos
Coloides , Gado , Testes de Sensibilidade Microbiana , Polifenóis , Animais , Polifenóis/química , Polifenóis/farmacologia , Coloides/química , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química
4.
Int J Biol Macromol ; 274(Pt 2): 133415, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925181

RESUMO

Highly stable, colloidal iron oxide nanoparticles with an oxyhydroxide-like surface were used as bacteria-capturing nano-baits. Peptidoglycan isolated from Listeria spp was used as bacteria polysaccharide model, and the nanoparticle binding was characterized showing a Langmuir isotherm constant, KL, equal to 50 ± 3 mL mg-1. The chemical affinity was further supported by dynamic light scattering, transmission electron microscopy, and infrared and UV-Vis data, pointing at the occurrence of extended, coordinative multiple point bindings. The interaction with Gram (+) (Listeria spp) and Gram (-) (Aeromonas veronii) bacteria was shown to be effective and devoid of any toxic effect. Moreover, a real sample, containing a population of several oligotrophic bacteria strains, was incubated with 1 g L-1 of nanoparticle suspension, in the absence of agitation, showing a 100 % capture efficiency, according to plate count. A nanoparticle regeneration method was developed, despite the known irreversibility of such bacterial-nanosurface binding, restoring the bacteria capture capability. This nanomaterial represents a competitive option to eliminate microbiological contamination in water as an alternative strategy to antibiotics, aimed at reducing microbial resistance dissemination. Finally, beyond their excellent features in terms of colloidal stability, binding performances, and biocompatibility this nanoparticle synthesis is cost effective, scalable, and environmentally sustainable.


Assuntos
Coloides , Nanopartículas de Magnetita , Coloides/química , Nanopartículas de Magnetita/química , Bactérias/efeitos dos fármacos , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos
5.
Food Chem ; 463(Pt 3): 141326, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39316902

RESUMO

Mastitis is the most important bovine disease, causing dramatic economic losses to the dairy industry, worldwide. This study explores the valorization of whey from cows affected by mastitis, through a novel separation approach. Surface Active Maghemite Nanoparticles (SAMNs) were used as magnetic baits to selectively bind bioactive peptides with potential health benefits. Advanced techniques such as HPLC and LC-MS/MS highlighted SAMN capability of isolating a restricted group of peptides, drastically diverging from the control profile (Solid Phase Extraction, SPE) and characterized by a peculiar acidic residue distribution. Most importantly, both magnetically purified and nano-immobilized peptides (SAMN@peptides) showed protective activity against oxidative stress and inflammation, when tested on Caco-2 cells; with SAMN@peptides being associated with the strongest biological effect. SAMNs exhibited excellent characteristics, they are environmentally sustainable, and their synthesis is cost-effective prompting at a scalable and selective tool for capturing bioactive peptides, with potential applications in functional foods and nutraceuticals.

6.
Biomolecules ; 13(12)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38136670

RESUMO

Protein-nanoparticle hybridization can ideally lead to novel biological entities characterized by emerging properties that can sensibly differ from those of the parent components. Herein, the effect of ionic strength on the biological functions of recombinant His-tagged spermine oxidase (i.e., SMOX) was studied for the first time. Moreover, SMOX was integrated into colloidal surface active maghemite nanoparticles (SAMNs) via direct self-assembly, leading to a biologically active nano-enzyme (i.e., SAMN@SMOX). The hybrid was subjected to an in-depth chemical-physical characterization, highlighting the fact that the protein structure was perfectly preserved. The catalytic activity of the nanostructured hybrid (SAMN@SMOX) was assessed by extracting the kinetics parameters using spermine as a substrate and compared to the soluble enzyme as a function of ionic strength. The results revealed that the catalytic function was dominated by electrostatic interactions and that they were drastically modified upon hybridization with colloidal ɣ-Fe2O3. The fact that the affinity of SMOX toward spermine was significantly higher for the nanohybrid at low salinity is noteworthy. The present study supports the vision of using protein-nanoparticle conjugation as a means to modulate biological functions.


Assuntos
Nanopartículas , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Poliamina Oxidase , Espermina/metabolismo , Eletricidade Estática , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA