Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2311121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351645

RESUMO

Combinatorial sensing is especially important in the context of modern drug development to enable fast screening of large data sets. Mesoporous silica materials offer high surface area and a wide range of functionalization possibilities. By adding structural control, the combination of structural and functional control along all length scales opens a new pathway that permits larger amounts of analytes being tested simultaneously for complex sensing tasks. This study presents a fast and simple way to produce mesoporous silica in various shapes and sizes between 0.27-6 mm by using light-induced sol-gel chemistry and digital light processing (DLP). Shape-selective functionalization of mesoporous silica is successfully carried out either after printing using organosilanes or in situ while printing through the use of functional mesopore template for the in situ functionalization approach. Shape-selective adsorption of dyes is shown as a demonstrator toward shape selective screening of potential analytes.

2.
Soft Matter ; 19(18): 3301-3310, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37092702

RESUMO

The synthesis of one-dimensional (1D) nanostructures in polymeric matrices has become the focus of much research, as the presence of these highly anisotropic domains determines the transport behaviour and mechanical properties of the resulting nanostructured polymers. In this work, 1D PEO nanocrystals were synthesized in situ from polystyrene-b-polyethylene oxide (PS-b-PEO) self-assembly in a polystyrene matrix. For this, three different block copolymers (BCP) were employed: L-BCP (PS = 32 000 Da and PEO = 11 000 Da), M-BCP, (PS = 59 000 Da and PEO = 31 000 Da), and H-BCP, (PS = 102 000 Da and PEO = 34 000 Da). The formation of 1D nanocrystals starts with the reaction-induced microphase separation of BCP during styrene photopolymerization at room temperature. Then, as matrix polymerizes, the primary crystalline micelles aggregate via epitaxial crystallization by end-to-end coupling. The morphology of the resulting nanocrystals was highly dependent on the BCP employed. While L-BCP self-assembles into 1D ribbon-like nanocrystals, M-BCP macro-phase separates and, H-BCP self-assembles into short disk-like nanocrystals. This dissimilar behavior was mainly associated to the length of the stabilizing corona block. In the case of H-BCP, it was found that 1D self-assembly occurred when the conditions for core thickening were given, that is, when a non-reactive period was introduced in the cure cycle. During such a period, core thickening clears the lateral surface of the nanocrystals, allowing end-to-end coupling. The driving force for crystallization was also modified. An increase in undercooling resulted in an elevated nucleation rate and accelerated crystal growth. This led to a narrower size distribution of shorter 1D nanocrystals. This knowledge will enable the synthesis of customized 1D nanocrystals in a thermoplastic matrix, through the precise selection of the BCP formulation and curing conditions.

3.
Chemistry ; 26(54): 12388-12396, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32672356

RESUMO

This work reports on a novel and versatile approach to control the structure of metal-organic framework (MOFs) films by using polymeric brushes as 3D primers, suitable for triggering heterogeneous MOF nucleation. As a proof-of-concept, this work explores the use of poly(1-vinylimidazole) brushes primer obtained via surface-initiated atom transfer radical polymerization (SI-ATRP) for the synthesis of Zn-based ZIF-8 MOF films. By modifying the grafting density of the brushes, smooth porous films were obtained featuring inherently hydrophobic microporosity arising from ZIF-8 structure, and an additional constructional interparticle mesoporosity, which can be employed for differential adsorption of targeted adsorbates. It was found that the grafting density modulates the constructional porosity of the films obtained; higher grafting densities result in more compact structures, while lower grafting density generates increasingly inhomogeneous films with a higher proportion of interparticle constructional porosity.

4.
Langmuir ; 36(46): 13998-14008, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33170718

RESUMO

The photothermal response of mercaptoundecanoic acid (MUA)-coated Ag nanoparticles (Ag@MUA NPs) in both aqueous dispersions and paper substrates was determined as a function of pH when irradiated with a green laser or a blue LED source. Aqueous dispersions of Ag@MUA NPs showed an aggregation behavior by acidification that was used for the formation of NPs clusters of variable sizes. Aggregation was induced by changing the pH across the apparent pKa of the acid, higher than the pKa of the free acid. Formation of these aggregates was completely reversible allowing the return to the well-dispersed initial state by simply increasing the pH by the addition of a base. Aggregation produced a shift of the plasmon band that changed the spectra of the dispersions and their ability to be remotely heated when irradiated with visible light. These aggregates could be transferred to paper by simple impregnation of the substrates with the dispersion. On the solid substrate, a higher photothermal response than in the liquid medium was observed. A high local increase of up to 75 °C could be recorded on paper after only 30 s of irradiation with a green laser, whereas a blue LED array was enough for inducing the melting of a solid paraffin (Tm = 36-38 °C) deposited on it. This work demonstrates that photothermal heating can be controlled by the reversible aggregation of NPs to induce different thermal responses in liquid and solid media.

5.
Soft Matter ; 15(23): 4751-4760, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31150039

RESUMO

It has been previously reported that poly(ethylene) (PE)-based block copolymers self-assemble in certain thermosetting matrices to form a dispersion of one-dimensional (1D) nanoribbons. Such materials exhibit exceptional properties that originate from the high aspect ratio of the elongated nano-objects. However, the ability to prepare 1D assemblies with well-controlled dimensions is limited and represents a key challenge. Here, we demonstrate that the length of ribbon-like nanostructures can be precisely controlled by regulating the mobility of the matrix during crystallization of the core-forming PE block. The selected system to prove this concept was a poly(ethylene-block-ethylene oxide) (PE-b-PEO) block copolymer in an epoxy monomer based on diglycidyl ether of bisphenol A (DGEBA). The system was activated with a dual thermal- and photo-curing system, which allowed us to initiate the epoxy polymerization at 120 °C until a certain degree of conversion, stop the reaction by cooling to induce crystallization and micellar elongation, and then continue the polymerization at room temperature by visible-light irradiation. In this way, crystallization of PE blocks took place in a matrix whose mobility was regulated by the degree of conversion reached at 120 °C. The mechanism of micellar elongation was conceptualized as a diffusion-limited colloid aggregation process which was induced by crystallization of PE cores. This assertion was supported by the evidence obtained from in situ small-angle X-ray scattering (SAXS), in combination with differential scanning calorimetry (DSC) and transmission electron microscopy (TEM).

6.
Langmuir ; 34(1): 425-431, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29228770

RESUMO

We present experimental results demonstrating the suitability of polyelectrolyte capping as a simple and straightforward procedure to modify hydrophilic/hydrophobic character of porous films, thus allowing additional control on transport properties. In particular, we synthesized ZIF-8 metal organic framework (MOF) films, an archetypal hydrophobic zeolitic imidazolate framework, constituted by Zn2+ ions tetrahedrally coordinated with bidentate 2-methylimidazolate organic linker, and poly(4-styrenesulfonic acid) as capping agent (PSS). MOF films were synthesized via sequential one pot (SOP) steps over conductive substrates conveniently modified with primer agents known to enhance heterogeneous nucleation, followed by dip-coating with PSS aqueous solutions. Crystallinity, morphology, and chemical composition of ZIF-8 films were confirmed with traditional methods. Continuous electron density depth profile obtained with synchrotron light X-ray reflectivity (XRR) technique, suggest that PSS capped-films do not adopt segregated configurations in which PSS remains surface-confined. This affects functional properties conferred by PSS capping, which were assessed using cyclic voltammetry with both positively and negatively charged redox probe molecules. Furthermore, taking advantage of the control attained, we successfully carried in situ synthesis of film-hosted d-block metal nanoparticles (Au and Pt-NPT@5x-ZIF-8+PSS) via direct aqueous chemical reduction of precursors (diffusion-reaction approach).

7.
Soft Matter ; 14(10): 1939-1952, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29479625

RESUMO

Supramolecular self-assembly is of paramount importance for the development of novel functional materials with molecular-level feature control. In particular, the interest in creating well-defined stratified multilayers through simple methods using readily available building blocks is motivated by a multitude of research activities in the field of "nanoarchitectonics" as well as evolving technological applications. Herein, we report on the facile preparation and application of highly organized stacked multilayers via layer-by-layer assembly of lipid-like surfactants and polyelectrolytes. Polyelectrolyte multilayers with high degree of stratification of the internal structure were constructed through consecutive assembly of polyallylamine and dodecyl phosphate, a lipid-like surfactant that act as a structure-directing agent. We show that multilayers form well-defined lamellar hydrophilic/hydrophobic domains oriented parallel to the substrate. More important, X-ray reflectivity characterization conclusively revealed the presence of Bragg peaks up to fourth order, evidencing the highly stratified structure of the multilayer. Additionally, hydrophobic lamellar domains were used as hosts for ferrocene in order to create an electrochemically active film displaying spatially-addressed redox units. Stacked multilayers were then assembled integrating redox-tagged polyallylamine and glucose oxidase into the stratified hydrophilic domains. Bioelectrocatalysis and "redox wiring" in the presence of glucose was demonstrated to occur inside the stratified multilayer.

8.
Phys Chem Chem Phys ; 20(11): 7570-7578, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29492502

RESUMO

Molecular design and preparation of redox active films displaying mesoscopic levels of organization represents one of the most actively pursued research areas in nanochemistry. These mesostructured materials are not only of great interest at the fundamental level because of their unique properties but they can also be employed for a wide range of applications such as electrocatalysts, electronic devices, and electrochemical energy conversion and storage. Herein, we introduce a simple and straightforward strategy to chemically modify electrode surfaces with self-assembled electroactive polyelectrolyte-surfactant complexes. These assemblies are composed of amino-appended polyaniline and monododecyl phosphate. The complexes were deposited by spin-coating and the films were characterized by spectroscopic and X-ray-based techniques: XRR, GISAXS, WAXS, and XPS. The films presented a well-defined lamellar structure, directed by the strong interaction between the phosphate groups and the positively charged amine groups in the polyelectrolyte. These films also displayed intrinsic electroactivity in both acidic and neutral solutions, showing that the polymer remains electroactive and ionic transport is still possible through the stratified and hydrophobic coatings. The stability and enhanced electroactivity in neutral solutions make these assembled films promising building blocks for the construction of nanostructured electrochemical platforms.

9.
Phys Chem Chem Phys ; 20(14): 9298-9308, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29616241

RESUMO

Interfacial supramolecular architectures displaying mesoscale organized components are of fundamental importance for developing materials with novel or optimized properties. Nevertheless, engineering the multilayer assembly of different building blocks onto a surface and exerting control over the internal mesostructure of the resulting film is still a challenging task in materials science. In the present work we demonstrate that the integration of surfactants (as mesogenic agents) into layer-by-layer (LbL) assembled polyelectrolyte multilayers offers a straightforward approach to control the internal film organization at the mesoscale level. The mesostructure of films constituted of hexadecyltrimethylammonium bromide, CTAB, and polyacrylic acid, PAA (of different molecular weights), was characterized as a function of the number of assembled layers. Structural characterization of the multilayered films by grazing-incidence small-angle X-ray scattering (GISAXS), showed the formation of mesostructured composite polyelectrolyte assemblies. Interestingly, the (PAA/CTA)n assemblies prepared with low PAA molecular weight presented different mesostructural regimes which were dependent on the number of assembled layers: a lamellar mesophase for the first bilayers, and a hexagonal circular mesophase for n ≥ 7. This interesting observation was explained in terms of the strong interaction between the substrate and the first layers leading to a particular mesophase. As the film increases its thickness, the prevalence of this strong interaction decreases and the supramolecular architecture exhibits a "bulk" mesophase. Finally, we demonstrated that the molecular weight of the polyelectrolyte has a considerable impact on the meso-organization for the (PAA/CTA)n assemblies. We consider that these studies open a path to new rational methodologies to construct "nanoarchitectured" polyelectrolyte multilayers.

10.
Langmuir ; 33(39): 10248-10258, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28874051

RESUMO

A detailed understanding of the processes taking place during the in situ synthesis of metal/polymer nanocomposites is crucial to manipulate the shape and size of nanoparticles (NPs) with a high level of control. In this paper, we report an in-depth time-resolved analysis of the particle formation process in silver/epoxy nanocomposites obtained through a visible-light-assisted in situ synthesis. The selected epoxy monomer was based on diglycidyl ether of bisphenol A, which undergoes relatively slow cationic ring-opening polymerization. This feature allowed us to access a full description of the formation process of silver NPs before this was arrested by the curing of the epoxy matrix. In situ time-resolved small-angle X-ray scattering investigation was carried out to follow the evolution of the number and size of the silver NPs as a function of irradiation time, whereas rheological experiments combined with near-infrared and ultraviolet-visible spectroscopies were performed to interpret how changes in the rheological properties of the matrix affect the nucleation and growth of particles. The analysis of the obtained results allowed us to propose consistent mechanisms for the formation of metal/polymer nanocomposites obtained by light-assisted one-pot synthesis. Finally, the effect of a thermal postcuring treatment of the epoxy matrix on the particle size in the nanocomposite was investigated.

11.
Chemistry ; 20(41): 13366-74, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25171096

RESUMO

Efficient electrical communication between redox proteins and electrodes is a critical issue in the operation and development of amperometric biosensors. The present study explores the advantages of a nanostructured redox-active polyelectrolyte-surfactant complex containing [Os(bpy)2Clpy](2+) (bpy=2,2'-bipyridine, py= pyridine) as the redox centers and gold nanoparticles (AuNPs) as nanodomains for boosting the electron-transfer propagation throughout the assembled film in the presence of glucose oxidase (GOx). Film structure was characterized by grazing-incidence small-angle X-ray scattering (GISAXS) and atomic force microscopy (AFM), GOx incorporation was followed by surface plasmon resonance (SPR) and quartz-crystal microbalance with dissipation (QCM-D), whereas Raman spectroelectrochemistry and electrochemical studies confirmed the ability of the entrapped gold nanoparticles to enhance the electron-transfer processes between the enzyme and the electrode surface. Our results show that nanocomposite films exhibit five-fold increase in current response to glucose compared with analogous supramolecular AuNP-free films. The introduction of colloidal gold promotes drastic mesostructural changes in the film, which in turn leads to a rigid, amorphous interfacial architecture where nanoparticles, redox centers, and GOx remain in close proximity, thus improving the electron-transfer process.


Assuntos
Eletrólitos/química , Glucose Oxidase/química , Ouro/química , Nanopartículas Metálicas/química , Tensoativos/química , Biocatálise , Eletrodos , Transporte de Elétrons , Flavina-Adenina Dinucleotídeo/química , Glucose/química , Glucose/metabolismo , Glucose Oxidase/metabolismo , Osmio/química , Oxirredução
12.
Phys Chem Chem Phys ; 16(38): 20844-55, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25168702

RESUMO

The present study explores the development of mesostructured bioelectrochemical interfaces with accurate compositional and topological control of the supramolecular architecture through the layer-by-layer assembly of ternary systems based on poly(allylamine) containing an osmium polypyridyl complex (OsPA), an anionic surfactant, sodium dodecyl sulfate (SDS) or sodium octodecyl sulfate (ODS), and glucose oxidase (GOx). We show that the introduction of the anionic surfactant allows a sensitive increase of the polyelectrolyte and the enzyme uptake at pH 7.0, enhancing its catalytic behavior in the presence of glucose as compared to the surfactant-free system (OsPA/GOx)n constructed at the same pH. Structural characterization of the multilayer films was performed by means of grazing-incidence small-angle X-ray scattering (GISAXS), which showed the formation of mesostructured domains within the composite assemblies. Experimental results indicate that the balance between ionic and hydrophobic interactions plays a leading role not only in the construction of the self-assembled system but also in the functional properties of the bioactive interface. The structure of the ternary multilayered films depends largely on the length of the alkyl chain of the surfactant. We show that surfactants incorporated into the film also play a role as chemical entities capable of tuning the hydrophobicity of the whole assembly. In this way, the deliberate introduction of short-range hydrophobic forces was exploited as an additional variable to manipulate the adsorption and coverage of protein during each assembly step. However, the integration of long-chain surfactants may lead to the formation of very well-organized interfacial architectures with poor electron transfer properties. This, in turn, leads to a complex trade-off between enzyme coverage and redox wiring that is governed by the meso-organization and the hydrophobic characteristics of the multilayer assembly.


Assuntos
Biopolímeros/química , Condutometria/métodos , Eletrodos , Glucose Oxidase/química , Glucose/química , Tensoativos/química , Adsorção , Catálise , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
13.
Phys Chem Chem Phys ; 16(26): 13458-64, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24887708

RESUMO

In this work, the microenvironment of the core of different unimicelles of hyperbranched polyethyleneimine (HPEI) capped with different aliphatic chains (stearate, palmitate, and laurate) dissolved in toluene has been investigated. To achieve this goal we have used 1-methyl-8-oxyquinolinium betaine (QB) as a molecular probe due to its solvatochromic behavior to monitor the micropolarity and hydrogen bond donor ability of the unimicelle cores. QB shows that the micropolarity and the hydrogen bond donor capability of the polar core of reverse unimicellar media are very different than toluene and similar to the one obtained with traditional surfactants that form reverse micellar media but at a very low unimicelle concentration. Particularly, our results show that the hydrogen bonding ability of the core is the driving force for QB to partition toward the unimicellar media.

14.
Anal Chem ; 85(4): 2414-22, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23331115

RESUMO

This work describes the synergistic combination of ionic self-assembly and recognition-directed assembly with the aim of creating highly functional bioelectrochemical interfaces compatible with the supramolecular design of a wide variety of biosensing platforms. A recently synthesized glycopolyelectrolyte constituted of polyallylamine bearing redox-active osmium complexes and glycosidic residues (lactose) is used to create a self-assembled structure with sodium dodecylsulfate. In turn, this supramolecular thin films bearing redox-active and biorecognizable carbohydrate units enable the facile assembly of functional lectins as well as the subsequent docking and "wiring" of glycoenzymes, like horseradish peroxidase (HRP) (an elusive enzyme to immobilize via noncovalent interactions). The assembly of this system was followed by quartz crystal microbalance and grazing-incidence small-angle X-ray scattering (GISAXS) studies confirming that spin-coated ionically self-assembled films exhibit mesostructured architectures according to the formation of self-organized lamellar structures. In-depth characterization of the electrocatalytic properties of the biosupramacromolecular assemblies confirmed the ability of this kind of interfacial architecture to efficiently mediate electron transfer processes between the glycoenzyme and the electrode surface. For instance, our experimental electrochemical evidence clearly shows that tailor-made interfacial configurations of the ionic self-assemblies can prevent the inhibition of the glycoenzyme (typically observed in HRP) leading to bioelectrocatalytic currents up to 0.1 mA cm(-2). The presence of carbohydrate moieties in the ionic domains promotes the biorecognition-driven assembly of lectins adding a new dimension to the capabilities of ionic self-assembly.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Peroxidase do Rábano Silvestre/metabolismo , Complexos de Coordenação/química , Eletrodos , Eletrólitos/química , Transporte de Elétrons , Lactose/química , Osmio/química , Oxirredução , Poliaminas/química , Técnicas de Microbalança de Cristal de Quartzo , Espalhamento a Baixo Ângulo , Eletricidade Estática , Especificidade por Substrato , Difração de Raios X
15.
J Phys Chem B ; 127(35): 7636-7647, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37639479

RESUMO

This work reports the phase behavior and electrochemical properties of liquid coacervates made of ferricyanide and poly(ethylenimine). In contrast to the typical polyanion/polycation pairs used in liquid coacervates, the ferricyanide/poly(ethylenimine) system is highly asymmetric because poly(ethylenimine) has approximately 170 charges per molecule, while ferricyanide has only 3. Two types of phase diagrams were measured and fitted with a theoretical model. In the first type of diagram, the stability of the coacervate was studied in the plane given by the concentration of poly(ethylenimine) versus the concentration of ferricyanide for a fixed concentration of added monovalent salt (NaCl). The second type of diagram involved the plane given by the concentration of poly(ethylenimine) vs the concentration of the added monovalent salt for a fixed poly(ethyleneimine)/ferricyanide ratio. Interestingly, these phase diagrams displayed qualitative similarities to those of symmetric polyanion/polycation systems, suggesting that coacervates formed by a polyelectrolyte and a small multivalent ion can be treated as a specific case of polyelectrolyte coacervate. The characterization of the electrochemical properties of the coacervate revealed that the addition of monovalent salt greatly enhances charge transport, presumably by breaking ion pairs between ferricyanide and poly(ethylenimine). This finding highlights the significant influence of added salt on the transport properties of coacervates. This study provides the first comprehensive characterization of the phase behavior and transport properties of asymmetric coacervates and places these results within the broader context of the better-known symmetric polyelectrolyte coacervates.

16.
Nanoscale Adv ; 5(22): 6123-6134, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37941961

RESUMO

The wettabilities of nanoscale porous surfaces play important roles in the context of molecular and fluid transport or oil-water separation. The wettability pattern along a nanopore strongly influences fluid distribution throughout the membrane. Mesoporous silica thin films with gradually adjusted wettabilities were fabricated via cocondensation. With consecutive mesoporous layer depositions, double-layer mesoporous silica films with asymmetric or so-called Janus wettability patterns were generated. The effects of these wetting gradients on mass transport, water imbibition, and water vapor condensation were investigated with ellipsometry, cyclic voltammetry (CV), drop friction force instrument (DoFFIs), fluorescence microscopy and interferometry. By increasing the film thickness of the hydrophobic mesoporous silica top layer deposited on a hydrophilic mesoporous silica layer up to 205 nm, molecular transport through both the layers was prevented. However, water was observed to condense onto the bottom layer, and transport occurred for thinner top layers.

17.
Chemistry ; 18(49): 15598-601, 2012 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-23129102

RESUMO

Catanionic surfactants: the synthesis of a new surfactant ionic liquid with unique properties is described. The formation of reverse micelles in benzene and large unilamellar vesicles, formed spontaneously without the help of any mechanical of chemistry methods, in water is demonstrated by using dynamic light scattering and small-angle X-ray scattering techniques.

18.
Langmuir ; 28(7): 3583-92, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22309103

RESUMO

Rational construction of interfaces based on multicomponent responsive systems in which molecular transport is mediated by structures of nanoscale dimensions has become a very fertile research area in biomimetic supramolecular chemistry. Herein, we describe the creation of hybrid mesostructured interfaces with reversible gate-like transport properties that can be controlled by chemical inputs, such as protons or calcium ions. This was accomplished by taking advantage of the surface-initiated polymerization of 2-(methacryloyloxy)ethyl phosphate (MEP) monomer units into and onto mesoporous silica thin films. In this way, phosphate-bearing polymer brushes were used as "gatekeepers" located not only on the outer surface of mesoporous thin films but also in the inner environment of the porous scaffold. Pore-confined PMEP brushes respond to the external triggering chemical signals not only by altering their physicochemical properties but also by switching the transport properties of the mesoporous film. The ion-gate response/operation was based on the protonation and/or chelation of phosphate monomer units in which the polymer brush works as an off-on switch in response to the presence of protons or Ca(2+) ions. The hybrid meso-architectured interface and their functional features were studied by a combination of experimental techniques including ellipso-porosimetry, cyclic voltammetry, X-ray reflectivity, grazing incidence small-angle X-ray scattering, X-ray photoelectron spectroscopy, and in situ atomic force microscopy. In this context, we believe that the integration of stimuli-responsive polymer brushes into nanoscopic supramolecular architectures would provide new routes toward multifunctional biomimetic nanosystems displaying transport properties similar to those encountered in biological ligand-gated ion channels.


Assuntos
Materiais Biomiméticos/química , Canais Iônicos de Abertura Ativada por Ligante/química , Membranas Artificiais , Polímeros/química , Biomimética/métodos , Cálcio , Nanoestruturas , Fosfatos/química , Porosidade , Prótons
19.
Biochim Biophys Acta ; 1804(7): 1492-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20215051

RESUMO

There is little information on the egg proteins of gastropod mollusks. Here we focus on PV2, a novel neurotoxin from snail eggs, studying its size, shape, structure, and stability, using small angle X-ray scattering (SAXS), absorption and fluorescence spectroscopy, circular dichroism, electron microscopy and partial proteolysis. Results indicate that PV2 is a compact and well folded oligomer of 130x44 A. It is an octamer of four 98 kDa heterodimers composed of 67 and 31 kDa subunits. Subunits are held together by disulfide bonds. Dimers are assembled into native PV2 by non-covalent forces. The larger subunit is more susceptible to proteolysis, indicating it is less compactly folded and/or more exposed. Quenching of tryptophan fluorescence showed a single class of tryptophyl side chains occluded in hydrophobic regions. Native structure shows loss of secondary structure (alpha+beta) at 6 M urea or 60-70 degrees C; the effects on the quaternary structure suggest an unfolding without disassembling of the protein. The 3D model of PV2 presented here is the first for an egg proteinaceous neurotoxin in animals.


Assuntos
Venenos de Moluscos/química , Neurotoxinas/química , Animais , Dicroísmo Circular , Dissulfetos/química , Endopeptidase K/química , Moluscos , Conformação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espalhamento de Radiação , Caramujos , Espectrometria de Fluorescência/métodos , Triptofano/química , Raios X
20.
Anal Chem ; 83(20): 8011-8, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21875064

RESUMO

The characterization and application of a polyelectrolyte-surfactant supramolecular assembly formed by poly(allylamine) and dodecyl sulfate (PA-DS) on a screen-printed graphite electrode for the preparation of electrochemical sensing platforms are presented. The system was characterized by X-ray reflectometry (XRR) and grazing-incidence small-angle X-ray scattering (GISAXS) and tested with four benchmark electrochemical probes undergoing different electron-transfer mechanisms on carbon: ferrocyanide, hexaammineruthenium, ascorbic acid, and dopamine. The polyelectrolyte acts as a scaffold favoring the incorporation of the ferrocyanide, an ion oppositely charged to poly(allylamine). Also, its ability to incorporate carbon nanotubes (CNT) is presented. The composite material PA-DS-CNT is able to electrocatalyze the oxidation of dopamine, allowing its detection at micromolar levels in the presence of 100 times higher concentrations of ascorbate and it is shown to be stable, while XRR and GISAXS results confirm a lamellar structure with well-defined domains, not perturbed by the presence of the CNT. The dispersion is easily prepared in aqueous solution and could facilitate the processing of the CNT with an efficient loading and yielding a more robust carbon-based material for sensing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA