Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Neuroimage ; 274: 120124, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37084927

RESUMO

The brain has a unique macroscopic waste clearance system, termed the glymphatic system which utilises perivascular tunnels surrounded by astroglia to promote cerebrospinal-interstitial fluid exchange. Rodent studies have demonstrated a marked increase in glymphatic clearance during sleep which has been linked to a sleep-induced expansion of the extracellular space and concomitant reduction in intracellular volume. However, despite being implicated in the pathophysiology of multiple human neurodegenerative disorders, non-invasive techniques for imaging glymphatic clearance in humans are currently limited. Here we acquired multi-shell diffusion weighted MRI (dwMRI) in twenty-one healthy young participants (6 female, 22.3 ± 3.2 years) each scanned twice, once during wakefulness and once during sleep induced by a combination of one night of sleep deprivation and 10 mg of the hypnotic zolpidem 30 min before scanning. To capture hypothesised sleep-associated changes in intra/extracellular space, dwMRI were analysed using higher order diffusion modelling with the prediction that sleep-associated increases in interstitial (extracellular) fluid volume would result in a decrease in diffusion kurtosis, particularly in areas associated with slow wave generation at the onset of sleep. In line with our hypothesis, we observed a global reduction in diffusion kurtosis (t15=2.82, p = 0.006) during sleep as well as regional reductions in brain areas associated with slow wave generation during early sleep and default mode network areas that are highly metabolically active during wakefulness. Analysis with a higher-order representation of diffusion (MAP-MRI) further indicated that changes within the intra/extracellular domain rather than membrane permeability likely underpin the observed sleep-associated decrease in kurtosis. These findings identify higher-order modelling of dwMRI as a potential new non-invasive method for imaging glymphatic clearance and extend rodent findings to suggest that sleep is also associated with an increase in interstitial fluid volume in humans.


Assuntos
Encéfalo , Sistema Glinfático , Humanos , Feminino , Encéfalo/diagnóstico por imagem , Sistema Glinfático/diagnóstico por imagem , Sistema Glinfático/fisiologia , Imageamento por Ressonância Magnética/métodos , Sono , Imagem de Difusão por Ressonância Magnética
2.
Brain Behav Immun ; 111: 320-327, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37105388

RESUMO

BACKGROUND: Inflammation rapidly reorients motivational state, mood is impaired, pleasurable activities avoided and sensitivity to negative stimuli enhanced. When sustained, this can precipitate major depressive episodes. In humans, this has been linked to opposing actions of inflammation on striatal/insula reward/punishment learning signals while in rodents, motivational impairments can be attenuated with minocycline, implicating a mechanistic role for microglia. Here we investigated whether minocycline also inhibits the reorienting effects of lipopolysaccharide (LPS) on reward/punishment sensitivity in humans. Methods Using a crossover design, fifteen healthy volunteers underwent two experimental sessions in which they each received LPS (1 ng/kg) and placebo. Half (N = 8) received minocycline (100 mg bd) and half (N = 7) an identical looking placebo for 3½ days before each session. Six hours post-injection participants completed a probabilistic instrumental learning task in which they had to learn to select high probability reward (win £1) and avoid high probability punishment (lose £1) stimuli to maximise their gains and minimize losses. Physiological and sickness responses were sampled hourly and blood sampled at baseline, 3 and 6 h post-injection. Results LPS induced robust peripheral physiological: temperature, heart rate and immune: differential white cell, IL-6, TNF-α, IL-8, IL-10 responses (all condition × time interactions: p < 0.005), none were significantly modulated by minocycline (p > 0.1). LPS also biased behavior, enhancing punishment compared with reward sensitivity (F(1,13) = 6.10, p = 0.028). Minocycline significantly attenuated this inflammation-induced shift in reward versus punishment sensitivity (F(1,13) = 4.28, p = 0.033). Conclusions These data replicate the previous finding that systemic inflammation rapidly impairs sensitivity to rewards versus punishments in humans and extend this by implicating activated microglia in this acute motivational reorientation with implications for the development of microglial-targeted immune-modulatory therapies in depression.


Assuntos
Transtorno Depressivo Maior , Punição , Humanos , Minociclina/farmacologia , Lipopolissacarídeos/farmacologia , Recompensa , Inflamação/tratamento farmacológico
3.
Cerebellum ; 21(4): 647-656, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34432230

RESUMO

Bipolar disorder (BD) is a major mental illness characterized by periods of (hypo) mania and depression with inter-episode remission periods. Functional studies in BD have consistently implicated a set of linked cortical and subcortical limbic regions in the pathophysiology of the disorder, also including the cerebellum. However, the cerebellar role in the neurobiology of BD still needs to be clarified. Seventeen euthymic patients with BD type1 (BD1) (mean age/SD, 38.64/13.48; M/F, 9/8) and 13 euthymic patients with BD type 2 (BD2) (mean age/SD, 41.42/14.38; M/F, 6/7) were compared with 37 sex- and age-matched healthy subjects (HS) (mean age/SD, 45.65/14.15; M/F, 15/22). T1 weighted and resting-state functional connectivity (FC) scans were acquired. The left and right dentate nucleus were used as seed regions for the seed based analysis. FC between each seed and the rest of the brain was compared between patients and HS. Correlations between altered cerebello-cerebral connectivity and clinical scores were then investigated. Different patterns of altered dentate-cerebral connectivity were found in BD1 and BD2. Overall, impaired dentate-cerebral connectivity involved regions of the anterior limbic network specifically related to the (hypo)manic states of BD. Cerebello-cerebral connectivity is altered in BD1 and BD2. Interestingly, the fact that these altered FC patterns persist during euthymia, supports the hypothesis that cerebello-cerebral FC changes reflect the neural correlate of subthreshold symptoms, as trait-based pathophysiology and/or compensatory mechanism to maintain a state of euthymia.


Assuntos
Transtorno Bipolar , Mania , Transtorno Bipolar/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem
4.
Brain Behav Immun ; 99: 256-265, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34673176

RESUMO

BACKGROUND: Low-dose lipopolysaccharide (LPS) is a well-established experimental method for inducing systemic inflammation and shown by microscopy to activate microglia in rodents. Currently, techniques for in-vivo imaging of glia in humans are limited to TSPO (Translocator protein) PET, which is expensive, methodologically challenging, and has poor cellular specificity. Diffusion-weighted magnetic resonance spectroscopy (DW-MRS) sensitizes MR spectra to diffusion of intracellular metabolites, potentially providing cell-specific information about cellular morphology. In this preliminary study, we applied DW-MRS to measure changes in the apparent diffusion coefficients (ADC) of glial and neuronal metabolites to healthy participants who underwent an LPS administration protocol. We hypothesized that the ADC of glial metabolites will be selectively modulated by LPS-induced glial activation. METHODS: Seven healthy male volunteers, (mean 25.3 ± 5.9 years) were each tested in two separate sessions once after LPS (1 ng/Kg intravenously) and once after placebo (saline). Physiological responses were monitored during each session and serial blood samples and Profile of Mood States (POMS) completed to quantify white blood cell (WBC), cytokine and mood responses. DW-MRS data were acquired 5-5½ hours after injection from two brain regions: grey matter in the left thalamus, and frontal white matter. RESULTS: Body temperature, heart rate, WBC and inflammatory cytokines were significantly higher in the LPS compared to the placebo condition (p < 0.001). The ADC of the glial metabolite choline (tCho) was also significantly increased after LPS administration compared to placebo (p = 0.008) in the thalamus which scaled with LPS-induced changes in POMS total and negative mood (Adj R2 = 0.83; p = 0.004). CONCLUSIONS: DW-MRS may be a powerful new tool sensitive to glial cytomorphological changes in grey matter induced by systemic inflammation.


Assuntos
Imagem de Difusão por Ressonância Magnética , Lipopolissacarídeos , Encéfalo/metabolismo , Colina/metabolismo , Colina/farmacologia , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Espectroscopia de Ressonância Magnética/métodos , Masculino , Neuroglia/metabolismo , Receptores de GABA/metabolismo
5.
Mol Psychiatry ; 26(9): 5150-5160, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32457424

RESUMO

A third of patients receiving Interferon-α (IFN-α) treatment for Hepatitis-C develop major depressive disorder (MDD). Conversely, anti-Tumor Necrosis Factor (TNF) therapies improve depression providing key empirical support for the "inflammatory theory" of depression. Heightened amygdala reactivity (particularly to negatively valanced stimuli) is a consistent finding within MDD; can predict treatment efficacy and reverses following successful treatment. However, whether IFN-α and anti-TNF enhance/attenuate depressive symptoms through modulation of amygdala emotional reactivity is unknown. Utilizing a prospective study design, we recruited 30 patients (mean 48.0 ± 10.5 years, 21 male) initiating IFN-α treatment for Hepatitis-C and 30 (mean 50.4 ± 15.7 years, 10 male) anti-TNF therapy for inflammatory arthritis. All completed an emotional face-processing task during fMRI and blood sampling before and after their first IFN-α (4-h) or anti-TNF (24-h) injection and follow-up psychiatric assessments for 3 months of treatment. IFN-α significantly increased depression symptoms (Hamilton Depression Rating Scale HAM-D) at 4 weeks (p < 0.001) but not 4-h after first dose (p > 0.1). Conversely, anti-TNF significantly improved depressive symptoms (Hospital Anxiety and Depression Rating Scale HADS) at both 24-h (P = 0.015) and 12 weeks (p = 0.018). In support of our a-priori hypothesis, both IFN-α and anti-TNF significantly modulated amygdala reactivity with IFN-α acutely enhancing right amygdala responses to sad (compared with neutral) faces (p = 0.032) and anti-TNF conversely decreasing right amygdala reactivity (across emotional valence) (p = 0.033). Furthermore, these changes predicted IFN-induced increases in HAM-D 4 weeks later (R2 = 0.17, p = 0.022) and anti-TNF-associated decreases in HADS at 24-h (R2 = 0.23, p = 0.01) suggesting that actions of systemic inflammation on amygdala emotional reactivity play a mechanistic role in inflammation-associated depressive symptoms.


Assuntos
Depressão , Transtorno Depressivo Maior , Tonsila do Cerebelo , Depressão/tratamento farmacológico , Humanos , Interferon-alfa , Masculino , Estudos Prospectivos , Inibidores do Fator de Necrose Tumoral
6.
Mol Psychiatry ; 26(12): 7346-7354, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34535766

RESUMO

Inflammation is associated with depressive symptoms and innate immune mechanisms are likely causal in some cases of major depression. Systemic inflammation also perturbs brain function and microstructure, though how these are related remains unclear. We recruited N = 46 healthy controls, and N = 83 depressed cases stratified by CRP (> 3 mg/L: N = 33; < 3 mg/L: N = 50). All completed clinical assessment, venous blood sampling for C-reactive protein (CRP) assay, and brain magnetic resonance imaging (MRI). Micro-structural MRI parameters including proton density (PD), a measure of tissue water content, were measured at 360 cortical and 16 subcortical regions. Resting-state fMRI time series were correlated to estimate functional connectivity between individual regions, as well as the sum of connectivity (weighted degree) of each region. Multiple tests for regional analysis were controlled by the false discovery rate (FDR = 5%). We found that CRP was significantly associated with PD in precuneus, posterior cingulate cortex (pC/pCC) and medial prefrontal cortex (mPFC); and with functional connectivity between pC/pCC, mPFC and hippocampus. Depression was associated with reduced weighted degree of pC/pCC, mPFC, and other nodes of the default mode network (DMN). Thus CRP-related increases in proton density-a plausible marker of extracellular oedema-and changes in functional connectivity were anatomically co-localised with DMN nodes that also demonstrated significantly reduced hubness in depression. We suggest that effects of peripheral inflammation on DMN node micro-structure and connectivity may mediate inflammatory effects on depression.


Assuntos
Encéfalo , Depressão , Mapeamento Encefálico , Humanos , Inflamação , Imageamento por Ressonância Magnética/métodos , Vias Neurais
7.
Brain Behav Immun ; 94: 381-391, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33662501

RESUMO

The monoaminergic neurotransmitters dopamine, noradrenaline, and serotonin are pivotal actors of the interplay between the nervous and the immune system due to their ability of binding to cell-receptors of both systems, crucially regulating their function within the central nervous system and the periphery. As monoamines are dysfunctional in many neurological and psychiatric diseases, they have been successfully used as pharmacological targets. Multiple sclerosis (MS) is one of the best examples of neurological disease caused by an altered interaction between the nervous and immune system and emerging evidence supports a dysregulation of monoaminergic systems in the pathogenesis of MS, secondary to both inflammation-induced reduction of monoamines' synthesis and structural damage to monoaminergic pathways within the brain. Here we review the evidence for monoamines being key mediators of neuroimmune interaction, affecting MS pathogenesis and course. Moreover, we discuss how the reduction/dysfunction of monoamines in MS may contribute to some clinical features typical of the disease, particularly fatigue and depression. Finally, we summarize different drugs targeting monoamines that are currently under evaluation for their potential efficacy to treat MS, as well as to alleviate fatigue and depression in MS.


Assuntos
Esclerose Múltipla , Dopamina , Humanos , Neurotransmissores , Norepinefrina , Serotonina
8.
J Child Psychol Psychiatry ; 62(10): 1202-1219, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33748971

RESUMO

OBJECTIVE: Some studies have suggested alterations of structural brain asymmetry in attention-deficit/hyperactivity disorder (ADHD), but findings have been contradictory and based on small samples. Here, we performed the largest ever analysis of brain left-right asymmetry in ADHD, using 39 datasets of the ENIGMA consortium. METHODS: We analyzed asymmetry of subcortical and cerebral cortical structures in up to 1,933 people with ADHD and 1,829 unaffected controls. Asymmetry Indexes (AIs) were calculated per participant for each bilaterally paired measure, and linear mixed effects modeling was applied separately in children, adolescents, adults, and the total sample, to test exhaustively for potential associations of ADHD with structural brain asymmetries. RESULTS: There was no evidence for altered caudate nucleus asymmetry in ADHD, in contrast to prior literature. In children, there was less rightward asymmetry of the total hemispheric surface area compared to controls (t = 2.1, p = .04). Lower rightward asymmetry of medial orbitofrontal cortex surface area in ADHD (t = 2.7, p = .01) was similar to a recent finding for autism spectrum disorder. There were also some differences in cortical thickness asymmetry across age groups. In adults with ADHD, globus pallidus asymmetry was altered compared to those without ADHD. However, all effects were small (Cohen's d from -0.18 to 0.18) and would not survive study-wide correction for multiple testing. CONCLUSION: Prior studies of altered structural brain asymmetry in ADHD were likely underpowered to detect the small effects reported here. Altered structural asymmetry is unlikely to provide a useful biomarker for ADHD, but may provide neurobiological insights into the trait.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Núcleo Caudado , Criança , Humanos , Imageamento por Ressonância Magnética
9.
Neurol Sci ; 42(7): 2619-2623, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33864172

RESUMO

We report here the first case of a young individual otherwise healthy, who presented with frequent focal seizures with impaired awareness as a possible long-term complication of severe acute respiratory syndrome coronavirus-2 infection. Seizures were documented by electroencephalography and responded clinically and neuro-physiologically to antiseizure therapy. The patient underwent an extensive investigation including cerebrospinal fluid examination, conventional and quantitative brain magnetic resonance imaging, and 18-FDG positron emission tomography. Beyond the clinical interest, this case contributes to clarify the possible pathways by which SARS-CoV-2 may enter the central nervous system and cause long-term neurological complications.


Assuntos
COVID-19 , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética , SARS-CoV-2 , Convulsões/tratamento farmacológico , Convulsões/etiologia
10.
MAGMA ; 34(4): 499-511, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33315165

RESUMO

OBJECTIVE: The reproducibility of Neurite orientation dispersion and density imaging (NODDI) metrics from time-saving multiband (MB) EPI compared with singleband (SB) has not been considered. This study aims to evaluate the reproducibility of NODDI parameters from SB and MB acquisitions, determine the agreement between acquisitions and estimate the sample sizes required to detect between-group change. METHODS: Brain diffusion MRI data were acquired using SB and MB (acceleration factors 2 (MB2) and 3 (MB3)) on 8 healthy subjects on 2 separate visits. NODDI maps of isotropic volume fraction (FISO), neurite density (NDI) and orientation dispersion index (ODI) were estimated. Region-of-interest analysis was performed; variability across subjects and visits was measured using coefficients of variation (CoV). Intraclass correlation coefficient and Bland-Altman analysis were performed to assess reproducibility and detect any systematic bias between SB, MB2 and MB3. Power calculations were used to determine sample sizes required to detect group differences. RESULTS: Both NDI and ODI were reproducible between visits; however, FISO was variable. All parameters were not reproducible across methods; a systematic bias was observed with the derived values decreasing as the MB factor increases. The number of subjects needed to detect a between-group change is not significantly different between methods; however, ODI needs considerably higher sample sizes than NDI. CONCLUSIONS: Both SB and MB yield highly reproducible NDI and ODI measures, but direct comparison of these parameters between methods is complicated by systematic differences that exist between the two approaches.


Assuntos
Imagem de Difusão por Ressonância Magnética , Neuritos , Adulto , Líquido Cefalorraquidiano/diagnóstico por imagem , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Tamanho da Amostra , Adulto Jovem
11.
J Neurovirol ; 26(5): 754-763, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32500477

RESUMO

We assessed changes in functional connectivity by fMRI (functional magnetic resonance imaging) and cognitive measures in otherwise neurologically asymptomatic people with HIV (PWH) switching combination antiretroviral therapy (cART). In a prospective study (baseline and follow-up after at least 4 months), virologically suppressed PWH switched non-nuclease reverse-transcriptase inhibitors (NNRTI; tenofovir-DF/emtricitabine with efavirenz to rilpivirine) and integrase-strand-transfer inhibitors (INSTI; tenofovir-DF/emtricitabine with raltegravir to dolutegravir). PWH were assessed by resting-state fMRI and stop-signal reaction time (SSRT) task fMRI as well as with a cognitive battery (CogState™) at baseline and follow-up. Switching from efavirenz to rilpivirine (n = 10) was associated with increased functional connectivity in the dorsal attention network (DAN) and a reduction in SSRTs (p = 0.025) that positively correlated with the time previously on efavirenz (mean = 4.8 years, p = 0.02). Switching from raltegravir to dolutegravir (n = 12) was associated with increased connectivity in the left DAN and bilateral sensory-motor and associative visual networks. In the NNRTI study, significant improvements in the cognitive domains of executive function, working memory and speed of visual processing were observed, whereas no significant changes in cognitive function were observed in the INSTI study. Changes in fMRI are evident in PWH without perceived neuropsychiatric complaints switching cART. fMRI may be a useful tool in assisting to elucidate the underlying pathogenic mechanisms of cART-related neuropsychiatric effects.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Conectoma/métodos , Substituição de Medicamentos/métodos , Infecções por HIV/tratamento farmacológico , Adulto , Alcinos/uso terapêutico , Terapia Antirretroviral de Alta Atividade/métodos , Doenças Assintomáticas , Benzoxazinas/uso terapêutico , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/virologia , Ciclopropanos/uso terapêutico , Emtricitabina/uso terapêutico , Função Executiva/efeitos dos fármacos , Função Executiva/fisiologia , Feminino , Infecções por HIV/diagnóstico por imagem , Infecções por HIV/fisiopatologia , Infecções por HIV/virologia , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Memória de Curto Prazo/fisiologia , Pessoa de Meia-Idade , Testes Neuropsicológicos , Oxazinas/uso terapêutico , Piperazinas/uso terapêutico , Estudos Prospectivos , Piridonas/uso terapêutico , Raltegravir Potássico/uso terapêutico , Rilpivirina/uso terapêutico , Tenofovir/uso terapêutico
12.
NMR Biomed ; 32(4): e3888, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29350435

RESUMO

Diffusion imaging has been instrumental in understanding damage to the central nervous system as a result of its sensitivity to microstructural changes. Clinical applications of diffusion imaging have grown exponentially over the past couple of decades in many neurological and neurodegenerative diseases, such as multiple sclerosis (MS). For several reasons, MS has been extensively researched using advanced neuroimaging techniques, which makes it an 'example disease' to illustrate the potential of diffusion imaging for clinical applications. In addition, MS pathology is characterized by several key processes competing with each other, such as inflammation, demyelination, remyelination, gliosis and axonal loss, enabling the specificity of diffusion to be challenged. In this review, we describe how diffusion imaging can be exploited to investigate micro-, meso- and macro-scale properties of the brain structure and discuss how they are affected by different pathological substrates. Conclusions from the literature are that larger studies are needed to confirm the exciting results from initial investigations before current trends in diffusion imaging can be translated to the neurology clinic. Also, for a comprehensive understanding of pathological processes, it is essential to take a multiple-level approach, in which information at the micro-, meso- and macroscopic scales is fully integrated.


Assuntos
Imagem de Tensor de Difusão , Esclerose Múltipla/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Esclerose Múltipla/patologia , Rede Nervosa/patologia
13.
J Neurol Neurosurg Psychiatry ; 90(4): 404-411, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30361295

RESUMO

BACKGROUND: Corticospinal tract (CST) degeneration and cortical atrophy are consistent features of amyotrophic lateral sclerosis (ALS). We hypothesised that neurite orientation dispersion and density imaging (NODDI), a multicompartment model of diffusion MRI, would reveal microstructural changes associated with ALS within the CST and precentral gyrus (PCG) 'in vivo'. METHODS: 23 participants with sporadic ALS and 23 healthy controls underwent diffusion MRI. Neurite density index (NDI), orientation dispersion index (ODI) and free water fraction (isotropic compartment (ISO)) were derived. Whole brain voxel-wise analysis was performed to assess for group differences. Standard diffusion tensor imaging (DTI) parameters were computed for comparison. Subgroup analysis was performed to investigate for NODDI parameter differences relating to bulbar involvement. Correlation of NODDI parameters with clinical variables were also explored. The results were accepted as significant where p<0.05 after family-wise error correction at the cluster level, clusters formed with p<0.001. RESULTS: In the ALS group NDI was reduced in the extensive regions of the CST, the corpus callosum and the right PCG. ODI was reduced in the right anterior internal capsule and the right PCG. Significant differences in NDI were detected between subgroups stratified according to the presence or absence of bulbar involvement. ODI and ISO correlated with disease duration. CONCLUSIONS: NODDI demonstrates that axonal loss within the CST is a core feature of degeneration in ALS. This is the main factor contributing to the altered diffusivity profile detected using DTI. NODDI also identified dendritic alterations within the PCG, suggesting microstructural cortical dendritic changes occur together with CST axonal damage.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico por imagem , Axônios/patologia , Lobo Frontal/diagnóstico por imagem , Neuritos/patologia , Tratos Piramidais/diagnóstico por imagem , Idoso , Estudos de Casos e Controles , Córtex Cerebral/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
14.
Brain ; 141(5): 1545-1557, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29547978

RESUMO

Computational models of reinforcement learning have helped dissect discrete components of reward-related function and characterize neurocognitive deficits in psychiatric illnesses. Stimulus novelty biases decision-making, even when unrelated to choice outcome, acting as if possessing intrinsic reward value to guide decisions toward uncertain options. Heightened novelty seeking is characteristic of attention deficit hyperactivity disorder, yet how this influences reward-related decision-making is computationally encoded, or is altered by stimulant medication, is currently uncertain. Here we used an established reinforcement-learning task to model effects of novelty on reward-related behaviour during functional MRI in 30 adults with attention deficit hyperactivity disorder and 30 age-, sex- and IQ-matched control subjects. Each participant was tested on two separate occasions, once ON and once OFF stimulant medication. OFF medication, patients with attention deficit hyperactivity disorder showed significantly impaired task performance (P = 0.027), and greater selection of novel options (P = 0.004). Moreover, persistence in selecting novel options predicted impaired task performance (P = 0.025). These behavioural deficits were accompanied by a significantly lower learning rate (P = 0.011) and heightened novelty signalling within the substantia nigra/ventral tegmental area (family-wise error corrected P < 0.05). Compared to effects in controls, stimulant medication improved attention deficit hyperactivity disorder participants' overall task performance (P = 0.011), increased reward-learning rates (P = 0.046) and enhanced their ability to differentiate optimal from non-optimal novel choices (P = 0.032). It also reduced substantia nigra/ventral tegmental area responses to novelty. Preliminary cross-sectional evidence additionally suggested an association between long-term stimulant treatment and a reduction in the rewarding value of novelty. These data suggest that aberrant substantia nigra/ventral tegmental area novelty processing plays an important role in the suboptimal reward-related decision-making characteristic of attention deficit hyperactivity disorder. Compared to effects in controls, abnormalities in novelty processing and reward-related learning were improved by stimulant medication, suggesting that they may be disorder-specific targets for the pharmacological management of attention deficit hyperactivity disorder symptoms.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Estimulantes do Sistema Nervoso Central/uso terapêutico , Comportamento Exploratório/efeitos dos fármacos , Metilfenidato/uso terapêutico , Modelos Neurológicos , Reconhecimento Psicológico/efeitos dos fármacos , Recompensa , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Estudos de Casos e Controles , Comportamento de Escolha/efeitos dos fármacos , Estudos Transversais , Método Duplo-Cego , Comportamento Exploratório/fisiologia , Feminino , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Inquéritos e Questionários , Análise e Desempenho de Tarefas
15.
Neurocase ; 25(1-2): 1-9, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30931814

RESUMO

Thalamo-cortical connectivity was characterised in a patient with bilateral infarct of the thalami, without evidence of cognitive deficits in everyday life. Patient underwent social and emotional tests, Iowa Gambling Task (IGT), with and without concomitant heart rate variability (HRV) recording and at 3T-MRI to assess thalamo-cortical connectivity. Patient showed impairment at the IGT, in somatic marker, in emotions and theory of mind. MRI documented a bilateral damage of the centromedian-parafascicular complex. Patient's thalamic lesions disconnected brain areas involved in decision-making and autonomic regulation, affecting the somatic marker and resulting in the neuropsychological deficit exhibited by L.C.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Infarto Encefálico , Tomada de Decisões/fisiologia , Núcleos Intralaminares do Tálamo , Córtex Pré-Frontal , Percepção Social , Adulto , Infarto Encefálico/patologia , Infarto Encefálico/fisiopatologia , Humanos , Núcleos Intralaminares do Tálamo/patologia , Núcleos Intralaminares do Tálamo/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiopatologia
16.
Neuroimage ; 182: 117-127, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29097317

RESUMO

The MRI signal is dependent upon a number of sub-voxel properties of tissue, which makes it potentially able to detect changes occurring at a scale much smaller than the image resolution. This "microstructural imaging" has become one of the main branches of quantitative MRI. Despite the exciting promise of unique insight beyond the resolution of the acquired images, its widespread application is limited by the relatively modest ability of each microstructural imaging technique to distinguish between differing microscopic substrates. This is mainly due to the fact that MRI provides a very indirect measure of the tissue properties in which we are interested. A strategy to overcome this limitation lies in the combination of more than one technique, to exploit the relative contributions of differing physiological and pathological substrates to selected MRI contrasts. This forms the basis of multi-modal MRI, a broad concept that refers to many different ways of effectively combining information from more than one MRI contrast. This paper will review a range of methods that have been proposed to maximise the output of this combination, primarily falling into one of two approaches. The first one relies on data-driven methods, exploiting multivariate analysis tools able to capture overlapping and complementary information. The second approach, which we call "model-driven", aims at combining parameters extracted by existing biophysical or signal models to obtain new parameters, which are believed to be more accurate or more specific than the original ones. This paper will attempt to provide an overview of the advantages and limitations of these two philosophies.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Teóricos , Imagem Multimodal/métodos , Neuroimagem/métodos , Humanos
17.
Neuroimage ; 182: 351-359, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28917698

RESUMO

Microstructural imaging and connectomics are two research areas that hold great potential for investigating brain structure and function. Combining these two approaches can lead to a better and more complete characterization of the brain as a network. The aim of this work is characterizing the connectome from a novel perspective using the myelination measure given by the g-ratio. The g-ratio is the ratio of the inner to the outer diameters of a myelinated axon, whose aggregated value can now be estimated in vivo using MRI. In two different datasets of healthy subjects, we reconstructed the structural connectome and then used the g-ratio estimated from diffusion and magnetization transfer data to characterize the network structure. Significant characteristics of g-ratio weighted graphs emerged. First, the g-ratio distribution across the edges of the graph did not show the power-law distribution observed using the number of streamlines as a weight. Second, connections involving regions related to motor and sensory functions were the highest in myelin content. We also observed significant differences in terms of the hub structure and the rich-club organization suggesting that connections involving hub regions present higher myelination than peripheral connections. Taken together, these findings offer a characterization of g-ratio distribution across the connectome in healthy subjects and lay the foundations for further investigating plasticity and pathology using a similar approach.


Assuntos
Axônios , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Bainha de Mielina , Rede Nervosa/anatomia & histologia , Rede Nervosa/diagnóstico por imagem , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
18.
Neuroimage ; 169: 302-311, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29277405

RESUMO

Memory loss is one of the first symptoms of typical Alzheimer's disease (AD), for which there are no effective therapies available. The precuneus (PC) has been recently emphasized as a key area for the memory impairment observed in early AD, likely due to disconnection mechanisms within large-scale networks such as the default mode network (DMN). Using a multimodal approach we investigated in a two-week, randomized, sham-controlled, double-blinded trial the effects of high-frequency repetitive transcranial magnetic stimulation (rTMS) of the PC on cognition, as measured by the Alzheimer Disease Cooperative Study Preclinical Alzheimer Cognitive Composite in 14 patients with early AD (7 females). TMS combined with electroencephalography (TMS-EEG) was used to detect changes in brain connectivity. We found that rTMS of the PC induced a selective improvement in episodic memory, but not in other cognitive domains. Analysis of TMS-EEG signal revealed an increase of neural activity in patients' PC, an enhancement of brain oscillations in the beta band and a modification of functional connections between the PC and medial frontal areas within the DMN. Our findings show that high-frequency rTMS of the PC is a promising, non-invasive treatment for memory dysfunction in patients at early stages of AD. This clinical improvement is accompanied by modulation of brain connectivity, consistently with the pathophysiological model of brain disconnection in AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Ritmo beta/fisiologia , Neuroimagem Funcional/métodos , Transtornos da Memória/fisiopatologia , Memória Episódica , Lobo Parietal/fisiopatologia , Sintomas Prodrômicos , Estimulação Magnética Transcraniana/métodos , Idoso , Feminino , Humanos , Masculino
19.
Eur J Neurosci ; 47(6): 729-735, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29057532

RESUMO

Autism spectrum disorder is a neurodevelopmental disorder characterized by core deficits in social functioning. Core autistics traits refer to poor social and imagination skills, poor attention-switching/strong focus of attention, exceptional attention to detail, as expressed by the autism-spectrum quotient. Over the years, the importance of the cerebellum in the aetiology of autism spectrum disorder has been acknowledged. Neuroimaging studies have provided a strong support to this view, showing both structural and functional connectivity alterations to affect the cerebellum in autism spectrum disorder. According to the underconnectivity theory, disrupted connectivity within cerebello-cerebral networks has been specifically implicated in the aetiology of autism spectrum disorder. However, inconsistent results have been generated across studies. In this study, an integrated approach has been used in a selected population of adults with autism spectrum disorder to analyse both cerebellar morphometry and functional connectivity. In individuals with autism spectrum disorder, a decreased cerebellar grey matter volume affected the right Crus II, a region showing extensive connections with cerebral areas related to social functions. This grey matter reduction correlates with the degree of autistic traits as measured by autism-spectrum quotient. Interestingly, altered functional connectivity was found between the reduced cerebellar Crus II and contralateral cerebral regions, such as frontal and temporal areas. Overall, the present data suggest that adults with autism spectrum disorder present with specific cerebellar structural alterations that may affect functional connectivity within cerebello-cerebral modules relevant to social processing and account for core autistics traits.


Assuntos
Transtorno do Espectro Autista , Córtex Cerebelar , Córtex Cerebral , Conectoma , Adolescente , Adulto , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/fisiopatologia , Córtex Cerebelar/diagnóstico por imagem , Córtex Cerebelar/patologia , Córtex Cerebelar/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
20.
Magn Reson Med ; 79(5): 2576-2588, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28921614

RESUMO

PURPOSE: To develop a framework to fully characterize quantitative magnetization transfer indices in the human cervical cord in vivo within a clinically feasible time. METHODS: A dedicated spinal cord imaging protocol for quantitative magnetization transfer was developed using a reduced field-of-view approach with echo planar imaging (EPI) readout. Sequence parameters were optimized based in the Cramer-Rao-lower bound. Quantitative model parameters (i.e., bound pool fraction, free and bound pool transverse relaxation times [ T2F, T2B], and forward exchange rate [kFB ]) were estimated implementing a numerical model capable of dealing with the novelties of the sequence adopted. The framework was tested on five healthy subjects. RESULTS: Cramer-Rao-lower bound minimization produces optimal sampling schemes without requiring the establishment of a steady-state MT effect. The proposed framework allows quantitative voxel-wise estimation of model parameters at the resolution typically used for spinal cord imaging (i.e. 0.75 × 0.75 × 5 mm3 ), with a protocol duration of ∼35 min. Quantitative magnetization transfer parametric maps agree with literature values. Whole-cord mean values are: bound pool fraction = 0.11(±0.01), T2F = 46.5(±1.6) ms, T2B = 11.0(±0.2) µs, and kFB = 1.95(±0.06) Hz. Protocol optimization has a beneficial effect on reproducibility, especially for T2B and kFB . CONCLUSION: The framework developed enables robust characterization of spinal cord microstructure in vivo using qMT. Magn Reson Med 79:2576-2588, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Assuntos
Medula Cervical/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Adulto , Algoritmos , Medula Cervical/química , Feminino , Humanos , Masculino , Bainha de Mielina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA