Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Environ Res ; 248: 118342, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295980

RESUMO

Biodegradable mulch films (BDMs) are increasingly used in agricultural production as desirable alternatives to the current widespread use of polyethylene (PE) mulch films in China. However, potential effects of different colors of BDMs on field crop production and microbiomes remain unexplored. Here, the differences in bacterial communities of peanut rhizosphere soil (RS) and bulk soil (BS) under non-mulching (CK), PE, and three different colors of BDMs were studied. The results indicated that all treatments could increase the soil temperature, which positively affected the growth of the peanut plants. Moreover, mulching affected the bacterial community structure in RS and BS compared to CK. Furthermore, certain BDM treatments significantly enriched N-fixing bacteria (Bradyrhizobium and Mesorhizobium) and functional groups, increased the closeness of bacterial networks, and harbored more beneficial bacteria as keystone taxa in the RS. This in turn facilitated the growth and development of the peanut plants under field conditions. Our study provides new insights into the micro-ecological effects of mulch films, which can be affected by both the mulch type and color. The observed effects are likely caused by temperature and prevalence of specific microbial functions under the employed films and could guide the development of optimized mulching materials.


Assuntos
Arachis , Solo , Solo/química , Agricultura/métodos , Bactérias , Polietileno
2.
Microb Cell Fact ; 22(1): 50, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36915090

RESUMO

BACKGROUND: The lipopeptide herbicolin A (HA) secreted by the biocontrol agent Pantoea agglomerans ZJU23 is a promising antifungal drug to combat fungal pathogens by targeting lipid rafts, both in agricultural and clinical settings. Improvement of HA production would be of great significance in promoting its commercialization. This study aims to enhance the HA production in ZJU23 by combining fermentation optimization and strain engineering. RESULTS: Based on the results in the single-factor experiments, corn steep liquor, temperature and initial pH were identified as the significant affecting factors by the Plackett-Burman design. The fermentation medium and conditions were further optimized using the Box-Behnken response surface method, and the HA production of the wild type strain ZJU23 was improved from ~ 87 mg/mL in King's B medium to ~ 211 mg/mL in HA induction (HAI) medium. A transposon library was constructed in ZJU23 to screen for mutants with higher HA production, and two transcriptional repressors for HA biosynthesis, LrhA and PurR, were identified. Disruption of the LrhA gene led to increased mRNA expression of HA biosynthetic genes, and subsequently improved about twofold HA production. Finally, the HA production reached ~ 471 mg/mL in the ΔLrhA mutant under optimized fermentation conditions, which is about 5.4 times higher than before (~ 87 mg/mL). The bacterial suspension of the ΔLrhA mutant fermented in HAI medium significantly enhanced its biocontrol efficacy against gray mold disease and Fusarium crown rot of wheat, showing equivalent control efficacies as the chemical fungicides used in this study. Furthermore, HA was effective against fungicide resistant Botrytis cinerea. Increased HA production substantially improved the control efficacy against gray mold disease caused by a pyrimethanil resistant strain. CONCLUSIONS: This study reveals that the transcriptional repressor LrhA negatively regulates HA biosynthesis and the defined HAI medium is suitable for HA production. These findings provide an extended basis for large-scale production of HA and promote biofungicide development based on ZJU23 and HA in the future.


Assuntos
Antifúngicos , Agentes de Controle Biológico , Reatores Biológicos , Fermentação , Engenharia Genética , Pantoea , Pantoea/classificação , Pantoea/efeitos dos fármacos , Pantoea/genética , Pantoea/metabolismo , Fermentação/efeitos dos fármacos , Fermentação/genética , Engenharia Genética/métodos , Antifúngicos/metabolismo , Agentes de Controle Biológico/metabolismo , Temperatura , Concentração de Íons de Hidrogênio , Regulação Bacteriana da Expressão Gênica , Meios de Cultura/química , Meios de Cultura/farmacologia , Análise de Regressão , Análise de Variância , Reprodutibilidade dos Testes , Proteínas Repressoras/antagonistas & inibidores , Micoses/prevenção & controle , Micoses/terapia , Produtos Agrícolas/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/terapia , Humanos , Animais
3.
Microb Ecol ; 86(2): 973-984, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36542126

RESUMO

Vegetables and fruits are a crucial part of the planetary health diet, directly affecting human health and the gut microbiome. The objective of our study was to understand the variability of the fruit (apple and blueberry) microbiome in the frame of the exposome concept. The study covered two fruit-bearing woody species, apple and blueberry, two countries of origin (Austria and Finland), and two fruit production methods (naturally grown and horticultural). Microbial abundance, diversity, and community structures were significantly different for apples and blueberries and strongly influenced by the growing system (naturally grown or horticultural) and country of origin (Austria or Finland). Our results indicated that bacterial communities are more responsive towards these factors than fungal communities. We found that fruits grown in the wild and within home gardens generally carry a higher microbial diversity, while commercial horticulture homogenized the microbiome independent of the country of origin. This can be explained by horticultural management, including pesticide use and post-harvest treatments. Specific taxonomic indicators were identified for each group, i.e., for horticultural apples: Pseudomonas, Ralstonia, and Stenotrophomonas. Interestingly, Ralstonia was also found to be enriched in horticultural blueberries in comparison to such that were home and wildly grown. Our study showed that the origin of fruits can strongly influence the diversity and composition of their microbiome, which means that we are exposed to different microorganisms by eating fruits from different origins. Thus, the fruit microbiome needs to be considered an important but relatively unexplored external exposomic factor.


Assuntos
Mirtilos Azuis (Planta) , Expossoma , Malus , Microbiota , Humanos , Frutas/microbiologia , Mirtilos Azuis (Planta)/química
4.
Phytopathology ; 113(8): 1369-1379, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36858028

RESUMO

Despite the numerous benefits plants receive from probiotics, maintaining consistent results across applications is still a challenge. Cultivation-independent methods associated with reduced sequencing costs have considerably improved the overall understanding of microbial ecology in the plant environment. As a result, now, it is possible to engineer a consortium of microbes aiming for improved plant health. Such synthetic microbial communities (SynComs) contain carefully chosen microbial species to produce the desired microbiome function. Microbial biofilm formation, production of secondary metabolites, and ability to induce plant resistance are some of the microbial traits to consider when designing SynComs. Plant-associated microbial communities are not assembled randomly. Ecological theories suggest that these communities have a defined phylogenetic organization structured by general community assembly rules. Using machine learning, we can study these rules and target microbial functions that generate desired plant phenotypes. Well-structured assemblages are more likely to lead to a stable SynCom that thrives under environmental stressors as compared with the classical selection of single microbial activities or taxonomy. However, ensuring microbial colonization and long-term plant phenotype stability is still one of the challenges to overcome with SynComs, as the synthetic community may change over time with microbial horizontal gene transfer and retained mutations. Here, we explored the advances made in SynCom research regarding plant health, focusing on bacteria, as they are the most dominant microbial form compared with other members of the microbiome and the most commonly found in SynCom studies.

5.
Environ Microbiol ; 24(8): 3259-3263, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35001485

RESUMO

Microbiome studies have facilitated the discovery of harmful as well as beneficial microorganisms over the last years. Recently, distinct bacteria were found within the microbiota of crop plants that confer disease resistance to their hosts. Although it is well known that the interplay between microbes and plants can result in improved plant health, the phenomenon of holistically disease-preventing bacteria is new. Here, we put the recent discoveries of disease-preventing bacteria in context with decade-long plant microbiome research that has preceded them. In addition, we provide explanations as to why disease resistance in certain plants, mediated by specific bacteria, has only recently been discovered. We argue that such findings were primarily limited by technological constraints and that analogous findings are very likely to be made with other plant species. The general concept may even be extendable to additional groups of organisms. We, therefore, suggest the introduction of the specific term soterobiont in order to facilitate an unambiguous definition of disease-preventing microorganisms within the microbiota of higher organisms.


Assuntos
Resistência à Doença , Microbiota , Bactérias/genética , Raízes de Plantas/microbiologia , Plantas/microbiologia
6.
Environ Res ; 215(Pt 2): 114409, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36152886

RESUMO

Insect-associated bacteria play an important role in the resistance to pesticides, yet bacterial community compositions in wild insect host populations and the environmental factors that shape them are mostly elusive. In this study, Sitobion miscanthi (Takahashi) populations were collected from major wheat growing regions in China. Following high-throughput sequencing of 16S rRNA gene fragments, association analyses were performed within the bacterial community associated with S. miscanthi, as well as with population resistance levels to four commonly used pesticides and different environmental factors. We found that bacterial community structures differed in various regions, and that the abundances of dominant bacteria such as Buchnera, Candidatus Regiella, Candidatus Hamiltonella showed high variations. The resistance of S. miscanthi to avermectin and bifenthrin was shown to decline with increasing bacterial diversity. Meanwhile, with the increase of bacterial network modularity, the resistance of S. miscanthi populations to imidacloprid, avermectin and bifenthrin also increased correspondingly. In addition, correlation analysis indicated that altitude and air pressure had the strongest impact on bacterial community diversity and relative abundance, followed by humidity, rainfall and temperature. Overall, insights into such complex interactions between bacteria and their insect hosts offer new directions for biological pest control.


Assuntos
Afídeos , Microbiota , Praguicidas , Animais , Afídeos/genética , Afídeos/microbiologia , Bactérias/genética , Enterobacteriaceae , Resistência a Inseticidas , Ivermectina/análogos & derivados , Piretrinas , RNA Ribossômico 16S/genética
7.
Food Microbiol ; 108: 104103, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36088117

RESUMO

During the early life, introduction to external exposures such as consumption of solid foods contribute to the development of the gut microbiota. Among solid foods, fruit and vegetables are normally consumed during early childhood making them key components of a healthy human diet. The role of the indigenous microbiota of fruits as a source for beneficial gut microbes, especially during food processing, is largely unknown. Therefore, we investigated the apple fruit microbiota before and after processing using functional assays, advanced microscopic as well as sequencing technologies. Apple fruits carried a high absolute bacterial abundance (1.8 × 105 16S rRNA copies per g of apple pulp) and diversity of bacteria (Shannon diversity index = 2.5). We found that heat and mechanical treatment substantially affected the fruit's microbiota following a declining gradient of absolute bacterial abundance and bacterial diversity from shredded > boiled > pureed > preserved > dried apples. Betaproteobacteriales and Enterobacteriales were the two dominant bacterial orders (51.3%, 20.4% of the total 16S rRNA sequence reads) in the unprocessed apple. Boiling and air drying reduced the microbial load, but an unexpected, substantial fraction of 1/3 of the microbiota survived. Boiling and air drying shifted the microbiota leading to a relative increase in low abundant taxa such as Pseudomonas and Ralstonia (>2 log2 fold change), while others such as Bacillus decreased. Bacillus spp., frequently found in raw fruits, were shown to have specific traits, i.e. antagonist activity against opportunistic pathogens, biosurfactant production, and bile salt resistance indicating a probiotic potential. Our findings provide novel insights into food microbial changes during processing and demonstrate that food microbiome studies need a combined methodological approach. Food inhabiting microbes, currently considered being a risk factor for food safety, are a potential resource for the infant gut microbiome.


Assuntos
Microbioma Gastrointestinal , Malus , Microbiota , Bactérias/genética , Pré-Escolar , Frutas , Microbioma Gastrointestinal/genética , Humanos , RNA Ribossômico 16S/genética
8.
Plant Dis ; 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35536206

RESUMO

Dictyophora rubrovolvata is a saprophytic mushroom widely cultivated in China, including Guizhou Province for its high nutritional, medicinal, and economical values (Chen et al. 2021). In May 2021, green mold disease was observed on the fruiting bodies of D. rubrovolvata, causing its death or preventing it from forming a sporocarp, in an indoor-production facility at Asuo village, Baiyun District Guiyang city, Guizhou Province, China (26°73'51" N, 106°72'88" E). The disease incidence was 60%-70% in the affected 1.33-ha growing area, causing a serious economic loss. To identify the causal agent, a total of 15 samples with symptomatic symptoms were collected. Small pieces (5 mm × 5 mm) were cut from the diseased tissues, surface sterilized in 0.4% NaClO for 5 min, washed three times with sterilized water, placed on potato dextrose agar (PDA) medium, and incubated at 24 °C for 7 days. Twenty-one pure cultures were obtained by single-spore isolation method. The colonies were initially white but after seven days as conidia developed they turned green. Hyphae were hyaline and guttulate. Conidiophores were verrucose stipes, triverticulate, and phialides flask shaped. Conidia were smooth and pale green, with subglobose to globose shape measuring 2.0-2.5 × 1.8-2.5 µm (n=50). Based on these morphological characteristics, the isolates matched the description of the genus Penicillium (Visagie et al. 2014). To confirm the identity, DNA of five representative isolates (QS001, QS005, QS008, QS015, QS017) was extracted according to the manufacturer's instructions (Biomiga Fungal DNA Extraction Kit; CA, USA). Afterwards, PCR was performed to amplify ITS region, calmodulin and ß-tubulin genes using primer pairs ITS1/ITS4 (White et al. 1990), CMD5/CMD6 (Glass et al. 1995), and Bt2a/Bt2b (Hong et al. 2006), respectively. BLASTN analysis of these sequences showed the best matches with Penicillium citrinum CBS 139.45 (ITS region: 98.60% (493/500 bp) identity to accession MH856132.1; CMD: 99.79% (469/470 bp) identity to accession MN969245.1; ß-tubulin:100% (407/407 bp) identity to accession GU944545.1). Representative sequences of the sequenced DNA regions were deposited in GenBank (ITS region: OK446552; CMD: OK492612; ß-tubulin: OK482677). Furthermore, a phylogenetic tree was constructed with MEGA 7 based on the concatenated sequences. Koch's postulates were met to confirm the pathogenicity of the representative isolate (QS001) on D. rubrovolvata. Six discs (5mm×5mm) from actively growing P. citrinum QS001 colonies (5-day-old) were placed on six fruiting bodies of D. rubrovolvata (5-month-old). Mock inoculations were performed using PDA discs only without any fungus. The inoculation sites were wrapped with a sterilized 200-µm nylon mesh. All fruiting bodies were incubated at 23°C ± 2°C under a 0-h/24-h photoperiod and 80% relative humidity (RH) after inoculation. After 14 days, green mold was observed on all P. citrinum QS001 inoculated mushrooms. In contrast, no disease was observed in mock inoculated group. The disease assays were repeated three times. P. citrinum QS001 was isolated from all inoculated D. rubrovolvata and verified via the molecular analysis mentioned above. To the best of our knowledge, this is the first report that P. citrinum causes green mold on D. rubrovalvata in China and further studies should focus on managing this disease to prevent any disease outbreaks.

9.
Microb Ecol ; 82(4): 909-918, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33723621

RESUMO

Plant-associated microorganisms are known to contribute with various beneficial functions to the health and productivity of their hosts, yet the microbiome of most plants remains unexplored. This especially applies to wild relatives of cultivated plants, which might harbor beneficial microorganisms that were lost during intensive breeding. We studied bacterial communities of the Himalayan onion (Allium wallichii Kunth), a wild relative of onion native to mountains in East Asia. The bacterial community structure was assessed in different plant microhabitats (rhizosphere, endosphere, anthosphere) by sequencing of 16S rRNA gene fragment amplicons. Targeted bioinformatic analyses were implemented in order to identify unique features in each habitat and to map the overall community in the first representative of the Amaryllidaceae plant family. The highest bacterial diversity was found for bulk soil (Shannon index, H' 9.3) at the high-altitude sampling location. It was followed by the plant rhizosphere (H' 8.9) while communities colonizing flowers (H' 6.1) and the endosphere (H' 6.5 and 5.6) where less diverse. Interestingly, we observed a non-significant rhizosphere effect. Another specificity of the microbiome was its high evenness in taxonomic distribution, which was so far not observed in plant microbiomes. Pseudomonas was identified among additional 10 bacterial genera as a plant-specific signature. The first insights into the microbiome of a plant in the widespread Allium genus will facilitate upcoming comparisons with its domesticated relatives while additionally providing a detailed microbiome mapping of the plant's microhabitats to facilitate bioresource mining.


Assuntos
Allium , Microbiota , Cebolas , Raízes de Plantas , RNA Ribossômico 16S/genética , Rizosfera , Microbiologia do Solo
10.
Plant Dis ; 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34213963

RESUMO

Passion fruit (Passiflora edulis Sims) is a widely cultivated dicotyledonous perennial plant with woody vines (Asande et al. 2020). In November 2020, leaf blight was observed on leaves of P. edulis (cultivar: 'Panama Red') newly planted in Wangyou, Huishui county, Guizhou province, China (25°82'57" N, 106°50'49" E). The leaf blight occurred on both young and old leaves, starting from the margins, and then extended to the entire leaves. The color of the affected tissue was brown with a yellow hallo in the early period, and then gradually turned to grey. The disease incidence was 60%-70% on a 0.08-ha field. Following isolation of the potential pathogen from 12 diseased leaves, nine isolates were obtained. The colonies were white with a regular round shape at the early stage and became black with fluffy hyphae after eight days on potato dextrose agar (PDA) medium, incubated at 25°C in the dark for 10 days. The single cell conidia were solitary, spherical or slightly ellipsoidal, black, shiny, smooth, aseptate, spherical, and 8.1-13.5 µm (n=50) in diameter. Conidiophores (5.2-9.9 × 4.4-7.2 µm) were mostly reduced to conidiogenous cells and aggregated in clusters on hyphae. Conidiogenous cells were hyaline to pale brown or black, globose to ampulliform or clavate. Morphological characteristics of the isolates matched the description of the genus Nigrospora Mei Wang & L. Cai (Wang et al. 2017). For molecular identification, DNA was extracted, and PCRs were performed with primers ITS1/ITS4 for the ITS region (White et al. 1990), primers Bt2a/Bt2b for the ß-tubulin gene (TUB) (Glass and Donaldson 1995), and primers EF1-728F/EF1-986R for the translation elongation factor 1-alpha gene (EF1-α) (Carbone and Kohn 1999). Representative sequences of the ITS region, EF1-α, and TUB sequences (from isolate WYR007) were deposited in GenBank (accession numbers: MW561355; MZ053463; MZ032030) and are included in the supplementary materials. BLAST analysis against sequences from previously published studies showed 99.58% (ITS region), 99.54% (EF1-α), and 99.45% (TUB) identity to Nigrospora sphaerica sequences (accession numbers: MN215808.1; MN864137.1; KY019606.1). In addition, homology was confirmed with a phylogenetic tree using concatenated sequences from ITS, EF1-α and TUB constructed with MEGA 7 for which the maximum likelihood method was used with 1,000 bootstrapping iterations. To complete Koch's postulates, conidia suspensions of isolate WYR007 (prepared from 1-month-old colonies in 0.05% Tween 20 buffer and adjusted to a concentration of 1 × 103 conidia/mL) were sprayed on 15 leaves (200 µL per leaf) of 5 one-year-old healthy P. edulis plants (cultivar: 'Panama Red'). The same number of leaves from control group plants was only treated with 0.05% Tween buffer. All plants were incubated at 26°C ± 2°C under a 16 h/8 h photoperiod and 70%-75% relative humidity (RH) after inoculation. After 14 days, symptomatic blight appeared on all inoculated leaves. In contrast, no symptoms appeared on leaves in the control group. The disease assays were repeated three times. Pure cultures were re-isolated from diseased leaves and confirmed to be N. sphaerica based on the morphological and molecular methods mentioned above (ITS region, the TUB, and the EF1-α sequences). To our knowledge, this study is the first report of N. sphaerica as a pathogen on P. edulis causing leaf blight. The identification of the pathogen could provide relevant background for its future management.s Sims) is a widely cultivated dicotyledonous perennial plant with woody vines (Asande et al. 2020). In November 2020, leaf blight was observed on leaves of P. edulis (cultivar: 'Panama Red') newly planted in Wangyou, Huishui county, Guizhou province, China (25°82'57" N, 106°50'49" E). The leaf blight occurred on both young and old leaves, starting from the margins, and then extended to the entire leaves. The color of the affected tissue was brown with a yellow hallo in the early period, and then gradually turned to grey. The disease incidence was 60%-70% on a 0.08-ha field. Following isolation of the potential pathogen from 12 diseased leaves, nine isolates were obtained. The colonies were white with a regular round shape at the early stage and became black with fluffy hyphae after eight days on potato dextrose agar (PDA) medium, incubated at 25°C in the dark for 10 days. The single cell conidia were solitary, spherical or slightly ellipsoidal, black, shiny, smooth, aseptate, spherical, and 8.1-13.5 µm (n=50) in diameter. Conidiophores (5.2-9.9 × 4.4-7.2 µm) were mostly reduced to conidiogenous cells and aggregated in clusters on hyphae. Conidiogenous cells were hyaline to pale brown or black, globose to ampulliform or clavate. Morphological characteristics of the isolates matched the description of the genus Nigrospora Mei Wang & L. Cai (Wang et al. 2017). For molecular identification, DNA was extracted, and PCRs were performed with primers ITS1/ITS4 for the ITS region (White et al. 1990), primers Bt2a/Bt2b for the ß-tubulin gene (TUB) (Glass and Donaldson 1995), and primers EF1-728F/EF1-986R for the translation elongation factor 1-alpha gene (EF1-α) (Carbone and Kohn 1999). Representative sequences of the ITS region, EF1-α, and TUB sequences (from isolate WYR007) were deposited in GenBank (accession numbers: MW561355; MZ053463; MZ032030) and are included in the supplementary materials. BLAST analysis against sequences from previously published studies showed 99.58% (ITS region), 99.54% (EF1-α), and 99.45% (TUB) identity to Nigrospora sphaerica sequences (accession numbers: MN215808.1; MN864137.1; KY019606.1). In addition, homology was confirmed with a phylogenetic tree using concatenated sequences from ITS, EF1-α and TUB constructed with MEGA 7 for which the maximum likelihood method was used with 1,000 bootstrapping iterations. To complete Koch's postulates, conidia suspensions of isolate WYR007 (prepared from 1-month-old colonies in 0.05% Tween 20 buffer and adjusted to a concentration of 1 × 103 conidia/mL) were sprayed on 15 leaves (200 µL per leaf) of 5 one-year-old healthy P. edulis plants (cultivar: 'Panama Red'). The same number of leaves from control group plants was only treated with 0.05% Tween buffer. All plants were incubated at 26°C ± 2°C under a 16 h/8 h photoperiod and 70%-75% relative humidity (RH) after inoculation. After 14 days, symptomatic blight appeared on all inoculated leaves. In contrast, no symptoms appeared on leaves in the control group. The disease assays were repeated three times. Pure cultures were re-isolated from diseased leaves and confirmed to be N. sphaerica based on the morphological and molecular methods mentioned above (ITS region, the TUB, and the EF1-α sequences). To our knowledge, this study is the first report of N. sphaerica as a pathogen on P. edulis causing leaf blight. The identification of the pathogen could provide relevant background for its future management.

11.
J Environ Manage ; 284: 112059, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33556826

RESUMO

Fecal indicator bacteria (FIB) are commonly used to evaluate the pollution impact of combined sewer overflows (CSOs) in urban rivers. Although water quality assessment with FIB has a long tradition, recent studies demonstrated that FIB have a low correlation with pathogens and therefore are not accurate enough for the assessment of potential human hazards in water. Consequently, new eligible and more specific indicators have to be identified, which was done in this study via sequencing of genetic markers from total community DNA. To identify potential microbiome-based indicators, microbial communities in samples from an urban river in Tokyo under different climatic conditions (dry and rainy) were compared with the influent and effluent of three domestic wastewater treatment plants (WWTPs) by analyzing 16 S rRNA gene amplicon libraries. In the first part of this study, physicochemical parameters and FIB quantification with selective culture techniques facilitated the identification of samples contaminated with CSO, sewage, or both. This allowed the grouping of samples into CSO-contaminated and non-contaminated samples, an essential step prior to the microbiome comparison between samples. Increased turbidity, ammonia concentrations, and E. coli [up to (9.37 ± 0.95) × 102 CFU/mL after 11.5 mm of rainfall] were observed in CSO-contaminated river samples. Comparison of dry weather (including WWTP samples) and rainy weather samples showed a reduction in microbial diversity in CSO-contaminated samples. Furthermore, the results of this study suggest Bacteroides spp. as a novel indicator of sewage pollution in surface waters.


Assuntos
Escherichia coli , Rios , Monitoramento Ambiental , Fezes/química , Genes de RNAr , Humanos , RNA Ribossômico 16S/genética , Esgotos/análise , Tóquio , Microbiologia da Água
12.
Plant Dis ; 104(2): 315-319, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31809254

RESUMO

Phytophthora nicotianae is a widespread cause of black shank disease of tobacco plants and causes substantial harvest losses in all major cultivation areas. The oomycete primarily affects plant roots and the stem, where it leads to a progressing decay of the diseased tissues. In this resource announcement, we provide two complementary datasets comprising 16S gene fragment amplicons (bacteriome) and ITS1 region amplicons (mycobiome) that were sequenced on an Illumina-based platform. Soil samples were obtained from disease-affected fields in Guizhou province (China) and include control samples from adhering fields without previous disease incidence. Both datasets were acquired at a high sequencing depth and accompanied by detailed metadata, which facilitate their implementation in comparative studies. The resource announcement provides a basis for disease-specific biomarker detection and correlation studies that include the microbiome.


Assuntos
Micobioma , Phytophthora , China , Doenças das Plantas , Nicotiana
13.
J Proteome Res ; 16(6): 2160-2173, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28290203

RESUMO

Lichens are recognized by macroscopic structures formed by a heterotrophic fungus, the mycobiont, which hosts internal autotrophic photosynthetic algal and/or cyanobacterial partners, referred to as the photobiont. We analyzed the structure and functionality of the entire lung lichen Lobaria pulmonaria L. Hoffm. collected from two different sites by state-of-the-art metaproteomics. In addition to the green algae and the ascomycetous fungus, a lichenicolous fungus as well as a complex prokaryotic community (different from the cyanobacteria) was found, the latter dominated by methanotrophic Rhizobiales. Various partner-specific proteins could be assigned to the different lichen symbionts, for example, fungal proteins involved in vesicle transport, algal proteins functioning in photosynthesis, cyanobacterial nitrogenase and GOGAT involved in nitrogen fixation, and bacterial enzymes responsible for methanol/C1-compound metabolism as well as CO-detoxification. Structural and functional information on proteins expressed by the lichen community complemented and extended our recent symbiosis model depicting the functional multiplayer network of single holobiont partners.1 Our new metaproteome analysis strongly supports the hypothesis (i) that interactions within the self-supporting association are multifaceted and (ii) that the strategy of functional diversification within the single lichen partners may support the longevity of L. pulmonaria under certain ecological conditions.


Assuntos
Ascomicetos , Clorófitas , Cianobactérias , Líquens , Simbiose , Biodiversidade , Metabolômica , Interações Microbianas , Proteômica , Pulmonaria
14.
Mol Ecol ; 26(10): 2826-2838, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28222236

RESUMO

Knowledge of bacterial community host-specificity has increased greatly in recent years. However, the intermicrobiome relationships of unrelated but spatially close organisms remain little understood. Trunks of trees covered by epiphytes represent complex habitats with a mosaic of ecological niches. In this context, we investigated the structure, diversity and interactions of microbiota associated with lichens, mosses and the bare tree bark. Comparative analysis revealed significant differences in the habitat-associated community structures. Corresponding co-occurrence analysis indicated that the lichen microbial network is less complex and less densely interconnected than the moss- and bark-associated networks. Several potential generalists and specialists were identified for the selected habitats. Generalists belonged mainly to Proteobacteria, with Sphingomonas as the most abundant genus. The generalists comprise microorganisms with generally beneficial features, such as nitrogen fixation or other supporting functions, according to a metagenomic analysis. We argue that beneficial strains shared among hosts contribute to ecological stability of the host biocoenoses.


Assuntos
Bactérias/classificação , Briófitas/microbiologia , Líquens/microbiologia , Microbiota , Casca de Planta/microbiologia , Ecologia , Ecossistema , Árvores
15.
Microb Ecol ; 72(3): 510-3, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27464604

RESUMO

Self-sustaining lichen symbioses potentially can become very old, sometimes even thousands of years in nature. In the joint structures, algal partners are sheltered between fungal structures that are externally colonized by bacterial communities. With this arrangement lichens survive long periods of drought, and lichen thalli can be revitalized even after decades of dry storage in a herbarium. To study the effects of long-term ex situ storage on viability of indigenous bacterial communities we comparatively studied herbarium-stored material of the lung lichen, Lobaria pulmonaria. We discovered that a significant fraction of the lichen-associated bacterial community survives herbarium storage of nearly 80 years, and living bacteria can still be found in even older material. As the bacteria reside in the upper surface layers of the lichen material, we argue that the extracellular polysaccharides of lichens contribute to superior life expectancy of bacteria. Deeper understanding of underlying mechanisms could provide novel possibilities for biotechnological applications.


Assuntos
Bactérias , Fenômenos Fisiológicos Bacterianos , Líquens/microbiologia , Expectativa de Vida , Ascomicetos/fisiologia , Bactérias/genética , DNA Bacteriano , DNA Ribossômico , Genes Bacterianos , Microscopia Confocal , RNA Ribossômico 16S/genética , Sobrevida , Simbiose
16.
Environ Microbiome ; 19(1): 40, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886863

RESUMO

BACKGROUND: Seed endophytes have a significant impact on plant health and fitness. They can be inherited and passed on to the next plant generation. However, the impact of breeding on their composition in seeds is less understood. Here, we studied the indigenous seed microbiome of a recently domesticated perennial grain crop (Intermediate wheatgrass, Thinopyrum intermedium L.) that promises great potential for harnessing microorganisms to enhance crop performance by a multiphasic approach, including amplicon and strain libraries, as well as molecular and physiological assays. RESULTS: Intermediate wheatgrass seeds harvested from four field sites in Europe over three consecutive years were dominated by Proteobacteria (88%), followed by Firmicutes (10%). Pantoea was the most abundant genus and Pantoea agglomerans was identified as the only core taxon present in all samples. While bacterial diversity and species richness were similar across all accessions, the relative abundance varied especially in terms of low abundant and rare taxa. Seeds from four different breeding cycles (TLI C3, C5, C704, C801) showed significant differences in bacterial community composition and abundance. We found a decrease in the relative abundance of the functional genes nirK and nifH as well as a drop in bacterial diversity and richness. This was associated with a loss of amplicon sequence variants (ASVs) in Actinobacteria, Alphaproteobacteria, and Bacilli, which could be partially compensated in offspring seeds, which have been cultivated at a new site. Interestingly, only a subset assigned to potentially beneficial bacteria, e.g. Pantoea, Kosakonia, and Pseudomonas, was transmitted to the next plant generation or shared with offspring seeds. CONCLUSION: Overall, this study advances our understanding of the assembly and transmission of endophytic seed microorganisms in perennial intermediate wheatgrass and highlights the importance of considering the plant microbiome in future breeding programs.

17.
J Zhejiang Univ Sci B ; : 1-16, 2024 May 22.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-38773879

RESUMO

Crop production currently relies on the widespread use of agrochemicals to ensure food security. This practice is considered unsustainable, yet has no viable alternative at present. The plant microbiota can fulfil various functions for its host, some of which could be the basis for developing sustainable protection and fertilization strategies for plants without relying on chemicals. To harness such functions, a detailed understanding of plant‒microbe and microbe‒microbe interactions is necessary. Among interactions within the plant microbiota, those between bacteria are the most common ones; they are not only of ecological importance but also essential for maintaining the health and productivity of the host plants. This review focuses on recent literature in this field and highlights various consequences of bacteria‒bacteria interactions under different agricultural settings. In addition, the molecular and genetic backgrounds of bacteria that facilitate such interactions are emphasized. Representative examples of commonly found bacterial metabolites with bioactive properties, as well as their modes of action, are given. Integrating our understanding of various binary interactions into complex models that encompass the entire microbiota will benefit future developments in agriculture and beyond, which could be further facilitated by artificial intelligence-based technologies.

18.
FEMS Microbiol Ecol ; 100(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38271603

RESUMO

Rhizosphere microbiome assembly is essential for plant health, but the temporal dimension of this process remains unexplored. We used a chronosequence of 150 years of the retreating Hallstätter glacier (Dachstein, Austria) to disentangle this exemplarily for the rhizosphere of three pioneer alpine plants. Time of deglaciation was an important factor shaping the rhizosphere microbiome. Microbiome functions, i.e. nutrient uptake and stress protection, were carried out by ubiquitous and cosmopolitan bacteria. The rhizosphere succession along the chronosequence was characterized by decreasing microbial richness but increasing specificity of the plant-associated bacterial community. Environmental selection is a critical factor in shaping the ecosystem, particularly in terms of plant-driven recruitment from the available edaphic pool. A higher rhizosphere microbial richness during early succession compared to late succession can be explained by the occurrence of cold-acclimated bacteria recruited from the surrounding soils. These taxa might be sensitive to changing habitat conditions that occurred at the later stages. A stronger influence of the plant host on the rhizosphere microbiome assembly was observed with increased time since deglaciation. Overall, this study indicated that well-adapted, ubiquitous microbes potentially support pioneer plants to colonize new ecosystems, while plant-specific microbes may be associated with the long-term establishment of their hosts.


Assuntos
Microbiota , Rizosfera , Camada de Gelo/microbiologia , Áustria , Microbiologia do Solo , Bactérias/genética , Solo , Plantas
19.
Nat Commun ; 15(1): 23, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167850

RESUMO

In terrestrial ecosystems, plant leaves provide the largest biological habitat for highly diverse microbial communities, known as the phyllosphere microbiota. However, the underlying mechanisms of host-driven assembly of these ubiquitous communities remain largely elusive. Here, we conduct a large-scale and in-depth assessment of the rice phyllosphere microbiome aimed at identifying specific host-microbe links. A genome-wide association study reveals a strong association between the plant genotype and members of four bacterial orders, Pseudomonadales, Burkholderiales, Enterobacterales and Xanthomonadales. Some of the associations are specific to a distinct host genomic locus, pathway or even gene. The compound 4-hydroxycinnamic acid (4-HCA) is identified as the main driver for enrichment of bacteria belonging to Pseudomonadales. 4-HCA can be synthesized by the host plant's OsPAL02 from the phenylpropanoid biosynthesis pathway. A knockout mutant of OsPAL02 results in reduced Pseudomonadales abundance, dysbiosis of the phyllosphere microbiota and consequently higher susceptibility of rice plants to disease. Our study provides a direct link between a specific plant metabolite and rice phyllosphere homeostasis opening possibilities for new breeding strategies.


Assuntos
Microbiota , Oryza , Oryza/genética , Oryza/microbiologia , Lignina , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Folhas de Planta/microbiologia , Homeostase , Bactérias/genética , Plantas/genética
20.
Environ Sci Ecotechnol ; 20: 100407, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38544950

RESUMO

Mismanaged plastics, upon entering the environment, undergo degradation through physicochemical and/or biological processes. This process often results in the formation of microplastics (MPs), the most prevalent form of plastic debris (<1 mm). MPs pose severe threats to aquatic and terrestrial ecosystems, necessitating innovative strategies for effective remediation. Some photosynthetic microorganisms can degrade MPs but there lacks a comprehensive review. Here we examine the specific role of photoautotrophic microorganisms in water and soil environments for the biodegradation of plastics, focussing on their unique ability to grow persistently on diverse polymers under sunlight. Notably, these cells utilise light and CO2 to produce valuable compounds such as carbohydrates, lipids, and proteins, showcasing their multifaceted environmental benefits. We address key scientific questions surrounding the utilisation of photosynthetic microorganisms for MPs and nanoplastics (NPs) bioremediation, discussing potential engineering strategies for enhanced efficacy. Our review highlights the significance of alternative biomaterials and the exploration of strains expressing enzymes, such as polyethylene terephthalate (PET) hydrolases, in conjunction with microalgal and/or cyanobacterial metabolisms. Furthermore, we delve into the promising potential of photo-biocatalytic approaches, emphasising the coupling of plastic debris degradation with sunlight exposure. The integration of microalgal-bacterial consortia is explored for biotechnological applications against MPs and NPs pollution, showcasing the synergistic effects in wastewater treatment through the absorption of nitrogen, heavy metals, phosphorous, and carbon. In conclusion, this review provides a comprehensive overview of the current state of research on the use of photoautotrophic cells for plastic bioremediation. It underscores the need for continued investigation into the engineering of these microorganisms and the development of innovative approaches to tackle the global issue of plastic pollution in aquatic and terrestrial ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA