Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38255842

RESUMO

NOTCH1 PEST domain mutations are often seen in hematopoietic malignancies, including T-cell acute lymphoblastic leukemia (T-ALL), chronic lymphocytic leukemia (CLL), splenic marginal zone lymphoma (SMZL), mantle cell lymphoma (MCL), and diffuse large B-cell lymphoma (DLBCL). These mutations play a key role in the development and progression of lymphoproliferative tumors by increasing the Notch signaling and, consequently, promoting cell proliferation, survival, migration, and suppressing apoptosis. There is currently no specific treatment available for cancers caused by NOTCH1 PEST domain mutations. However, several NOTCH1 inhibitors are in development. Among these, inhibition of the Sarco-endoplasmic Ca2+-ATPase (SERCA) showed a greater effect in NOTCH1-mutated tumors compared to the wild-type ones. One example is CAD204520, a benzimidazole derivative active in T-ALL cells harboring NOTCH1 mutations. In this study, we preclinically assessed the effect of CAD204520 in CLL and MCL models and showed that NOTCH1 PEST domain mutations sensitize cells to the anti-leukemic activity mediated by CAD204520. Additionally, we tested the potential of CAD204520 in combination with the current first-line treatment of CLL, venetoclax, and ibrutinib. CAD204520 enhanced the synergistic effect of this treatment regimen only in samples harboring the NOTCH1 PEST domain mutations, thus supporting a role for Notch inhibition in these tumors. In summary, our work provides strong support for the development of CAD204520 as a novel therapeutic approach also in chronic lymphoproliferative disorders carrying NOTCH1 PEST domain mutations, emerging as a promising molecule for combination treatment in this aggressive subset of patients.


Assuntos
Neoplasias Hematológicas , Leucemia Linfocítica Crônica de Células B , Transtornos Linfoproliferativos , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Transtornos Linfoproliferativos/tratamento farmacológico , Transtornos Linfoproliferativos/genética , Mutação , Receptor Notch1/genética
2.
Nat Commun ; 15(1): 4739, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834613

RESUMO

The overexpression of the ecotropic viral integration site-1 gene (EVI1/MECOM) marks the most lethal acute myeloid leukemia (AML) subgroup carrying chromosome 3q26 abnormalities. By taking advantage of the intersectionality of high-throughput cell-based and gene expression screens selective and pan-histone deacetylase inhibitors (HDACis) emerge as potent repressors of EVI1. To understand the mechanism driving on-target anti-leukemia activity of this compound class, here we dissect the expression dynamics of the bone marrow leukemia cells of patients treated with HDACi and reconstitute the EVI1 chromatin-associated co-transcriptional complex merging on the role of proliferation-associated 2G4 (PA2G4) protein. PA2G4 overexpression rescues AML cells from the inhibitory effects of HDACis, while genetic and small molecule inhibition of PA2G4 abrogates EVI1 in 3q26 AML cells, including in patient-derived leukemia xenografts. This study positions PA2G4 at the crosstalk of the EVI1 leukemogenic signal for developing new therapeutics and urges the use of HDACis-based combination therapies in patients with 3q26 AML.


Assuntos
Cromossomos Humanos Par 3 , Inibidores de Histona Desacetilases , Leucemia Mieloide Aguda , Proteína do Locus do Complexo MDS1 e EVI1 , Proteogenômica , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cromossomos Humanos Par 3/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , Proteína do Locus do Complexo MDS1 e EVI1/genética , Proteogenômica/métodos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Vascul Pharmacol ; 146: 107110, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36103993

RESUMO

The mechanisms underlying the success of propranolol in the treatment of infantile hemangioma (IH) remain elusive and do not fully explain the rapid regression of hemangiomatous lesions following drug administration. As autophagy is critically implicated in vascular homeostasis, we determined whether ß-blockers trigger the autophagic flux on infantile hemangioma-derived endothelial cells (Hem-ECs) in vitro. MATERIAL AND METHODS: Fresh tissue specimens, surgically removed for therapeutic purpose to seven children affected by proliferative IH, were subjected to enzymatic digestion. Cells were sorted with anti-human CD31 immunolabeled magnetic microbeads. Following phenotypic characterization, expanded Hem-ECs, at P2 to P6, were exposed to different concentrations (50 µM to 150 µM) of propranolol, atenolol or metoprolol alone and in combination with the autophagy inhibitor Bafilomycin A1. Rapamycin, a potent inducer of autophagy, was also used as control. Autophagy was assessed by Lysotracker Red staining, western blot analysis of LC3BII/LC3BI and p62, and morphologically by transmission electron microscopy. RESULTS: Hem-ECs treated with either propranolol, atenolol or metoprolol displayed positive LysoTracker Red staining. Increased LC3BII/LC3BI ratio, as well as p62 modulation, were documented in ß-blockers treated Hem-ECs. Abundant autophagic vacuoles and multilamellar bodies characterized the cytoplasmic ultrastructural features of autophagy in cultured Hem-ECs exposed in vitro to ß-blocking agents. Importantly, similar biochemical and morphologic evidence of autophagy were observed following rapamycin while Bafilomycin A1 significantly prevented the autophagic flux promoted by ß-blockers in Hem-ECs. CONCLUSION: Our data suggest that autophagy may be ascribed among the mechanisms of action of ß-blockers suggesting new mechanistic insights on the potential therapeutic application of this class of drugs in pathologic conditions involving uncontrolled angiogenesis.


Assuntos
Hemangioma , Propranolol , Antagonistas Adrenérgicos beta/farmacologia , Aminas , Atenolol/farmacologia , Atenolol/uso terapêutico , Autofagia , Proliferação de Células , Criança , Células Endoteliais , Hemangioma/patologia , Humanos , Macrolídeos , Metoprolol/uso terapêutico , Propranolol/farmacologia , Propranolol/uso terapêutico , Sirolimo/farmacologia
4.
Cell Death Dis ; 13(6): 551, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35710782

RESUMO

Genomic studies have identified recurrent somatic alterations in genes involved in DNA methylation and post-translational histone modifications in acute lymphoblastic leukemia (ALL), suggesting new opportunities for therapeutic interventions. In this study, we identified G9a/EHMT2 as a potential target in T-ALL through the intersection of epigenome-centered shRNA and chemical screens. We subsequently validated G9a with low-throughput CRISPR-Cas9-based studies targeting the catalytic G9a SET-domain and the testing of G9a chemical inhibitors in vitro, 3D, and in vivo T-ALL models. Mechanistically we determined that G9a repression promotes lysosomal biogenesis and autophagic degradation associated with the suppression of sestrin2 (SESN2) and inhibition of glycogen synthase kinase-3 (GSK-3), suggesting that in T-ALL glycolytic dependent pathways are at least in part under epigenetic control. Thus, targeting G9a represents a strategy to exhaust the metabolic requirement of T-ALL cells.


Assuntos
Histona-Lisina N-Metiltransferase , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Metilação de DNA/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA