Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(21): 9146-9152, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34672604

RESUMO

Understanding the optoelectronic properties of semiconducting polymers under external strain is essential for their applications in flexible devices. Although prior studies have highlighted the impact of static and macroscopic strains, assessing the effect of a local transient deformation before structural relaxation occurs remains challenging. Here, we employ scanning ultrafast electron microscopy (SUEM) to image the dynamics of a photoinduced transient strain in the semiconducting polymer poly(3-hexylthiophene) (P3HT). We observe that the photoinduced SUEM contrast, corresponding to the local change of secondary electron emission, exhibits an unusual ring-shaped profile. We attribute the observation to the electronic structure modulation of P3HT caused by a photoinduced strain field owing to its low modulus and strong electron-lattice coupling, supported by a finite-element analysis. Our work provides insights into tailoring optoelectronic properties using transient mechanical deformation in semiconducting polymers and demonstrates the versatility of SUEM to study photophysical processes in diverse materials.

2.
J Am Chem Soc ; 143(3): 1562-1569, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33439016

RESUMO

Self-healing polymer electrolytes are reported with light-switchable conductivity based on dynamic N-donor ligand-containing diarylethene (DAE) and multivalent Ni2+ metal-ion coordination. Specifically, a polystyrene polymer grafted with poly(ethylene glycol-r-DAE)acrylate copolymer side chains was effectively cross-linked with nickel(II) bis(trifluoromethanesulfonimide) (Ni(TFSI)2) salts to form a dynamic network capable of self-healing with fast exchange kinetics under mild conditions. Furthermore, as a photoswitching compound, the DAE undergoes a reversible structural and electronic rearrangement that changes the binding strength of the DAE-Ni2+ complex under irradiation. This can be observed in the DAE-containing polymer electrolyte where irradiation with UV light triggers an increase in the resistance of solid films, which can be recovered with subsequent visible light irradiation. The increase in resistance under UV light irradiation indicates a decrease in ion mobility after photoswitching, which is consistent with the stronger binding strength of ring-closed DAE isomers with Ni2+. 1H-15N heteronuclear multiple-bond correlation nuclear magnetic resonance (HMBC NMR) spectroscopy, continuous wave electron paramagnetic resonance (cw EPR) spectroscopy, and density functional theory (DFT) calculations confirm the increase in binding strength between ring-closed DAE with metals. Rheological and in situ ion conductivity measurements show that these polymer electrolytes efficiently heal to recover their mechanical properties and ion conductivity after damage, illustrating potential applications in smart electronics.

3.
Phys Rev Lett ; 127(17): 173604, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34739261

RESUMO

The optical response of crystals is most commonly attributed to electric dipole interactions between light and matter. Although metamaterials support "artificial" magnetic resonances supported by mesoscale structuring, there are no naturally occurring materials known to exhibit a nonzero optical-frequency magnetic polarizability. Here, we experimentally demonstrate and quantify a naturally occurring nonzero magnetic polarizability in a layered semiconductor system: two-dimensional (Ruddlesden-Popper phase) hybrid organic-inorganic perovskites. These results demonstrate the only known material with an optical-frequency permeability that differs appreciably from vacuum, informing future efforts to find, synthesize, or exploit atomic-scale optical magnetism for novel optical phenomena such as negative index of refraction and electromagnetic cloaking.

4.
J Am Chem Soc ; 141(48): 19099-19109, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31697076

RESUMO

Hybrid halide double perovskites are a class of compounds attracting growing interest because of their richness of structure and property. Two-dimensional (2D) derivatives of hybrid double perovskites are formed by the incorporation of organic spacer cations into three-dimensional (3D) double perovskites. Here, we report a series of seven new layered double perovskite halides with propylammonium (PA), octylammonium (OCA), and 1,4-butyldiammonium (BDA) cations. The general formulas of the compounds are AmMIMIIIX8 (single-layered Ruddlesden-Popper type with m = 4 and A = PA or OCA, and single-layered Dion-Jacobson type with m = 2 and A = BDA, MI = Ag, MIII= In or Bi, X = Cl or Br) and PA2CsMIMIIIBr7 (bilayered, with MI = Ag, MIII = In or Bi). These families of compounds demonstrate great versatility, with tunable layer thickness, the ability to vary the interlayer spacing, and the ability to selectively tune the band gap by varying the MI and MIII cations along with the halide anions. The band gap of the single-layered materials varies from 2.41 eV for PA4AgBiBr8 to 3.96 eV for PA4AgInCl8. Photoluminescent emission spectra of the layered double perovskites at low-temperature (100 K) are reported, and density functional theory electronic structure calculations are presented to understand the nature of the band gap evolution. The development of new structural and compositions in layered double perovskite halides enhances the understanding of structure-property relations in this important family.

5.
Inorg Chem ; 56(1): 395-401, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27966942

RESUMO

Two new compounds containing tetrathiafulvalene (TTF) cations with extended and discrete anions based on Bi and I are reported. The compound (TTF)BiI4 comprises [BiI2I4/2]- chains of edge-shared octahedra that are interspersed with stacks of TTF+•. The compound (TTF)4BiI6 has mixed-valence stacks of TTF and TTF+• and discrete molecules of TTF+• separated by discrete [BiI6]-3 anions. The optical and electrical transport properties of these compounds are reported. Due to the mixed-valence stacks of TTF, (TTF)4BiI6 is the significantly better electrical conductor than (TTF)BiI4, despite the discrete nature of the inorganic moiety.

6.
Inorg Chem ; 56(1): 11-25, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-28043138

RESUMO

Main-group halide perovskites have generated much excitement of late because of their remarkable optoelectronic properties, ease of preparation, and abundant constituent elements, but these curious and promising materials differ in important respects from traditional semiconductors. The distinguishing chemical, structural, and electronic features of these materials present the key to understanding the origins of the optoelectronic performance of the well-studied hybrid organic-inorganic lead halides and provide a starting point for the design and preparation of new functional materials. Here we review and discuss these distinguishing features, among them a defect-tolerant electronic structure, proximal lattice instabilities, labile defect migration, and, in the case of hybrid perovskites, disordered molecular cations. Additionally, we discuss the preparation and characterization of some alternatives to the lead halide perovskites, including lead-free bismuth halides and hybrid materials with optically and electronically active organic constituents.

7.
Opt Express ; 24(25): 28842-28857, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27958527

RESUMO

Determining optical constants of thin material films is important for characterizing their electronic excitations and for the design of optoelectronic devices. Spectroscopic ellipsometry techniques have emerged as the predominant approach for measuring thin-film optical constants. However, ellipsometry methods suffer from complications associated with highly model-dependent, multi-parameter spectral fitting procedures. Here, we present a model-blind, momentum-resolved reflectometry technique that yields accurate and precise optical constants, with quantifiable error estimates, even for film thicknesses less than 50 nm. These capabilities are demonstrated by interrogating an optical absorption resonance in films of the polymer P(NDI2OD-T2). We show that this approach produces exceptional agreement with UV-Vis-NIR absorption measurements, while simultaneously avoiding the need to construct complicated multi-oscillator spectral models. Finally, we use this procedure to resolve subtle differences in the out-of-plane optical properties of different film morphologies that were previously obscured in ellipsometry measurements.

8.
Angew Chem Int Ed Engl ; 55(28): 8032-5, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27239781

RESUMO

We report the preparation and X-ray crystallographic characterization of the first crystalline homoatomic polymer chain, which is part of a semiconducting pyrroloperylene-iodine complex. The crystal structure contains infinite polyiodide I∞ (δ-) . Interestingly, the structure of iodine within the insoluble, blue starch-iodine complex has long remained elusive, but has been speculated as having infinite chains of iodine. Close similarities in the low-wavenumber Raman spectra of the title compound and starch-iodine point to such infinite polyiodide chains in the latter as well.

9.
Annu Rev Phys Chem ; 65: 59-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24689796

RESUMO

Thin-film solar cells are an important source of renewable energy. The most efficient thin-film solar cells made with organic materials are blends of semiconducting polymers and fullerenes called the bulk heterojunction (BHJ). Efficient BHJs have a nanoscale phase-separated morphology that is formed during solution casting. This article reviews recent work to understand the nature of the phase-separation process resulting in the formation of the domains in polymer-fullerene BHJs. The BHJ is now viewed as a mixture of polymer-rich, fullerene-rich, and mixed polymer-fullerene domains. The formation of this structure can be understood through fundamental knowledge of polymer physics. The implications of this structure for charge transport and charge generation are given.


Assuntos
Fulerenos/química , Transição de Fase , Polímeros/química , Semicondutores , Energia Solar , Processos Fotoquímicos
10.
Nano Lett ; 14(6): 3096-101, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24820648

RESUMO

Many high-performance conjugated polymers for organic photovoltaics and transistors crystallize such that chains are parallel, resulting in significant anisotropy of the nanoscale charge transport properties. Here we demonstrate an unusual intercrystallite relationship where thin lamellae adopt a preferred epitaxial relationship with crossed-chains at the interface. The crossed-chains may allow either crystal to use the other as an "electronic shunt", creating efficient quasi-three-dimensional transport pathways that reduce the severity of grain boundaries and defects in limiting transport.

11.
J Am Chem Soc ; 136(39): 13478-81, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25179403

RESUMO

This contribution reports a series of anionic narrow-band-gap self-doped conjugated polyelectrolytes (CPEs) with π-conjugated cyclopenta-[2,1-b;3,4-b']-dithiophene-alt-4,7-(2,1,3-benzothiadiazole) backbones, but with different counterions (Na(+), K(+), vs tetrabutylammonium) and lengths of alkyl chains (C4 vs C3). These materials were doped to provide air-stable, water-soluble conductive materials. Solid-state electrical conductivity, thermopower, and thermal conductivity were measured and compared. CPEs with smaller counterions and shorter side chains exhibit higher doping levels and form more ordered films. The smallest countercation (Na(+)) provides thin films with higher electrical conductivity, but a comparable thermopower, compared to those with larger counterions, thereby leading to a higher power factor. Chemical modifications of the pendant side chains do not influence out of plane thermal conductivity. These studies introduce a novel approach to understand thermoelectric performance by structural modifications.

12.
Nat Mater ; 12(7): 628-33, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23727949

RESUMO

Additives, including nucleating agents, have been used to regulate the solidification process of (semi-)crystalline polymer solids and thus control both their crystallite dimensions and shape. Here, we demonstrate that minute amounts (0.1-1 wt%) of commercially available nucleating agents can be used to efficiently manipulate the solidification kinetics of a wide range of organic semiconductors--including poly(3-alkylthiophene)s, the fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and 6,13-bis(triisopropyl-silylethynyl) (TIPS) pentacene--when processed from the melt, solution or solid state, without adversely affecting the semiconductors' electronic properties. Heterogeneous nucleation increases the temperature of and rate of crystallization of poly(3-alkylthiophene)s, permits patterning of crystallites at pre-defined locations in PCBM, and minimizes dewetting of films of TIPS-pentacene formed by inkjet printing. Nucleating agents thus make possible the fabrication of thin-film transistors with uniform electrical characteristics at high yield.

13.
Nano Lett ; 13(6): 2522-7, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23647319

RESUMO

We directly image the rich nanoscale organization of the high performance, n-type polymer poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2)) using a combination of high-resolution transmission electron microscopy and scanning transmission electron microscopy. We demonstrate that it is possible to spatially resolve "face-on" lamella through the 2.4 nm alkyl stacking distance corresponding to the (100) reflection. The lamella locally transition between ordered and disordered states over a length scale on the order of 10 nm; however, the polymer backbones retain long-range correlations over length-scales approaching a micrometer. Moreover, we frequently observe overlapping structure implying a number of layers may exist throughout the thickness of the film (~20 nm). The results provide a simple picture, a highly ordered lamella nanostructure over nearly the entire film and ordered domains with overlapping layers providing additional interconnectivity, which unifies prior seemingly contradictory conclusions surrounding this remarkable, high-mobility material.

14.
Angew Chem Int Ed Engl ; 53(47): 12870-5, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25264304

RESUMO

Cost-effective, solution-processable organic photovoltaics (OPV) present an interesting alternative to inorganic silicon-based solar cells. However, one of the major remaining challenges of OPV devices is their lack of long-term operational stability, especially at elevated temperatures. The synthesis of a fullerene dumbbell and its use as an additive in the active layer of a PCDTBT:PCBM-based OPV device is reported. The addition of only 20 % of this novel fullerene not only leads to improved device efficiencies, but more importantly also to a dramatic increase in morphological stability under simulated operating conditions. Dynamic secondary ion mass spectrometry (DSIMS) and TEM are used, amongst other techniques, to elucidate the origins of the improved morphological stability.

15.
J Appl Crystallogr ; 56(Pt 3): 868-883, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37284258

RESUMO

Polarized resonant soft X-ray scattering (P-RSoXS) has emerged as a powerful synchrotron-based tool that combines the principles of X-ray scattering and X-ray spectroscopy. P-RSoXS provides unique sensitivity to molecular orientation and chemical heterogeneity in soft materials such as polymers and biomaterials. Quantitative extraction of orientation information from P-RSoXS pattern data is challenging, however, because the scattering processes originate from sample properties that must be represented as energy-dependent three-dimensional tensors with heterogeneities at nanometre to sub-nanometre length scales. This challenge is overcome here by developing an open-source virtual instrument that uses graphical processing units (GPUs) to simulate P-RSoXS patterns from real-space material representations with nanoscale resolution. This computational framework - called CyRSoXS (https://github.com/usnistgov/cyrsoxs) - is designed to maximize GPU performance, including algorithms that minimize both communication and memory footprints. The accuracy and robustness of the approach are demonstrated by validating against an extensive set of test cases, which include both analytical solutions and numerical comparisons, demonstrating an acceleration of over three orders of magnitude relative to the current state-of-the-art P-RSoXS simulation software. Such fast simulations open up a variety of applications that were previously computationally unfeasible, including pattern fitting, co-simulation with the physical instrument for operando analytics, data exploration and decision support, data creation and integration into machine learning workflows, and utilization in multi-modal data assimilation approaches. Finally, the complexity of the computational framework is abstracted away from the end user by exposing CyRSoXS to Python using Pybind. This eliminates input/output requirements for large-scale parameter exploration and inverse design, and democratizes usage by enabling seamless integration with a Python ecosystem (https://github.com/usnistgov/nrss) that can include parametric morphology generation, simulation result reduction, comparison with experiment and data fitting approaches.

16.
J Am Chem Soc ; 134(38): 16040-6, 2012 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-22970828

RESUMO

A novel strategy for the synthesis of fully conjugated donor-acceptor block copolymers, in a single reaction step employing Stille coupling polymerization of end-functional polythiophene and AA + BB monomers, is presented. The unique donor-acceptor structure of these block copolymers provides a rich self-assembly behavior, with the first example of a fully conjugated donor-acceptor block copolymer having two separate crystalline domains being obtained.

17.
J Am Chem Soc ; 134(38): 15869-79, 2012 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-22974056

RESUMO

The improvement of the power conversion efficiency (PCE) of polymer bulk heterojunction (BHJ) solar cells has generally been achieved through synthetic design to control frontier molecular orbital energies and molecular ordering of the electron-donating polymer. An alternate approach to control the PCE of a BHJ is to tune the miscibility of the fullerene and a semiconducting polymer by varying the structure of the fullerene. The miscibility of a series of 1,4-fullerene adducts in the semiconducting polymer, poly(3-hexylselenophene), P3HS, was measured by dynamic secondary ion mass spectrometry using a model bilayer structure. The microstructure of the bilayer was investigated using high-angle annular dark-field scanning transmission microscopy and linked to the polymer-fullerene miscibility. Finally, P3HS:fullerene BHJ solar cells were fabricated from each fullerene derivative, enabling the correlation of the active layer microstructure to the charge collection efficiency and resulting PCE of each system. The volume fraction of polymer-rich, fullerene-rich, and polymer-fullerene mixed domains can be tuned using the miscibility leading to improvement in the charge collection efficiency and PCE in P3HS:fullerene BHJ solar cells. These results suggest a rational approach to the design of fullerenes for improved BHJ solar cells.

18.
ACS Polym Au ; 2(5): 299-312, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36267546

RESUMO

The small specific entropy of mixing of high molecular weight polymers implies that most blends of dissimilar polymers are immiscible with poor physical properties. Historically, a wide range of compatibilization strategies have been pursued, including the addition of copolymers or emulsifiers or installing complementary reactive groups that can promote the in situ formation of block or graft copolymers during blending operations. Typically, such reactive blending exploits reversible or irreversible covalent or hydrogen bonds to produce the desired copolymer, but there are other options. Here, we argue that ionic bonds and electrostatic correlations represent an underutilized tool for polymer compatibilization and in tailoring materials for applications ranging from sustainable polymer alloys to organic electronics and solid polymer electrolytes. The theoretical basis for ionic compatibilization is surveyed and placed in the context of existing experimental literature and emerging classes of functional polymer materials. We conclude with a perspective on how electrostatic interactions might be exploited in plastic waste upcycling.

19.
ACS Polym Au ; 2(1): 27-34, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36855747

RESUMO

Wearable electronics and biointerfacing technology require materials that are both compliant and conductive. The typical design strategy exploits polymer composites containing conductive particles, but the addition of a hard filler generally leads to a substantial increase in modulus that is not well-matched to biological tissue. Here, we report a new class of supersoft, conductive composites comprising carbon nanotubes (CNT) embedded in bottlebrush polymer networks. By virtue of the bottlebrush polymer architecture, these materials are several orders of magnitude softer than comparable composites in the literature involving linear polymer networks. For example, a CNT content of 0.25 wt % yields a shear modulus of 66 kPa while maintaining a typical conductivity for a CNT composite (ca. 10-2 S/m). An added benefit of this bottlebrush matrix chemistry is the presence of dynamic polyester bonds that facilitate thermal (re)processing. This unique strategy of designing soft composites provides new opportunities to tailor the structure and properties of sustainable advanced materials.

20.
Mater Horiz ; 9(1): 433-443, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34787612

RESUMO

Molecular doping of a polythiophene with oligoethylene glycol side chains is found to strongly modulate not only the electrical but also the mechanical properties of the polymer. An oxidation level of up to 18% results in an electrical conductivity of more than 52 S cm-1 and at the same time significantly enhances the elastic modulus from 8 to more than 200 MPa and toughness from 0.5 to 5.1 MJ m-3. These changes arise because molecular doping strongly influences the glass transition temperature Tg and the degree of π-stacking of the polymer, as indicated by both X-ray diffraction and molecular dynamics simulations. Surprisingly, a comparison of doped materials containing mono- or dianions reveals that - for a comparable oxidation level - the presence of multivalent counterions has little effect on the stiffness. Evidently, molecular doping is a powerful tool that can be used for the design of mechanically robust conducting materials, which may find use within the field of flexible and stretchable electronics.


Assuntos
Polímeros , Tiofenos , Módulo de Elasticidade , Condutividade Elétrica , Polímeros/química , Tiofenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA