RESUMO
Chromatin remodelers catalyze dynamic packaging of the genome by carrying out nucleosome assembly/disassembly, histone exchange, and nucleosome repositioning. Remodeling results in evenly spaced nucleosomes, which requires probing both sides of the nucleosome, yet the way remodelers organize sliding activity to achieve this task is not understood. Here, we show that the monomeric Chd1 remodeler shifts DNA back and forth by dynamically alternating between different segments of the nucleosome. During sliding, Chd1 generates unstable remodeling intermediates that spontaneously relax to a pre-remodeled position. We demonstrate that nucleosome sliding is tightly controlled by two regulatory domains: the DNA-binding domain, which interferes with sliding when its range is limited by a truncated linking segment, and the chromodomains, which play a key role in substrate discrimination. We propose that active interplay of the ATPase motor with the regulatory domains may promote dynamic nucleosome structures uniquely suited for histone exchange and chromatin reorganization during transcription.
Assuntos
Proteínas de Ligação a DNA/genética , DNA/genética , Histonas/genética , Nucleossomos/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica , Sequência de Aminoácidos , Animais , Sítios de Ligação , Montagem e Desmontagem da Cromatina , Clonagem Molecular , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Histonas/química , Histonas/metabolismo , Modelos Moleculares , Nucleossomos/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Redobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Xenopus laevis/genética , Xenopus laevis/metabolismoRESUMO
We report on higher-order G-quadruplex structures adopted by long promoter sequences obtained by an iterative integrated structural biology approach. Our approach uses quantitative biophysical tools (analytical ultracentrifugation, small-angle X-ray scattering, and circular dichroism spectroscopy) combined with modeling and molecular dynamics simulations, to derive self-consistent structural models. The formal resolution of our approach is 18 angstroms, but in some cases structural features of only a few nucleotides can be discerned. We report here five structures of long (34-70 nt) wild-type sequences selected from three cancer-related promoters: c-Myc, c-Kit and k-Ras. Each sequence studied has a unique structure. Three sequences form structures with two contiguous, stacked, G-quadruplex units. One longer sequence from c-Myc forms a structure with three contiguous stacked quadruplexes. A longer c-Kit sequence forms a quadruplex-hairpin structure. Each structure exhibits interfacial regions between stacked quadruplexes or novel loop geometries that are possible druggable targets. We also report methodological advances in our integrated structural biology approach, which now includes quantitative CD for counting stacked G-tetrads, DNaseI cleavage for hairpin detection and SAXS model refinement. Our results suggest that higher-order quadruplex assemblies may be a common feature within the genome, rather than simple single quadruplex structures.
Assuntos
Quadruplex G , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Dicroísmo Circular , Espalhamento a Baixo Ângulo , Difração de Raios XRESUMO
Glycogen is the major mammalian glucose storage cache and is critical for energy homeostasis. Glycogen synthesis in neurons must be tightly controlled due to neuronal sensitivity to perturbations in glycogen metabolism. Lafora disease (LD) is a fatal, congenital, neurodegenerative epilepsy. Mutations in the gene encoding the glycogen phosphatase laforin result in hyperphosphorylated glycogen that forms water-insoluble inclusions called Lafora bodies (LBs). LBs induce neuronal apoptosis and are the causative agent of LD. The mechanism of glycogen dephosphorylation by laforin and dysfunction in LD is unknown. We report the crystal structure of laforin bound to phosphoglucan product, revealing its unique integrated tertiary and quaternary structure. Structure-guided mutagenesis combined with biophysical and biochemical analyses reveal the basis for normal function of laforin in glycogen metabolism. Analyses of LD patient mutations define the mechanism by which subsets of mutations disrupt laforin function. These data provide fundamental insights connecting glycogen metabolism to neurodegenerative disease.
Assuntos
Glicogênio/metabolismo , Doença de Lafora/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Oligossacarídeos/química , Fosfatos/química , Fosforilação , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Tirosina Fosfatases não Receptoras/fisiologiaRESUMO
Human telomeres contain the repeat DNA sequence 5'-d(TTAGGG), with duplex regions that are several kilobases long terminating in a 3' single-stranded overhang. The structure of the single-stranded overhang is not known with certainty, with disparate models proposed in the literature. We report here the results of an integrated structural biology approach that combines small-angle X-ray scattering, circular dichroism (CD), analytical ultracentrifugation, size-exclusion column chromatography and molecular dynamics simulations that provide the most detailed characterization to date of the structure of the telomeric overhang. We find that the single-stranded sequences 5'-d(TTAGGG)n, with n = 8, 12 and 16, fold into multimeric structures containing the maximal number (2, 3 and 4, respectively) of contiguous G4 units with no long gaps between units. The G4 units are a mixture of hybrid-1 and hybrid-2 conformers. In the multimeric structures, G4 units interact, at least transiently, at the interfaces between units to produce distinctive CD signatures. Global fitting of our hydrodynamic and scattering data to a worm-like chain (WLC) model indicates that these multimeric G4 structures are semi-flexible, with a persistence length of â¼34 Å. Investigations of its flexibility using MD simulations reveal stacking, unstacking, and coiling movements, which yield unique sites for drug targeting.
Assuntos
Quadruplex G , Telômero/química , Dicroísmo Circular , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Espalhamento a Baixo Ângulo , Difração de Raios XRESUMO
The structure of the 68 nt sequence with G-quadruplex forming potential within the hTERT promoter is disputed. One model features a structure with three stacked parallel G-quadruplex units, while another features an unusual duplex hairpin structure adjoined to two stacked parallel and antiparallel quadruplexes. We report here the results of an integrated structural biology study designed to distinguish between these possibilities. As part of our study, we designed a sequence with an optimized hairpin structure and show that its biophysical and biochemical properties are inconsistent with the structure formed by the hTERT wild-type sequence. By using circular dichroism, thermal denaturation, nuclear magnetic resonance spectroscopy, analytical ultracentrifugation, small-angle X-ray scattering, molecular dynamics simulations and a DNase I cleavage assay we found that the wild type hTERT core promoter folds into a stacked, three-parallel G-quadruplex structure. The hairpin structure is inconsistent with all of our experimental data obtained with the wild-type sequence. All-atom models for both structures were constructed using molecular dynamics simulations. These models accurately predicted the experimental hydrodynamic properties measured for each structure. We found with certainty that the wild-type hTERT promoter sequence does not form a hairpin structure in solution, but rather folds into a compact stacked three-G-quadruplex conformation.
Assuntos
Quadruplex G , Regiões Promotoras Genéticas , Telomerase/genética , Sequência de Bases , Dicroísmo Circular , DNA/química , Humanos , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Desnaturação de Ácido Nucleico , Espalhamento a Baixo Ângulo , Difração de Raios XRESUMO
Triosephosphate isomerase (TIM) barrel proteins have not only a conserved architecture that supports a myriad of enzymatic functions, but also a conserved folding mechanism that involves on- and off-pathway intermediates. Although experiments have proven to be invaluable in defining the folding free-energy surface, they provide only a limited understanding of the structures of the partially folded states that appear during folding. Coarse-grained simulations employing native centric models are capable of sampling the entire energy landscape of TIM barrels and offer the possibility of a molecular-level understanding of the readout from sequence to structure. We have combined sequence-sensitive native centric simulations with small-angle X-ray scattering and time-resolved Förster resonance energy transfer to monitor the formation of structure in an intermediate in the Sulfolobus solfataricus indole-3-glycerol phosphate synthase TIM barrel that appears within 50 µs and must at least partially unfold to achieve productive folding. Simulations reveal the presence of a major and 2 minor folding channels not detected in experiments. Frustration in folding, i.e., backtracking in native contacts, is observed in the major channel at the initial stage of folding, as well as late in folding in a minor channel before the appearance of the native conformation. Similarities in global and pairwise dimensions of the early intermediate, the formation of structure in the central region that spreads progressively toward each terminus, and a similar rate-limiting step in the closing of the ß-barrel underscore the value of combining simulation and experiment to unravel complex folding mechanisms at the molecular level.
Assuntos
Indol-3-Glicerolfosfato Sintase/química , Conformação Proteica , Dobramento de Proteína , Triose-Fosfato Isomerase/química , Sequência de Aminoácidos , Transferência Ressonante de Energia de Fluorescência , Indol-3-Glicerolfosfato Sintase/genética , Modelos Moleculares , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Sulfolobus solfataricus/enzimologia , Termodinâmica , Triose-Fosfato Isomerase/genéticaRESUMO
In this paper we consider a single server queueing model with under general bulk service rule with infinite upper bound on the batch size which we call group clearance. The arrivals occur according to a batch Markovian point process and the services are generally distributed. The customers arriving after the service initiation cannot enter the ongoing service. The service time is independent on the batch size. First, we employ the classical embedded Markov renewal process approach to study the model. Secondly, under the assumption that the services are of phase type, we study the model as a continuous-time Markov chain whose generator has a very special structure. Using matrix-analytic methods we study the model in steady-state and discuss some special cases of the model as well as representative numerical examples covering a wide range of service time distributions such as constant, uniform, Weibull, and phase type.
RESUMO
Dysfunction in mitochondrial dynamics is believed to contribute to a host of neurological disorders and has recently been implicated in cancer metastasis. The outer mitochondrial membrane adapter protein Miro functions in the regulation of mitochondrial mobility and degradation, however, the structural basis for its roles in mitochondrial regulation remain unknown. Here, we report a 1.7Å crystal structure of N-terminal GTPase domain (nGTPase) of human Miro1 bound unexpectedly to GTP, thereby revealing a non-catalytic configuration of the putative GTPase active site. We identify two conserved surfaces of the nGTPase, the "SELFYY" and "ITIP" motifs, that are potentially positioned to mediate dimerization or interaction with binding partners. Additionally, we report small angle X-ray scattering (SAXS) data obtained from the intact soluble HsMiro1 and its paralog HsMiro2. Taken together, the data allow modeling of a crescent-shaped assembly of the soluble domain of HsMiro1/2. PDB RSEFERENCE: Crystal structure of the human Miro1 N-terminal GTPase bound to GTP, 6D71.
Assuntos
GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Humanos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Domínios Proteicos/fisiologia , Espalhamento a Baixo Ângulo , Difração de Raios X/métodosRESUMO
The flavin transferase ApbE plays essential roles in bacterial physiology, covalently incorporating FMN cofactors into numerous respiratory enzymes that use the integrated cofactors as electron carriers. In this work we performed a detailed kinetic and structural characterization of Vibrio cholerae WT ApbE and mutants of the conserved residue His-257, to understand its role in substrate binding and in the catalytic mechanism of this family. Bi-substrate kinetic experiments revealed that ApbE follows a random Bi Bi sequential kinetic mechanism, in which a ternary complex is formed, indicating that both substrates must be bound to the enzyme for the reaction to proceed. Steady-state kinetic analyses show that the turnover rates of His-257 mutants are significantly smaller than those of WT ApbE, and have increased Km values for both substrates, indicating that the His-257 residue plays important roles in catalysis and in enzyme-substrate complex formation. Analyses of the pH dependence of ApbE activity indicate that the pKa of the catalytic residue (pKES1) increases by 2 pH units in the His-257 mutants, suggesting that this residue plays a role in substrate deprotonation. The crystal structures of WT ApbE and an H257G mutant were determined at 1.61 and 1.92 Å resolutions, revealing that His-257 is located in the catalytic site and that the substitution does not produce major conformational changes. We propose a reaction mechanism in which His-257 acts as a general base that deprotonates the acceptor residue, which subsequently performs a nucleophilic attack on FAD for flavin transfer.
Assuntos
Flavinas/metabolismo , Transferases/metabolismo , Vibrio cholerae/metabolismo , Proteínas de Bactérias/metabolismo , Catálise , Domínio Catalítico , Sequência Conservada , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Flavinas/genética , Histidina/metabolismo , Cinética , Oxirredução , Especificidade por Substrato/genética , Transferases/genética , Vibrio cholerae/genéticaRESUMO
Protein trafficking across membranes is an essential function in cells; however, the exact mechanism for how this occurs is not well understood. In the endosymbionts, mitochondria and chloroplasts, the vast majority of proteins are synthesized in the cytoplasm as preproteins and then imported into the organelles via specialized machineries. In chloroplasts, protein import is accomplished by the TOC (translocon on the outer chloroplast membrane) and TIC (translocon on the inner chloroplast membrane) machineries in the outer and inner envelope membranes, respectively. TOC mediates initial recognition of preproteins at the outer membrane and includes a core membrane channel, Toc75, and two receptor proteins, Toc33/34 and Toc159, each containing GTPase domains that control preprotein binding and translocation. Toc75 is predicted to have a ß-barrel fold consisting of an N-terminal intermembrane space (IMS) domain and a C-terminal 16-stranded ß-barrel domain. Here we report the crystal structure of the N-terminal IMS domain of Toc75 from Arabidopsis thaliana, revealing three tandem polypeptide transport-associated (POTRA) domains, with POTRA2 containing an additional elongated helix not observed previously in other POTRA domains. Functional studies show an interaction with the preprotein, preSSU, which is mediated through POTRA2-3. POTRA2-3 also was found to have chaperone-like activity in an insulin aggregation assay, which we propose facilitates preprotein import. Our data suggest a model in which the POTRA domains serve as a binding site for the preprotein as it emerges from the Toc75 channel and provide a chaperone-like activity to prevent misfolding or aggregation as the preprotein traverses the intermembrane space.
Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Membrana/genética , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Domínios Proteicos , Precursores de Proteínas/genética , Transporte Proteico , Eletricidade EstáticaRESUMO
Phospholipase C (PLC) enzymes produce second messengers that increase the intracellular Ca2+ concentration and activate protein kinase C (PKC). These enzymes also share a highly conserved arrangement of core domains. However, the contributions of the individual domains to regulation are poorly understood, particularly in isoforms lacking high-resolution information, such as PLCϵ. Here, we used small-angle X-ray scattering (SAXS), EM, and functional assays to gain insights into the molecular architecture of PLCϵ, revealing that its PH domain is conformationally dynamic and essential for activity. We further demonstrate that the PH domain of PLCß exhibits similar dynamics in solution that are substantially different from its conformation observed in multiple previously reported crystal structures. We propose that this conformational heterogeneity contributes to subfamily-specific differences in activity and regulation by extracellular signals.
Assuntos
Simulação de Dinâmica Molecular , Domínios de Homologia à Plecstrina , Fosfolipases Tipo C/química , Animais , Humanos , Mutação , Ratos , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismoRESUMO
Verification of analytical performance of measurands becomes an essential requirement for the laboratories before proceeding to patients' samples testing. In our study we have verified the performance of HbA1C Immunoturbidimetric assay (VITROS 5600) against manufacturers' claims using CLSI EP15A3 Guidelines. We performed our study using two concentrations of Quality Control from Bio-Rad (Level 1 and Level 2). A precision verification study was carried out using five replicates of QC per day for five days following which imprecision estimates in form of Within Run (Repeatability) %CV and Within Lab %CV were calculated and compared against manufacturer's claims. Second part of our study included derivation of grand mean from the results of 25 replicates of QC used for precision verification. This was compared against the Target Value of the assigned QC obtained from the peer group mean of laboratories participating in interlaboratory QC program (unityTM Interlab-Bio-Rad) for %bias estimation. The findings of our precision study showed an acceptable Within Lab imprecision (%CVWL-0.6%), while the %CV -repeatability (%CVR-0.54%) was greater than the manufacturer's claim (σR-0.5%). Hence upper verification limit for the manufacturer's claim (0.65%) was calculated against which the %CV Repeatability was compared and was found to be acceptable. The trueness verification showed that our grand mean (5.488%) was within the verification interval of the target value (5.462-5.497%) and hence the actual %bias was not statistically significant. Our study demonstrates that HbA1C immunoassay shows an acceptable performance consistent with the manufacturer's claims.
RESUMO
Homooligomerization of proline utilization A (PutA) bifunctional flavoenzymes is intimately tied to catalytic function and substrate channeling. PutA from Bradyrhizobium japonicum (BjPutA) is unique among PutAs in that it forms a tetramer in solution. Curiously, a dimeric BjPutA hot spot mutant was previously shown to display wild-type catalytic activity despite lacking the tetrameric structure. These observations raised the question of what is the active oligomeric state of BjPutA. Herein, we investigate the factors that contribute to tetramerization of BjPutA in vitro. Negative-stain electron microscopy indicates that BjPutA is primarily dimeric at nanomolar concentrations, suggesting concentration-dependent tetramerization. Further, sedimentation-velocity analysis of BjPutA at high (micromolar) concentration reveals that although the binding of active-site ligands does not alter oligomeric state, reduction of the flavin adenine dinucleotide cofactor results in dimeric protein. Size-exclusion chromatography coupled with multiangle light scattering and small-angle x-ray scattering analysis also reveals that reduced BjPutA is dimeric. Taken together, these results suggest that the BjPutA oligomeric state is dependent upon both enzyme concentration and the redox state of the flavin cofactor. This is the first report, to our knowledge, of redox-linked oligomerization in the PutA family.
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Multimerização Proteica , Bradyrhizobium , Membrana Celular/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Ligantes , Modelos Moleculares , Oxirredução , Estrutura Quaternária de ProteínaRESUMO
The highly mutagenic A:8-oxoguanine (oxoG) base pair is generated mainly by misreplication of the C:oxoG base pair, the oxidation product of the C:G base pair. The A:oxoG base pair is particularly insidious because neither base in it carries faithful information to direct the repair of the other. The bacterial MutY (MUTYH in humans) adenine DNA glycosylase is able to initiate the repair of A:oxoG by selectively cleaving the A base from the A:oxoG base pair. The difference between faithful repair and wreaking mutagenic havoc on the genome lies in the accurate discrimination between two structurally similar base pairs: A:oxoG and A:T. Here we present two crystal structures of the MutY N-terminal domain in complex with either undamaged DNA or DNA containing an intrahelical lesion. These structures have captured for the first time a DNA glycosylase scanning the genome for a damaged base in the very first stage of lesion recognition and the base extrusion pathway. The mode of interaction observed here has suggested a common lesion-scanning mechanism across the entire helix-hairpin-helix superfamily to which MutY belongs. In addition, small angle X-ray scattering studies together with accompanying biochemical assays have suggested a possible role played by the C-terminal oxoG-recognition domain of MutY in lesion scanning.
Assuntos
DNA Glicosilases/química , DNA Glicosilases/metabolismo , Reparo do DNA , Geobacillus stearothermophilus/enzimologia , Pareamento de Bases , Cristalografia por Raios X , Dano ao DNA , Geobacillus stearothermophilus/química , Geobacillus stearothermophilus/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo , Modelos Moleculares , Conformação ProteicaRESUMO
Beclin 1 (BECN1) is a key regulator of autophagy, a critical catabolic homeostasis pathway that involves sequestration of selected cytoplasmic components by multilayered vesicles called autophagosomes, followed by lysosomal fusion and degradation. BECN1 is a core component of class III phosphatidylinositol-3-kinase complexes responsible for autophagosome nucleation. Without heterologous binding partners, BECN1 forms an antiparallel homodimer via its coiled-coil domain (CCD). However, the last 16 CCD residues, composing an "overlap helix" (OH), have been crystallized in two mutually exclusive states: either as part of the CCD or packed against the C-terminal ß-α repeated, autophagy-specific domain (BARAD). Here, using CD spectroscopy, isothermal titration calorimetry, and small-angle X-ray scattering, we show that in the homodimeric state, the OH transitions between these two different packing states, with the predominant state comprising the OH packed against the BARAD, contrary to expectations based on known BECN1 interactions with heterologous partners. We confirmed this observation by comparing the impact of mutating four residues that mediate packing of the OH against both the CCD and BARAD on structure and stability of the CCD, the OH+BARAD, and the two-domain CCD-BARAD. Last, we used cellular assays to demonstrate that mutation of these OH-interface residues abrogates starvation-induced up-regulation of autophagy but does not affect basal autophagy. In summary, we have identified a BECN1 helical region that transitions between packing as part of either one of two conserved domains (i.e. the CCD or the BARAD). Our findings have important implications for the relative stability of autophagy-inactive and autophagy-active BECN1 complexes.
Assuntos
Autofagia , Proteína Beclina-1/metabolismo , Modelos Moleculares , Substituição de Aminoácidos , Proteína Beclina-1/química , Proteína Beclina-1/genética , Dicroísmo Circular , Cristalografia por Raios X , Dimerização , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células MCF-7 , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Conformação Proteica em alfa-Hélice , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estabilidade Proteica , Desdobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Espalhamento a Baixo ÂnguloRESUMO
Nitroaromatic compounds are typically toxic and resistant to degradation. Bradyrhizobium species strain JS329 metabolizes 5-nitroanthranilic acid (5NAA), which is a molecule secreted by Streptomyces scabies, the plant pathogen responsible for potato scab. The first biodegradation enzyme is 5NAA-aminohydrolase (5NAA-A), a metalloprotease family member that converts 5NAA to 5-nitrosalicylic acid. We characterized 5NAA-A biochemically and obtained snapshots of its mechanism. 5NAA-A, an octamer that can use several divalent transition metals for catalysis in vitro, employs a nucleophilic aromatic substitution mechanism. Unexpectedly, the metal in 5NAA-A is labile but is readily loaded in the presence of substrate. 5NAA-A is specific for 5NAA and cannot hydrolyze other tested derivatives, which are likewise poor inhibitors. The 5NAA-A structure and mechanism expand our understanding of the chemical ecology of an agriculturally important plant and pathogen, and will inform bioremediation and biocatalytic approaches to mitigate the environmental and ecological impact of nitroanilines and other challenging substrates.
Assuntos
Aminoidrolases/metabolismo , Nitrocompostos/farmacologia , Compostos Organometálicos/farmacologia , Elementos de Transição/farmacologia , Aminoidrolases/química , Barbitúricos/química , Barbitúricos/metabolismo , Catálise , Hidrólise/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Nitrocompostos/química , Compostos Organometálicos/química , Salicilatos/química , Salicilatos/metabolismo , Elementos de Transição/químicaRESUMO
Paraproteinemia is characterised by clonal proliferation of plasma cells. A common laboratory finding in paraproteinemia being a monoclonal peak in serum protein electrophoresis (M band). But there are factors which produce a peak similar to M spike in serum protein electrophoresis and these factors are known as pseudoparaproteins. This case report discusses a rare cause of pseudo M spike in a known case of autoimmune hemolytic anaemia due to administration of drug-Rituximab, a monoclonal antibody by itself.
RESUMO
Prolyl hydroxylation is a very common post-translational modification and plays many roles in eukaryotes such as collagen stabilization, hypoxia sensing, and controlling protein transcription and translation. There is a growing body of evidence that suggests that prokaryotes contain prolyl 4-hydroxylases (P4Hs) homologous to the hypoxia-inducible factor (HIF) prolyl hydroxylase domain (PHD) enzymes that act on elongation factor Tu (EFTu) and are likely involved in the regulation of bacterial translation. Recent biochemical and structural studies with a PHD from Pseudomonas putida (PPHD) determined that it forms a complex with EFTu and hydroxylates a prolyl residue of EFTu. Moreover, while animal, plant, and viral P4Hs act on peptidyl proline, most prokaryotic P4Hs have been known to target free l-proline; the exceptions include PPHD and a P4H from Bacillus anthracis (BaP4H) that modifies collagen-like proline-rich peptides. Here we use biophysical and mass spectrometric methods to demonstrate that BaP4H recognizes full-length BaEFTu and a BaEFTu 9-mer peptide for site-specific proline hydroxylation. Using size-exclusion chromatography coupled small-angle X-ray scattering (SEC-SAXS) and binding studies, we determined that BaP4H forms a 1:1 heterodimeric complex with BaEFTu. The SEC-SAXS studies reveal dissociation of BaP4H dimeric subunits upon interaction with BaEFTu. While BaP4H is unusual within bacteria in that it is structurally and functionally similar to the animal PHDs and collagen P4Hs, respectively, this work provides further evidence of its promiscuous substrate recognition. It is possible that the enzyme might have evolved to hydroxylate a universally conserved protein in prokaryotes, similar to the PHDs, and implies a functional role in B. anthracis.
Assuntos
Bacillus anthracis/metabolismo , Proteínas de Bactérias/metabolismo , Fator Tu de Elongação de Peptídeos/metabolismo , Prolil Hidroxilases/metabolismo , Bacillus anthracis/química , Bacillus anthracis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/genética , Prolil Hidroxilases/química , Prolil Hidroxilases/genética , Ligação Proteica , Domínios Proteicos , Difração de Raios XRESUMO
Folding of globular proteins can be envisioned as the contraction of a random coil unfolded state toward the native state on an energy surface rough with local minima trapping frustrated species. These substructures impede productive folding and can serve as nucleation sites for aggregation reactions. However, little is known about the relationship between frustration and its underlying sequence determinants. Chemotaxis response regulator Y (CheY), a 129-amino acid bacterial protein, has been shown previously to populate an off-pathway kinetic trap in the microsecond time range. The frustration has been ascribed to premature docking of the N- and C-terminal subdomains or, alternatively, to the formation of an unproductive local-in-sequence cluster of branched aliphatic side chains, isoleucine, leucine, and valine (ILV). The roles of the subdomains and ILV clusters in frustration were tested by altering the sequence connectivity using circular permutations. Surprisingly, the stability and buried surface area of the intermediate could be increased or decreased depending on the location of the termini. Comparison with the results of small-angle X-ray-scattering experiments and simulations points to the accelerated formation of a more compact, on-pathway species for the more stable intermediate. The effect of chain connectivity in modulating the structures and stabilities of the early kinetic traps in CheY is better understood in terms of the ILV cluster model. However, the subdomain model captures the requirement for an intact N-terminal domain to access the native conformation. Chain entropy and aliphatic-rich sequences play crucial roles in biasing the early events leading to frustration in the folding of CheY.
Assuntos
Dobramento de Proteína , Análise de Sequência de Proteína , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Simulação por Computador , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil , Modelos Moleculares , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Termodinâmica , Difração de Raios XRESUMO
Autophagy, an essential eukaryotic homeostasis pathway, allows the sequestration of unwanted, damaged, or harmful cytoplasmic components in vesicles called autophagosomes, permitting subsequent lysosomal degradation and nutrient recycling. Autophagosome nucleation is mediated by class III phosphatidylinositol-3-kinase complexes that include two key autophagy proteins, BECN1/Beclin 1 and ATG14/BARKOR, which form parallel heterodimers via their coiled-coil domains (CCDs). Here we present the 1.46 Å X-ray crystal structure of the antiparallel, human BECN1 CCD homodimer, which represents BECN1 oligomerization outside the autophagosome nucleation complex. We use circular dichroism and small-angle X-ray scattering (SAXS) to show that the ATG14 CCD is significantly disordered but becomes more helical in the BECN1:ATG14 heterodimer, although it is less well-folded than the BECN1 CCD homodimer. SAXS also indicates that the BECN1:ATG14 heterodimer is more curved than other BECN1-containing CCD dimers, which has important implications for the structure of the autophagosome nucleation complex. A model of the BECN1:ATG14 CCD heterodimer that agrees well with the SAXS data shows that BECN1 residues at the homodimer interface are also responsible for heterodimerization, allowing us to identify ATG14 interface residues. Finally, we verify the role of BECN1 and ATG14 interface residues in binding by assessing the impact of point mutations of these residues on co-immunoprecipitation of the partner and demonstrate that these mutations abrogate starvation-induced upregulation of autophagy but do not impact basal autophagy. Thus, this research provides insights into structures of the BECN1 CCD homodimer and the BECN1:ATG14 CCD heterodimer and identifies interface residues that are important for BECN1:ATG14 heterodimerization and for autophagy.