RESUMO
Bridging the gap between genetic variations, environmental determinants, and phenotypic outcomes is critical for supporting clinical diagnosis and understanding mechanisms of diseases. It requires integrating open data at a global scale. The Monarch Initiative advances these goals by developing open ontologies, semantic data models, and knowledge graphs for translational research. The Monarch App is an integrated platform combining data about genes, phenotypes, and diseases across species. Monarch's APIs enable access to carefully curated datasets and advanced analysis tools that support the understanding and diagnosis of disease for diverse applications such as variant prioritization, deep phenotyping, and patient profile-matching. We have migrated our system into a scalable, cloud-based infrastructure; simplified Monarch's data ingestion and knowledge graph integration systems; enhanced data mapping and integration standards; and developed a new user interface with novel search and graph navigation features. Furthermore, we advanced Monarch's analytic tools by developing a customized plugin for OpenAI's ChatGPT to increase the reliability of its responses about phenotypic data, allowing us to interrogate the knowledge in the Monarch graph using state-of-the-art Large Language Models. The resources of the Monarch Initiative can be found at monarchinitiative.org and its corresponding code repository at github.com/monarch-initiative/monarch-app.
Assuntos
Bases de Dados Factuais , Doença , Genes , Fenótipo , Humanos , Internet , Bases de Dados Factuais/normas , Software , Genes/genética , Doença/genéticaRESUMO
The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs.
Assuntos
Ontologias Biológicas , Humanos , Fenótipo , Genômica , Algoritmos , Doenças RarasRESUMO
MOTIVATION: Knowledge graphs (KGs) are a powerful approach for integrating heterogeneous data and making inferences in biology and many other domains, but a coherent solution for constructing, exchanging, and facilitating the downstream use of KGs is lacking. RESULTS: Here we present KG-Hub, a platform that enables standardized construction, exchange, and reuse of KGs. Features include a simple, modular extract-transform-load pattern for producing graphs compliant with Biolink Model (a high-level data model for standardizing biological data), easy integration of any OBO (Open Biological and Biomedical Ontologies) ontology, cached downloads of upstream data sources, versioned and automatically updated builds with stable URLs, web-browsable storage of KG artifacts on cloud infrastructure, and easy reuse of transformed subgraphs across projects. Current KG-Hub projects span use cases including COVID-19 research, drug repurposing, microbial-environmental interactions, and rare disease research. KG-Hub is equipped with tooling to easily analyze and manipulate KGs. KG-Hub is also tightly integrated with graph machine learning (ML) tools which allow automated graph ML, including node embeddings and training of models for link prediction and node classification. AVAILABILITY AND IMPLEMENTATION: https://kghub.org.
Assuntos
Ontologias Biológicas , COVID-19 , Humanos , Reconhecimento Automatizado de Padrão , Doenças Raras , Aprendizado de MáquinaRESUMO
Healthcare datasets obtained from Electronic Health Records have proven to be extremely useful for assessing associations between patients' predictors and outcomes of interest. However, these datasets often suffer from missing values in a high proportion of cases, whose removal may introduce severe bias. Several multiple imputation algorithms have been proposed to attempt to recover the missing information under an assumed missingness mechanism. Each algorithm presents strengths and weaknesses, and there is currently no consensus on which multiple imputation algorithm works best in a given scenario. Furthermore, the selection of each algorithm's parameters and data-related modeling choices are also both crucial and challenging. In this paper we propose a novel framework to numerically evaluate strategies for handling missing data in the context of statistical analysis, with a particular focus on multiple imputation techniques. We demonstrate the feasibility of our approach on a large cohort of type-2 diabetes patients provided by the National COVID Cohort Collaborative (N3C) Enclave, where we explored the influence of various patient characteristics on outcomes related to COVID-19. Our analysis included classic multiple imputation techniques as well as simple complete-case Inverse Probability Weighted models. Extensive experiments show that our approach can effectively highlight the most promising and performant missing-data handling strategy for our case study. Moreover, our methodology allowed a better understanding of the behavior of the different models and of how it changed as we modified their parameters. Our method is general and can be applied to different research fields and on datasets containing heterogeneous types.
Assuntos
COVID-19 , Humanos , Algoritmos , Projetos de Pesquisa , Viés , ProbabilidadeRESUMO
FMS-like Tyrosine Kinase 3 (FLT3) mutation is associated with poor survival in acute myeloid leukemia (AML). The specific Anexelekto/MER Tyrosine Kinase (AXL) inhibitor, ONO-7475, kills FLT3-mutant AML cells with targets including Extracellular- signal Regulated Kinase (ERK) and Myeloid Cell Leukemia 1 (MCL1). ERK and MCL1 are known resistance factors for Venetoclax (ABT-199), a popular drug for AML therapy, prompting the investigation of the efficacy of ONO-7475 in combination with ABT-199 in vitro and in vivo. ONO-7475 synergizes with ABT-199 to potently kill FLT3-mutant acute myeloid leukemia cell lines and primary cells. ONO-7475 is effective against ABT-199-resistant cells including cells that overexpress MCL1. Proteomic analyses revealed that ABT-199-resistant cells expressed elevated levels of pro-growth and anti-apoptotic proteins compared to parental cells, and that ONO-7475 reduced the expression of these proteins in both the parental and ABT-199-resistant cells. ONO-7475 treatment significantly extended survival as a single in vivo agent using acute myeloid leukemia cell lines and PDX models. Compared to ONO-7474 monotherapy, the combination of ONO-7475/ABT-199 was even more potent in reducing leukemic burden and prolonging the survival of mice in both model systems. These results suggest that the ONO-7475/ABT-199 combination may be effective for AML therapy.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda , Inibidores de Proteínas Quinases , c-Mer Tirosina Quinase , Animais , Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteômica , Sulfonamidas/farmacologia , c-Mer Tirosina Quinase/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/genéticaRESUMO
In biology and biomedicine, relating phenotypic outcomes with genetic variation and environmental factors remains a challenge: patient phenotypes may not match known diseases, candidate variants may be in genes that haven't been characterized, research organisms may not recapitulate human or veterinary diseases, environmental factors affecting disease outcomes are unknown or undocumented, and many resources must be queried to find potentially significant phenotypic associations. The Monarch Initiative (https://monarchinitiative.org) integrates information on genes, variants, genotypes, phenotypes and diseases in a variety of species, and allows powerful ontology-based search. We develop many widely adopted ontologies that together enable sophisticated computational analysis, mechanistic discovery and diagnostics of Mendelian diseases. Our algorithms and tools are widely used to identify animal models of human disease through phenotypic similarity, for differential diagnostics and to facilitate translational research. Launched in 2015, Monarch has grown with regards to data (new organisms, more sources, better modeling); new API and standards; ontologies (new Mondo unified disease ontology, improvements to ontologies such as HPO and uPheno); user interface (a redesigned website); and community development. Monarch data, algorithms and tools are being used and extended by resources such as GA4GH and NCATS Translator, among others, to aid mechanistic discovery and diagnostics.
Assuntos
Biologia Computacional/métodos , Genótipo , Fenótipo , Algoritmos , Animais , Ontologias Biológicas , Bases de Dados Genéticas , Exoma , Estudos de Associação Genética , Variação Genética , Genômica , Humanos , Internet , Software , Pesquisa Translacional Biomédica , Interface Usuário-ComputadorRESUMO
Objectives: To evaluate the effectiveness of COVID-19 vaccinations (initial and booster) during pre-Delta, Delta, and Omicron dominant periods among pregnant people via (1) COVID-19 incident and severe infections among pregnant people who were vaccinated vs. unvaccinated and (2) post-COVID-19 vaccination breakthrough infections and severe infections among vaccinated females who were pregnant vs. non-pregnant. Design: Retrospective cohort study using nationally sampled electronic health records data from the National COVID Cohort Collaborative (N3C), December 10, 2020, to June 07, 2022. Participants: Cohort 1 included pregnant people (15-55 years), and Cohort 2 included vaccinated females of reproductive age (15-55 years). Exposures: (1) COVID-19 vaccination and (2) pregnancy. Main outcome measures: Adjusted hazard ratios (aHRs) for COVID-19 incident or breakthrough infections and severe infections (i.e., COVID-19 infections with related hospitalizations). Results: In Cohort 1, 301,107 pregnant people were included. Compared to unvaccinated pregnant people, the aHRs for pregnant people with initial vaccinations during pregnancy of incident COVID-19 were 0.77 (95% CI: 0.62, 0.96) and 0.88 (95%CI: 0.73, 1.07) and aHRs of severe COVID-19 infections were 0.65 (95% CI: 0.47, 0.90) and 0.79 (95% CI: 0.51, 1.21) during the Delta and Omicron periods, respectively. Compared to pregnant people with full initial vaccinations, the aHR of incident COVID-19 for pregnant people with booster vaccinations was 0.64 (95% CI: 0.58, 0.71) during the Omicron period. In Cohort 2, 934,337 vaccinated people were included. Compared to vaccinated non-pregnant females, the aHRs of severe COVID-19 infections for people with initial vaccinations during pregnancy was 2.71 (95% CI: 1.31, 5.60) during the Omicron periods. Conclusions: Pregnant people with initial and booster vaccinations during pregnancy had a lower risk of incident and severe COVID-19 infections compared to unvaccinated pregnant people across the pandemic stages. However, vaccinated pregnant people still had a higher risk of severe infections compared to non-pregnant females.
RESUMO
OBJECTIVE: Female reproductive disorders (FRDs) are common health conditions that may present with significant symptoms. Diet and environment are potential areas for FRD interventions. We utilized a knowledge graph (KG) method to predict factors associated with common FRDs (for example, endometriosis, ovarian cyst, and uterine fibroids). MATERIALS AND METHODS: We harmonized survey data from the Personalized Environment and Genes Study (PEGS) on internal and external environmental exposures and health conditions with biomedical ontology content. We merged the harmonized data and ontologies with supplemental nutrient and agricultural chemical data to create a KG. We analyzed the KG by embedding edges and applying a random forest for edge prediction to identify variables potentially associated with FRDs. We also conducted logistic regression analysis for comparison. RESULTS: Across 9765 PEGS respondents, the KG analysis resulted in 8535 significant or suggestive predicted links between FRDs and chemicals, phenotypes, and diseases. Amongst these links, 32 were exact matches when compared with the logistic regression results, including comorbidities, medications, foods, and occupational exposures. DISCUSSION: Mechanistic underpinnings of predicted links documented in the literature may support some of our findings. Our KG methods are useful for predicting possible associations in large, survey-based datasets with added information on directionality and magnitude of effect from logistic regression. These results should not be construed as causal but can support hypothesis generation. CONCLUSION: This investigation enabled the generation of hypotheses on a variety of potential links between FRDs and exposures. Future investigations should prospectively evaluate the variables hypothesized to impact FRDs.
Assuntos
Exposição Ambiental , Humanos , Feminino , Exposição Ambiental/efeitos adversos , Doenças dos Genitais Femininos , Modelos Logísticos , Estado Nutricional , Dieta , Adulto , Algoritmo Florestas AleatóriasRESUMO
COVID-19 vaccines have been shown to be effective in preventing severe illness, including among pregnant persons. The vaccines appear to be safe in pregnancy, supporting a continuously favorable overall risk/benefit profile, though supportive data for the U.S. over different periods of variant predominance are lacking. We sought to analyze the association of adverse pregnancy outcomes with COVID-19 vaccinations in the pre-Delta, Delta, and Omicron SARS-CoV-2 variants' dominant periods (constituting 50% or more of each pregnancy) for pregnant persons in a large, nationally sampled electronic health record repository in the U.S. Our overall analysis included 311,057 pregnant persons from December 2020 to October 2023 at a time when there were approximately 3.6 million births per year. We compared rates of preterm births and stillbirths among pregnant persons who were vaccinated before or during pregnancy to persons vaccinated after pregnancy or those who were not vaccinated. We performed a multivariable Poisson regression with generalized estimated equations to address data site heterogeneity for preterm births and unadjusted exact models for stillbirths, stratified by the dominant variant period. We found lower rates of preterm birth in the majority of modeled periods (adjusted incidence rate ratio [aIRR] range: 0.42 to 0.85; p-value range: <0.001 to 0.06) and lower rates of stillbirth (IRR range: 0.53 to 1.82; p-value range: <0.001 to 0.976) in most periods among those who were vaccinated before or during pregnancy compared to those who were vaccinated after pregnancy or not vaccinated. We largely found no adverse associations between COVID-19 vaccination and preterm birth or stillbirth; these findings reinforce the safety of COVID-19 vaccination during pregnancy and bolster confidence for pregnant persons, providers, and policymakers in the importance of COVID-19 vaccination for this group despite the end of the public health emergency.
RESUMO
Acute COVID-19 infection can be followed by diverse clinical manifestations referred to as Post Acute Sequelae of SARS-CoV2 Infection (PASC). Studies have shown an increased risk of being diagnosed with new-onset psychiatric disease following a diagnosis of acute COVID-19. However, it was unclear whether non-psychiatric PASC-associated manifestations (PASC-AMs) are associated with an increased risk of new-onset psychiatric disease following COVID-19. A retrospective electronic health record (EHR) cohort study of 2,391,006 individuals with acute COVID-19 was performed to evaluate whether non-psychiatric PASC-AMs are associated with new-onset psychiatric disease. Data were obtained from the National COVID Cohort Collaborative (N3C), which has EHR data from 76 clinical organizations. EHR codes were mapped to 151 non-psychiatric PASC-AMs recorded 28-120 days following SARS-CoV-2 diagnosis and before diagnosis of new-onset psychiatric disease. Association of newly diagnosed psychiatric disease with age, sex, race, pre-existing comorbidities, and PASC-AMs in seven categories was assessed by logistic regression. There were significant associations between a diagnosis of any psychiatric disease and five categories of PASC-AMs with odds ratios highest for neurological, cardiovascular, and constitutional PASC-AMs with odds ratios of 1.31, 1.29, and 1.23 respectively. Secondary analysis revealed that the proportions of 50 individual clinical features significantly differed between patients diagnosed with different psychiatric diseases. Our study provides evidence for association between non-psychiatric PASC-AMs and the incidence of newly diagnosed psychiatric disease. Significant associations were found for features related to multiple organ systems. This information could prove useful in understanding risk stratification for new-onset psychiatric disease following COVID-19. Prospective studies are needed to corroborate these findings.
Assuntos
COVID-19 , Transtornos Mentais , SARS-CoV-2 , Humanos , COVID-19/psicologia , COVID-19/complicações , COVID-19/epidemiologia , Masculino , Feminino , Transtornos Mentais/epidemiologia , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Idoso , Fenótipo , Síndrome de COVID-19 Pós-Aguda , Comorbidade , Registros Eletrônicos de Saúde , Adulto Jovem , Fatores de Risco , AdolescenteRESUMO
BACKGROUND: Evaluating the impact of environmental exposures on organism health is a key goal of modern biomedicine and is critically important in an age of greater pollution and chemicals in our environment. Environmental health utilizes many different research methods and generates a variety of data types. However, to date, no comprehensive database represents the full spectrum of environmental health data. Due to a lack of interoperability between databases, tools for integrating these resources are needed. In this manuscript we present the Environmental Conditions, Treatments, and Exposures Ontology (ECTO), a species-agnostic ontology focused on exposure events that occur as a result of natural and experimental processes, such as diet, work, or research activities. ECTO is intended for use in harmonizing environmental health data resources to support cross-study integration and inference for mechanism discovery. METHODS AND FINDINGS: ECTO is an ontology designed for describing organismal exposures such as toxicological research, environmental variables, dietary features, and patient-reported data from surveys. ECTO utilizes the base model established within the Exposure Ontology (ExO). ECTO is developed using a combination of manual curation and Dead Simple OWL Design Patterns (DOSDP), and contains over 2700 environmental exposure terms, and incorporates chemical and environmental ontologies. ECTO is an Open Biological and Biomedical Ontology (OBO) Foundry ontology that is designed for interoperability, reuse, and axiomatization with other ontologies. ECTO terms have been utilized in axioms within the Mondo Disease Ontology to represent diseases caused or influenced by environmental factors, as well as for survey encoding for the Personalized Environment and Genes Study (PEGS). CONCLUSIONS: We constructed ECTO to meet Open Biological and Biomedical Ontology (OBO) Foundry principles to increase translation opportunities between environmental health and other areas of biology. ECTO has a growing community of contributors consisting of toxicologists, public health epidemiologists, and health care providers to provide the necessary expertise for areas that have been identified previously as gaps.
Assuntos
Ontologias Biológicas , Humanos , Bases de Dados FactuaisRESUMO
Objective: Female reproductive disorders (FRDs) are common health conditions that may present with significant symptoms. Diet and environment are potential areas for FRD interventions. We utilized a knowledge graph (KG) method to predict factors associated with common FRDs (e.g., endometriosis, ovarian cyst, and uterine fibroids). Materials and Methods: We harmonized survey data from the Personalized Environment and Genes Study on internal and external environmental exposures and health conditions with biomedical ontology content. We merged the harmonized data and ontologies with supplemental nutrient and agricultural chemical data to create a KG. We analyzed the KG by embedding edges and applying a random forest for edge prediction to identify variables potentially associated with FRDs. We also conducted logistic regression analysis for comparison. Results: Across 9765 PEGS respondents, the KG analysis resulted in 8535 significant predicted links between FRDs and chemicals, phenotypes, and diseases. Amongst these links, 32 were exact matches when compared with the logistic regression results, including comorbidities, medications, foods, and occupational exposures. Discussion: Mechanistic underpinnings of predicted links documented in the literature may support some of our findings. Our KG methods are useful for predicting possible associations in large, survey-based datasets with added information on directionality and magnitude of effect from logistic regression. These results should not be construed as causal, but can support hypothesis generation. Conclusion: This investigation enabled the generation of hypotheses on a variety of potential links between FRDs and exposures. Future investigations should prospectively evaluate the variables hypothesized to impact FRDs.
RESUMO
Objectives: To define pregnancy episodes and estimate gestational age within electronic health record (EHR) data from the National COVID Cohort Collaborative (N3C). Materials and Methods: We developed a comprehensive approach, named Hierarchy and rule-based pregnancy episode Inference integrated with Pregnancy Progression Signatures (HIPPS), and applied it to EHR data in the N3C (January 1, 2018-April 7, 2022). HIPPS combines: (1) an extension of a previously published pregnancy episode algorithm, (2) a novel algorithm to detect gestational age-specific signatures of a progressing pregnancy for further episode support, and (3) pregnancy start date inference. Clinicians performed validation of HIPPS on a subset of episodes. We then generated pregnancy cohorts based on gestational age precision and pregnancy outcomes for assessment of accuracy and comparison of COVID-19 and other characteristics. Results: We identified 628â165 pregnant persons with 816â471 pregnancy episodes, of which 52.3% were live births, 24.4% were other outcomes (stillbirth, ectopic pregnancy, abortions), and 23.3% had unknown outcomes. Clinician validation agreed 98.8% with HIPPS-identified episodes. We were able to estimate start dates within 1 week of precision for 475â433 (58.2%) episodes. 62â540 (7.7%) episodes had incident COVID-19 during pregnancy. Discussion: HIPPS provides measures of support for pregnancy-related variables such as gestational age and pregnancy outcomes based on N3C data. Gestational age precision allows researchers to find time to events with reasonable confidence. Conclusion: We have developed a novel and robust approach for inferring pregnancy episodes and gestational age that addresses data inconsistency and missingness in EHR data.
RESUMO
Navigating the vast landscape of clinical literature to find optimal treatments and management strategies can be a challenging task, especially for rare diseases. To address this task, we introduce the Medical Action Ontology (MAxO), the first ontology specifically designed to organize medical procedures, therapies, and interventions in a structured way. Currently, MAxO contains 1757 medical action terms added through a combination of manual and semi-automated processes. MAxO was developed with logical structures that make it compatible with several other ontologies within the Open Biological and Biomedical Ontologies (OBO) Foundry. These cover a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. We have created a database of over 16000 annotations that describe diagnostic modalities for specific phenotypic abnormalities as defined by the Human Phenotype Ontology (HPO). Additionally, 413 annotations are provided for medical actions for 189 rare diseases. We have developed a web application called POET (https://poet.jax.org/) for the community to use to contribute MAxO annotations. MAxO provides a computational representation of treatments and other actions taken for the clinical management of patients. The development of MAxO is closely coupled to the Mondo Disease Ontology (Mondo) and the Human Phenotype Ontology (HPO) and expands the scope of our computational modeling of diseases and phenotypic features to include diagnostics and therapeutic actions. MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO).
RESUMO
BACKGROUND: Navigating the clinical literature to determine the optimal clinical management for rare diseases presents significant challenges. We introduce the Medical Action Ontology (MAxO), an ontology specifically designed to organize medical procedures, therapies, and interventions. METHODS: MAxO incorporates logical structures that link MAxO terms to numerous other ontologies within the OBO Foundry. Term development involves a blend of manual and semi-automated processes. Additionally, we have generated annotations detailing diagnostic modalities for specific phenotypic abnormalities defined by the Human Phenotype Ontology (HPO). We introduce a web application, POET, that facilitates MAxO annotations for specific medical actions for diseases using the Mondo Disease Ontology. FINDINGS: MAxO encompasses 1,757 terms spanning a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. These terms annotate phenotypic features associated with specific disease (using HPO and Mondo). Presently, there are over 16,000 MAxO diagnostic annotations that target HPO terms. Through POET, we have created 413 MAxO annotations specifying treatments for 189 rare diseases. CONCLUSIONS: MAxO offers a computational representation of treatments and other actions taken for the clinical management of patients. Its development is closely coupled to Mondo and HPO, broadening the scope of our computational modeling of diseases and phenotypic features. We invite the community to contribute disease annotations using POET (https://poet.jax.org/). MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO). FUNDING: NHGRI 1U24HG011449-01A1 and NHGRI 5RM1HG010860-04.
Assuntos
Ontologias Biológicas , Humanos , Doenças Raras , Software , Simulação por ComputadorRESUMO
Background: With the continuing COVID-19 pandemic, identifying medications that improve COVID-19 outcomes is crucial. Studies suggest that use of metformin, an oral antihyperglycemic, is associated with reduced COVID-19 severity in individuals with diabetes compared to other antihyperglycemic medications. Some patients without diabetes, including those with polycystic ovary syndrome (PCOS) and prediabetes, are prescribed metformin for off-label use, which provides an opportunity to further investigate the effect of metformin on COVID-19. Participants: In this observational, retrospective analysis, we leveraged the harmonized electronic health record data from 53 hospitals to construct cohorts of COVID-19 positive, metformin users without diabetes and propensity-weighted control users of levothyroxine (a medication for hypothyroidism that is not known to affect COVID-19 outcome) who had either PCOS (n = 282) or prediabetes (n = 3136). The primary outcome of interest was COVID-19 severity, which was classified as: mild, mild ED (emergency department), moderate, severe, or mortality/hospice. Results: In the prediabetes cohort, metformin use was associated with a lower rate of COVID-19 with severity of mild ED or worse (OR: 0.630, 95% CI 0.450 - 0.882, p < 0.05) and a lower rate of COVID-19 with severity of moderate or worse (OR: 0.490, 95% CI 0.336 - 0.715, p < 0.001). In patients with PCOS, we found no significant association between metformin use and COVID-19 severity, although the number of patients was relatively small. Conclusions: Metformin was associated with less severe COVID-19 in patients with prediabetes, as seen in previous studies of patients with diabetes. This is an important finding, since prediabetes affects between 19 and 38% of the US population, and COVID-19 is an ongoing public health emergency. Further observational and prospective studies will clarify the relationship between metformin and COVID-19 severity in patients with prediabetes, and whether metformin usage may reduce COVID-19 severity.
RESUMO
AIMS: Studies suggest that metformin is associated with reduced COVID-19 severity in individuals with diabetes compared to other antihyperglycemics. We assessed if metformin is associated with reduced incidence of severe COVID-19 for patients with prediabetes or polycystic ovary syndrome (PCOS), common diseases that increase the risk of severe COVID-19. METHODS: This observational, retrospective study utilized EHR data from 52 hospitals for COVID-19 patients with PCOS or prediabetes treated with metformin or levothyroxine/ondansetron (controls). After balancing via inverse probability score weighting, associations with COVID-19 severity were assessed by logistic regression. RESULTS: In the prediabetes cohort, when compared to levothyroxine, metformin was associated with a significantly lower incidence of COVID-19 with "mild-ED" or worse (OR [95% CI]: 0.636, [0.455-0.888]) and "moderate" or worse severity (0.493 [0.339-0.718]). Compared to ondansetron, metformin was associated with lower incidence of "mild-ED" or worse severity (0.039 [0.026-0.057]), "moderate" or worse (0.045 [0.03-0.069]), "severe" or worse (0.183 [0.077-0.431]), and "mortality/hospice" (0.223 [0.071-0.694]). For PCOS, metformin showed no significant differences in severity compared to levothyroxine, but was associated with a significantly lower incidence of "mild-ED" or worse (0.101 [0.061-0.166]), and "moderate" or worse (0.094 [0.049-0.18]) COVID-19 outcome compared to ondansetron. CONCLUSIONS: Metformin use is associated with less severe COVID-19 in patients with prediabetes or PCOS.
Assuntos
COVID-19 , Metformina , Síndrome do Ovário Policístico , Estado Pré-Diabético , Feminino , Humanos , Metformina/uso terapêutico , Estudos Retrospectivos , COVID-19/epidemiologia , COVID-19/complicações , Estado Pré-Diabético/tratamento farmacológico , Estado Pré-Diabético/epidemiologia , Estado Pré-Diabético/complicações , Síndrome do Ovário Policístico/complicações , Hipoglicemiantes/uso terapêutico , TiroxinaRESUMO
Objective: To define pregnancy episodes and estimate gestational aging within electronic health record (EHR) data from the National COVID Cohort Collaborative (N3C). Materials and Methods: We developed a comprehensive approach, named H ierarchy and rule-based pregnancy episode I nference integrated with P regnancy P rogression S ignatures (HIPPS) and applied it to EHR data in the N3C from 1 January 2018 to 7 April 2022. HIPPS combines: 1) an extension of a previously published pregnancy episode algorithm, 2) a novel algorithm to detect gestational aging-specific signatures of a progressing pregnancy for further episode support, and 3) pregnancy start date inference. Clinicians performed validation of HIPPS on a subset of episodes. We then generated three types of pregnancy cohorts based on the level of precision for gestational aging and pregnancy outcomes for comparison of COVID-19 and other characteristics. Results: We identified 628,165 pregnant persons with 816,471 pregnancy episodes, of which 52.3% were live births, 24.4% were other outcomes (stillbirth, ectopic pregnancy, spontaneous abortions), and 23.3% had unknown outcomes. We were able to estimate start dates within one week of precision for 431,173 (52.8%) episodes. 66,019 (8.1%) episodes had incident COVID-19 during pregnancy. Across varying COVID-19 cohorts, patient characteristics were generally similar though pregnancy outcomes differed. Discussion: HIPPS provides support for pregnancy-related variables based on EHR data for researchers to define pregnancy cohorts. Our approach performed well based on clinician validation. Conclusion: We have developed a novel and robust approach for inferring pregnancy episodes and gestational aging that addresses data inconsistency and missingness in EHR data.
RESUMO
B-cell lymphomas are one of the most biologically and molecularly heterogeneous group of malignancies. The inherent complexity of this cancer subtype necessitates the development of appropriate animal model systems to characterize the disease with the ultimate objective of identifying effective therapies. In this article, we discuss a new driver of B-cell lymphomas - hnRNP K (heterogenous nuclear ribonucleoprotein K)-an RNA-binding protein. We introduce the Eµ-Hnrnpk mouse model, a murine model characterized by hnRNP K overexpression in B cells, which develops B-cell lymphomas with high penetrance. Molecular analysis of the disease developed in this model reveals an upregulation of the c-Myc oncogene via post-transcriptional and translational mechanisms underscoring the impact of non-genomic MYC activation in B-cell lymphomas. Finally, the transplantability of the disease developed in Eµ-Hnrnpk mice makes it a valuable pre-clinical platform for the assessment of novel therapeutics.
Assuntos
Linfócitos B/metabolismo , Transformação Celular Neoplásica/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Linfoma de Células B/metabolismo , Animais , Animais Geneticamente Modificados , Linfócitos B/imunologia , Linfócitos B/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Linfoma de Células B/genética , Linfoma de Células B/imunologia , Linfoma de Células B/patologia , Fenótipo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação para CimaRESUMO
BACKGROUND: Numerous publications describe the clinical manifestations of post-acute sequelae of SARS-CoV-2 (PASC or "long COVID"), but they are difficult to integrate because of heterogeneous methods and the lack of a standard for denoting the many phenotypic manifestations. Patient-led studies are of particular importance for understanding the natural history of COVID-19, but integration is hampered because they often use different terms to describe the same symptom or condition. This significant disparity in patient versus clinical characterization motivated the proposed ontological approach to specifying manifestations, which will improve capture and integration of future long COVID studies. METHODS: The Human Phenotype Ontology (HPO) is a widely used standard for exchange and analysis of phenotypic abnormalities in human disease but has not yet been applied to the analysis of COVID-19. FUNDING: We identified 303 articles published before April 29, 2021, curated 59 relevant manuscripts that described clinical manifestations in 81 cohorts three weeks or more following acute COVID-19, and mapped 287 unique clinical findings to HPO terms. We present layperson synonyms and definitions that can be used to link patient self-report questionnaires to standard medical terminology. Long COVID clinical manifestations are not assessed consistently across studies, and most manifestations have been reported with a wide range of synonyms by different authors. Across at least 10 cohorts, authors reported 31 unique clinical features corresponding to HPO terms; the most commonly reported feature was Fatigue (median 45.1%) and the least commonly reported was Nausea (median 3.9%), but the reported percentages varied widely between studies. INTERPRETATION: Translating long COVID manifestations into computable HPO terms will improve analysis, data capture, and classification of long COVID patients. If researchers, clinicians, and patients share a common language, then studies can be compared/pooled more effectively. Furthermore, mapping lay terminology to HPO will help patients assist clinicians and researchers in creating phenotypic characterizations that are computationally accessible, thereby improving the stratification, diagnosis, and treatment of long COVID. FUNDING: U24TR002306; UL1TR001439; P30AG024832; GBMF4552; R01HG010067; UL1TR002535; K23HL128909; UL1TR002389; K99GM145411.