Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34168077

RESUMO

Dual oxidase 1 (DUOX1) is an NADPH oxidase that is highly expre-ssed in respiratory epithelial cells and produces H2O2 in the airway lumen. While a line of prior in vitro observations suggested that DUOX1 works in partnership with an airway peroxidase, lactoperoxidase (LPO), to produce antimicrobial hypothiocyanite (OSCN-) in the airways, the in vivo role of DUOX1 in mammalian organisms has remained unproven to date. Here, we show that Duox1 promotes antiviral innate immunity in vivo. Upon influenza airway challenge, Duox1-/- mice have enhanced mortality, morbidity, and impaired lung viral clearance. Duox1 increases the airway levels of several cytokines (IL-1ß, IL-2, CCL1, CCL3, CCL11, CCL19, CCL20, CCL27, CXCL5, and CXCL11), contributes to innate immune cell recruitment, and affects epithelial apoptosis in the airways. In primary human tracheobronchial epithelial cells, OSCN- is generated by LPO using DUOX1-derived H2O2 and inactivates several influenza strains in vitro. We also show that OSCN- diminishes influenza replication and viral RNA synthesis in infected host cells that is inhibited by the H2O2 scavenger catalase. Binding of the influenza virus to host cells and viral entry are both reduced by OSCN- in an H2O2-dependent manner in vitro. OSCN- does not affect the neuraminidase activity or morphology of the influenza virus. Overall, this antiviral function of Duox1 identifies an in vivo role of this gene, defines the steps in the infection cycle targeted by OSCN-, and proposes that boosting this mechanism in vivo can have therapeutic potential in treating viral infections.


Assuntos
Antivirais/imunologia , Oxidases Duais/metabolismo , Imunidade Inata , Animais , Apoptose , Brônquios/patologia , Brônquios/virologia , Citocinas/metabolismo , Modelos Animais de Doenças , Células Epiteliais/patologia , Humanos , Peróxido de Hidrogênio/metabolismo , Influenza Humana/imunologia , Influenza Humana/patologia , Influenza Humana/virologia , Lactoperoxidase/metabolismo , Camundongos , Neuraminidase/química , Neuraminidase/metabolismo , Orthomyxoviridae/fisiologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Proteólise , RNA Viral/metabolismo , Tiocianatos , Proteínas Virais/química , Proteínas Virais/metabolismo , Inativação de Vírus , Internalização do Vírus , Replicação Viral
2.
J Allergy Clin Immunol ; 151(1): 118-127.e10, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36096204

RESUMO

BACKGROUND: The asthma of some children remains poorly controlled, with recurrent exacerbations despite treatment with inhaled corticosteroids. Aside from prior exacerbations, there are currently no reliable predictors of exacerbation-prone asthma in these children and only a limited understanding of the potential underlying mechanisms. OBJECTIVE: We sought to quantify small molecules in the plasma of children with exacerbation-prone asthma through mass spectrometry-based metabolomics. We hypothesized that the plasma metabolome of these children would differ from that of children with non-exacerbation-prone asthma. METHODS: Plasma metabolites were extracted from 4 pediatric asthma cohorts (215 total subjects, with 41 having exacerbation-prone asthma) and detected with a mass spectrometer. High-confidence annotations were retained for univariate analysis and were confirmed by a sensitivity analysis in subjects receiving high-dose inhaled corticosteroids. Metabolites that varied by cohort were excluded. MetaboAnalyst software was used to identify pathways of interest. Concentrations were calculated by reference standardization. RESULTS: We identified 32 unique, cohort-independent metabolites that differed in children with exacerbation-prone asthma compared to children with non-exacerbation-prone asthma. Comparison of metabolite concentrations to literature-reported values for healthy children revealed that most metabolites were decreased in both asthma groups, but more so in exacerbation-prone asthma. Pathway analysis identified arginine, lysine, and methionine pathways as most impacted. CONCLUSIONS: Several plasma metabolites are perturbed in children with exacerbation-prone asthma and are largely related to arginine, lysine, and methionine pathways. While validation is needed, plasma metabolites may be potential biomarkers for exacerbation-prone asthma in children.


Assuntos
Asma , Lisina , Criança , Humanos , Lisina/uso terapêutico , Metionina/uso terapêutico , Arginina , Asma/tratamento farmacológico , Corticosteroides/uso terapêutico , Racemetionina
3.
Eur Respir J ; 52(4)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30190273

RESUMO

Cystic fibrosis (CF) lung disease progressively worsens from infancy to adulthood. Disease-driven changes in early CF airway fluid metabolites may identify therapeutic targets to curb progression.CF patients aged 12-38 months (n=24; three out of 24 later denoted as CF screen positive, inconclusive diagnosis) received chest computed tomography scans, scored by the Perth-Rotterdam Annotated Grid Morphometric Analysis for CF (PRAGMA-CF) method to quantify total lung disease (PRAGMA-%Dis) and components such as bronchiectasis (PRAGMA-%Bx). Small molecules in bronchoalveolar lavage fluid (BALF) were measured with high-resolution accurate-mass metabolomics. Myeloperoxidase (MPO) was quantified by ELISA and activity assays.Increased PRAGMA-%Dis was driven by bronchiectasis and correlated with airway neutrophils. PRAGMA-%Dis correlated with 104 metabolomic features (p<0.05, q<0.25). The most significant annotated feature was methionine sulfoxide (MetO), a product of methionine oxidation by MPO-derived oxidants. We confirmed the identity of MetO in BALF and used reference calibration to confirm correlation with PRAGMA-%Dis (Spearman's ρ=0.582, p=0.0029), extending to bronchiectasis (PRAGMA-%Bx; ρ=0.698, p=1.5×10-4), airway neutrophils (ρ=0.569, p=0.0046) and BALF MPO (ρ=0.803, p=3.9×10-6).BALF MetO associates with structural lung damage, airway neutrophils and MPO in early CF. Further studies are needed to establish whether methionine oxidation directly contributes to early CF lung disease and explore potential therapeutic targets indicated by these findings.


Assuntos
Bronquiectasia/metabolismo , Fibrose Cística/metabolismo , Metionina/análogos & derivados , Peroxidase/metabolismo , Líquido da Lavagem Broncoalveolar/química , Broncoscopia , Pré-Escolar , Fibrose Cística/diagnóstico por imagem , Progressão da Doença , Feminino , Humanos , Lactente , Pulmão/metabolismo , Masculino , Metionina/metabolismo , Neutrófilos/metabolismo , Oxidantes/farmacologia , Oxirredução , Estudos Prospectivos , Tomografia Computadorizada por Raios X
4.
J Nutr ; 148(5): 675-684, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982657

RESUMO

Background: Human and animal studies have raised concerns that supplemental selenium can increase the risk of metabolic disorders, but underlying mechanisms are unclear. Objective: We used an integrated transcriptome and metabolome analysis of liver to test for functional pathway and network responses to supplemental selenium in mice. Methods: Male mice (8-wk-old, C57BL/6J) fed a standard diet (0.41 ppm Se) were given selenium (Na2SeO4, 20 µmol/L) or vehicle (drinking water) for 16 wk. Livers were analyzed for selenium concentration, activity of selenoproteins, reduced glutathione (GSH) redox state, gene expression, and high-resolution metabolomics. Transcriptomic and nontargeted metabolomic data were analyzed with biostatistics, bioinformatics, pathway enrichment analysis, and combined transcriptome-metabolome-wide association study (TMWAS). Results: Mice supplemented with selenium had greater body mass gain from baseline to 16 wk (55% ± 5%) compared with controls (40% ± 3%) (P < 0.05); however, no difference was observed in liver selenium content, selenoenzyme transcripts, or enzyme activity. Selenium was higher in the heart, kidney, and urine of mice supplemented with selenium. Gene enrichment analysis showed that supplemental selenium altered pathways of lipid and energy metabolism. Integrated transcriptome and metabolome network analysis showed 2 major gene-metabolite clusters, 1 centered on the transcript for the bidirectional glucose transporter 2 (Glut2) and the other centered on the transcripts for carnitine-palmitoyl transferase 2 (Cpt2) and acetyl-CoA acyltransferase (Acaa1). Pathway analysis showed that highly associated metabolites (P < 0.05) were enriched in fatty acid metabolism and bile acid biosynthesis, including acylcarnitines, triglycerides and glycerophospholipids, long-chain acyl-coenzyme As, phosphatidylcholines, and sterols. TMWAS of body weight gain confirmed changes in the same pathways. Conclusions: Supplemental selenium in mice alters hepatic fatty acid and energy metabolism and causes increases in body mass. A lack of effect on hepatic selenium content suggests that signaling involves an extrahepatic mechanism.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Selênio/farmacologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Suplementos Nutricionais , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA/genética , RNA/metabolismo , Selênio/administração & dosagem , Tiorredoxina Redutase 1/genética , Tiorredoxina Redutase 1/metabolismo , Aumento de Peso/efeitos dos fármacos
5.
Am J Physiol Regul Integr Comp Physiol ; 311(5): R906-R916, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27558316

RESUMO

Influenza is a significant health concern worldwide. Viral infection induces local and systemic activation of the immune system causing attendant changes in metabolism. High-resolution metabolomics (HRM) uses advanced mass spectrometry and computational methods to measure thousands of metabolites inclusive of most metabolic pathways. We used HRM to identify metabolic pathways and clusters of association related to inflammatory cytokines in lungs of mice with H1N1 influenza virus infection. Infected mice showed progressive weight loss, decreased lung function, and severe lung inflammation with elevated cytokines [interleukin (IL)-1ß, IL-6, IL-10, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ] and increased oxidative stress via cysteine oxidation. HRM showed prominent effects of influenza virus infection on tryptophan and other amino acids, and widespread effects on pathways including purines, pyrimidines, fatty acids, and glycerophospholipids. A metabolome-wide association study (MWAS) of the aforementioned inflammatory cytokines was used to determine the relationship of metabolic responses to inflammation during infection. This cytokine-MWAS (cMWAS) showed that metabolic associations consisted of distinct and shared clusters of 396 metabolites highly correlated with inflammatory cytokines. Strong negative associations of selected glycosphingolipid, linoleate, and tryptophan metabolites with IFN-γ contrasted strong positive associations of glycosphingolipid and bile acid metabolites with IL-1ß, TNF-α, and IL-10. Anti-inflammatory cytokine IL-10 had strong positive associations with vitamin D, purine, and vitamin E metabolism. The detailed metabolic interactions with cytokines indicate that targeted metabolic interventions may be useful during life-threatening crises related to severe acute infection and inflammation.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Pulmão/imunologia , Redes e Vias Metabólicas/imunologia , Metaboloma/imunologia , Infecções por Orthomyxoviridae/imunologia , Pneumonia Viral/imunologia , Animais , Feminino , Ensaios de Triagem em Larga Escala , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/virologia , Pneumonia Viral/virologia
6.
Am J Respir Cell Mol Biol ; 52(4): 492-502, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25188881

RESUMO

Autopsy specimens from human victims or experimental animals that die due to acute chlorine gas exposure present features of cardiovascular pathology. We demonstrate acute chlorine inhalation-induced reduction in heart rate and oxygen saturation in rats. Chlorine inhalation elevated chlorine reactants, such as chlorotyrosine and chloramine, in blood plasma. Using heart tissue and primary cardiomyocytes, we demonstrated that acute high-concentration chlorine exposure in vivo (500 ppm for 30 min) caused decreased total ATP content and loss of sarcoendoplasmic reticulum calcium ATPase (SERCA) activity. Loss of SERCA activity was attributed to chlorination of tyrosine residues and oxidation of an important cysteine residue, cysteine-674, in SERCA, as demonstrated by immunoblots and mass spectrometry. Using cardiomyocytes, we found that chlorine-induced cell death and damage to SERCA could be decreased by thiocyanate, an important biological antioxidant, and by genetic SERCA2 overexpression. We also investigated a U.S. Food and Drug Administration-approved drug, ranolazine, used in treatment of cardiac diseases, and previously shown to stabilize SERCA in animal models of ischemia-reperfusion. Pretreatment with ranolazine or istaroxime, another SERCA activator, prevented chlorine-induced cardiomyocyte death. Further investigation of responsible mechanisms showed that ranolazine- and istaroxime-treated cells preserved mitochondrial membrane potential and ATP after chlorine exposure. Thus, these studies demonstrate a novel critical target for chlorine in the heart and identify potentially useful therapies to mitigate toxicity of acute chlorine exposure.


Assuntos
Cloro/toxicidade , Cardiopatias/enzimologia , Exposição por Inalação , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/farmacologia , Apoptose , Sinalização do Cálcio , Cardiotônicos/farmacologia , Células Cultivadas , Etiocolanolona/análogos & derivados , Etiocolanolona/farmacologia , Cardiopatias/induzido quimicamente , Masculino , Mitocôndrias Cardíacas , Miocárdio/enzimologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ranolazina/farmacologia , Ratos Sprague-Dawley , Tiocianatos/farmacologia
7.
Am J Respir Cell Mol Biol ; 53(2): 193-205, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25490247

RESUMO

Thiocyanate (SCN) is used by the innate immune system, but less is known about its impact on inflammation and oxidative stress. Granulocytes oxidize SCN to evolve the bactericidal hypothiocyanous acid, which we previously demonstrated is metabolized by mammalian, but not bacterial, thioredoxin reductase (TrxR). There is also evidence that SCN is dysregulated in cystic fibrosis (CF), a disease marked by chronic infection and airway inflammation. To investigate antiinflammatory effects of SCN, we administered nebulized SCN or saline to ß epithelial sodium channel (ßENaC) mice, a phenotypic CF model. SCN significantly decreased airway neutrophil infiltrate and restored the redox ratio of glutathione in lung tissue and airway epithelial lining fluid to levels comparable to wild type. Furthermore, in Pseudomonas aeruginosa-infected ßENaC and wild-type mice, SCN decreased inflammation, proinflammatory cytokines, and bacterial load. SCN also decreased airway neutrophil chemokine keratinocyte chemoattractant (also known as C-X-C motif chemokine ligand 1) and glutathione sulfonamide, a biomarker of granulocyte oxidative activity, in uninfected ßENaC mice. Lung tissue TrxR activity and expression increased in inflamed lung tissue, providing in vivo evidence for the link between hypothiocyanous acid metabolism by TrxR and the promotion of selective biocide of pathogens. SCN treatment both suppressed inflammation and improved host defense, suggesting that nebulized SCN may have important therapeutic utility in diseases of both chronic airway inflammation and persistent bacterial infection, such as CF.


Assuntos
Antibacterianos/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Fibrose Cística/tratamento farmacológico , Tiocianatos/administração & dosagem , Administração por Inalação , Animais , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Linhagem Celular , Fibrose Cística/imunologia , Fibrose Cística/metabolismo , Avaliação Pré-Clínica de Medicamentos , Feminino , Pulmão/enzimologia , Pulmão/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/enzimologia , Pneumonia Bacteriana/imunologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/enzimologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Tiocianatos/farmacologia , Tiorredoxina Dissulfeto Redutase/metabolismo
8.
J Biol Chem ; 288(25): 18421-8, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23629660

RESUMO

The endogenously produced oxidant hypothiocyanous acid (HOSCN) inhibits and kills pathogens but paradoxically is well tolerated by mammalian host tissue. Mammalian high molecular weight thioredoxin reductase (H-TrxR) is evolutionarily divergent from bacterial low molecular weight thioredoxin reductase (L-TrxR). Notably, mammalian H-TrxR contains a selenocysteine (Sec) and has wider substrate reactivity than L-TrxR. Recombinant rat cytosolic H-TrxR1, mouse mitochondrial H-TrxR2, and a purified mixture of both from rat selectively turned over HOSCN (kcat = 357 ± 16 min(-1); Km = 31.9 ± 10.3 µM) but were inactive against the related oxidant hypochlorous acid. Replacing Sec with Cys or deleting the final eight C-terminal peptides decreased affinity and turnover of HOSCN by H-TrxR. Similarly, glutathione reductase (an H-TrxR homologue lacking Sec) was less effective at HOSCN turnover. In contrast to H-TrxR and glutathione reductase, recombinant Escherichia coli L-TrxR was potently inhibited by HOSCN (IC50 = 2.75 µM). Similarly, human bronchial epithelial cell (16HBE) lysates metabolized HOSCN, but E. coli and Pseudomonas aeruginosa lysates had little or no activity. HOSCN selectively produced toxicity in bacteria, whereas hypochlorous acid was nonselectively toxic to both bacteria and 16HBE. Treatment with the H-TrxR inhibitor auranofin inhibited HOSCN metabolism in 16HBE lysates and significantly increased HOSCN-mediated cytotoxicity. These findings demonstrate both the metabolism of HOSCN by mammalian H-TrxR resulting in resistance to HOSCN in mammalian cells and the potent inhibition of bacterial L-TrxR resulting in cytotoxicity in bacteria. These data support a novel selective mechanism of host defense in mammals wherein HOSCN formation simultaneously inhibits pathogens while sparing host tissue.


Assuntos
Antioxidantes/metabolismo , Imunidade Inata , Pulmão/metabolismo , Tiocianatos/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Substituição de Aminoácidos , Animais , Auranofina/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bronquíolos/citologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cisteína/genética , Cisteína/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Ácido Hipocloroso/farmacologia , Cinética , Pulmão/imunologia , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Ratos , Selenocisteína/genética , Selenocisteína/metabolismo , Especificidade por Substrato , Tiocianatos/farmacologia , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Tiorredoxina Dissulfeto Redutase/genética
9.
Free Radic Biol Med ; 219: 104-111, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38608822

RESUMO

Hypothiocyanous acid (HOSCN) is an endogenous oxidant produced by peroxidase oxidation of thiocyanate (SCN-), an ubiquitous sulfur-containing pseudohalide synthesized from cyanide. HOSCN serves as a potent microbicidal agent against pathogenic bacteria, viruses, and fungi, functioning through thiol-targeting mechanisms, independent of currently approved antimicrobials. Additionally, SCN- reacts with hypochlorous acid (HOCl), a highly reactive oxidant produced by myeloperoxidase (MPO) at sites of inflammation, also producing HOSCN. This imparts both antioxidant and antimicrobial potential to SCN-. In this review, we discuss roles of HOSCN/SCN- in immunity and potential therapeutic implications for combating infections.


Assuntos
Anti-Infecciosos , Tiocianatos , Animais , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Anti-Infecciosos/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Ácido Hipocloroso/metabolismo , Ácido Hipocloroso/uso terapêutico , Ácido Hipocloroso/química , Oxirredução , Peroxidase/metabolismo , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Tiocianatos/uso terapêutico , Tiocianatos/química , Tiocianatos/farmacologia , Tiocianatos/metabolismo
10.
J Cyst Fibros ; 23(1): 112-119, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37236899

RESUMO

BACKGROUND: The sweat test using pilocarpine iontophoresis remains the gold standard for diagnosing cystic fibrosis, but access and reliability are limited by specialized equipment and insufficient sweat volume collected from infants and young children. These shortcomings lead to delayed diagnosis, limited point-of-care applications, and inadequate monitoring capabilities. METHODS: We created a skin patch with dissolvable microneedles (MNs) containing pilocarpine that eliminates the equipment and complexity of iontophoresis. Upon pressing the patch to skin, the MNs dissolve in skin to release pilocarpine for sweat induction. We conducted a non-randomized pilot trial among healthy adults (clinicaltrials.gov, NCT04732195) with pilocarpine and placebo MN patches on one forearm and iontophoresis on the other forearm, followed by sweat collection using Macroduct collectors. Sweat output and sweat chloride concentration were measured. Subjects were monitored for discomfort and skin erythema. RESULTS: Fifty paired sweat tests were conducted in 16 male and 34 female healthy adults. MN patches delivered similar amounts of pilocarpine into skin (1.1 ± 0.4 mg) and induced equivalent sweat output (41.2 ± 25.0 mg) compared to iontophoresis (1.2 ± 0.7 mg and 43.8 ± 32.3 mg respectively). Subjects tolerated the procedure well, with little or no pain, and only mild transient erythema. Sweat chloride concentration measurements in sweat induced by MN patches (31.2 ± 13.4 mmol/L) were higher compared to iontophoresis (24.0 ± 13.2 mmol/L). Possible physiological, methodological, and artifactual causes of this difference are discussed. CONCLUSIONS: Pilocarpine MN patches present a promising alternative to iontophoresis to enable increased access to sweat testing for in-clinic and point-of-care applications.


Assuntos
Fibrose Cística , Pilocarpina , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Cloretos , Fibrose Cística/diagnóstico , Eritema , Reprodutibilidade dos Testes , Suor
11.
J Cyst Fibros ; 23(3): 450-456, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38246828

RESUMO

INTRODUCTION: Inflammation appears early in cystic fibrosis (CF) pathogenesis, with specific elevated inflammatory markers in bronchoalveolar lavage fluid (BALF) correlating with structural lung disease. Our aim was to identify markers of airway inflammation able to predict bronchiectasis progression over two years with high sensitivity and specificity. METHODS: Children with CF with two chest computed tomography (CT) scans and bronchoscopies at a two-year interval were included (n= 10 at 1 and 3 years and n= 27 at 3 and 5 years). Chest CTs were scored for increase in bronchiectasis (Δ%Bx), using the PRAGMA-CF score. BALF collected with the first CT scan were analyzed for neutrophil% (n= 36), myeloperoxidase (MPO) (n= 25), neutrophil elastase (NE) (n= 26), and with a protein array for inflammatory and fibrotic markers (n= 26). RESULTS: MPO, neutrophil%, and inducible T-cell costimulator ligand (ICOSLG), but not clinical characteristics, correlated significantly with Δ%Bx. Evaluation of neutrophil%, NE, MPO, interleukin-8 (IL-8), ICOSLG, and hepatocyte growth factor (HGF), for predicting an increase of > 0.5% of Δ%Bx in two years, showed that IL-8 had the best sensitivity (82%) and specificity (73%). Neutrophil%, ICOSLG and HGF had sensitivities of 85, 82, and 82% and specificities of 59, 67 and 60%, respectively. The odds ratio for risk of >0.5% Δ%Bx was higher for IL-8 (12.4) than for neutrophil%, ICOSLG, and HGF (5.9, 5.3, and 6.7, respectively). Sensitivity and specificity were lower for NE and MPO). CONCLUSIONS: High levels of IL-8, neutrophil%, ICOSGL and HGF in BALF may be good predictors for progression of bronchiectasis in young children with CF.


Assuntos
Biomarcadores , Bronquiectasia , Líquido da Lavagem Broncoalveolar , Fibrose Cística , Progressão da Doença , Neutrófilos , Peroxidase , Humanos , Bronquiectasia/etiologia , Bronquiectasia/diagnóstico , Feminino , Masculino , Biomarcadores/análise , Biomarcadores/metabolismo , Fibrose Cística/complicações , Pré-Escolar , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/química , Neutrófilos/metabolismo , Peroxidase/análise , Elastase de Leucócito/análise , Elastase de Leucócito/metabolismo , Lactente , Fator de Crescimento de Hepatócito/análise , Fator de Crescimento de Hepatócito/metabolismo , Tomografia Computadorizada por Raios X , Interleucina-8/análise , Interleucina-8/metabolismo , Inflamação/diagnóstico , Broncoscopia , Sensibilidade e Especificidade
12.
Artigo em Inglês | MEDLINE | ID: mdl-37609569

RESUMO

Background: Asthma exacerbations are highly prevalent in children, but only a few studies have examined the biologic mechanisms underlying exacerbations in this population. Objective: High-resolution metabolomics analyses were performed to understand the differences in metabolites in children with exacerbating asthma who were hospitalized in a pediatric intensive care unit for status asthmaticus. We hypothesized that compared with a similar population of stable outpatients with asthma, children with exacerbating asthma would have differing metabolite abundance patterns with distinct clustering profiles. Methods: A total of 98 children aged 6 through 17 years with exacerbating asthma (n = 69) and stable asthma (n = 29) underwent clinical characterization procedures and submitted plasma samples for metabolomic analyses. High-confidence metabolites were retained and utilized for pathway enrichment analyses to identify the most relevant metabolic pathways that discriminated between groups. Results: In all, 118 and 131 high-confidence metabolites were identified in positive and negative ionization mode, respectively. A total of 103 unique metabolites differed significantly between children with exacerbating asthma and children with stable asthma. In all, 8 significantly enriched pathways that were largely associated with alterations in arginine, phenylalanine, and glycine metabolism were identified. However, other metabolites and pathways of interest were also identified. Conclusion: Metabolomic analyses identified multiple perturbed metabolites and pathways that discriminated children with exacerbating asthma who were hospitalized for status asthmaticus. These results highlight the complex biology of inflammation in children with exacerbating asthma and argue for additional studies of the metabolic determinants of asthma exacerbations in children because many of the identified metabolites of interest may be amenable to targeted interventions.

13.
Adv Redox Res ; 72023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37034445

RESUMO

Cadmium (Cd) is a toxic environmental metal that interacts with selenium (Se) and contributes to many lung diseases. Humans have widespread exposures to Cd through diet and cigarette smoking, and studies in rodent models show that Se can protect against Cd toxicities. We sought to identify whether an antagonistic relationship existed between Se and Cd burdens and determine whether this relationship may associate with metabolic variation within human lungs. We performed metabolomics of 31 human lungs, including 25 with end-stage lung disease due to idiopathic pulmonary fibrosis, cystic fibrosis, chronic obstructive lung disease (COPD)/emphysema and other causes, and 6 non-diseased lungs. Results showed pathway associations with Cd including amino acid, lipid and energy-related pathways. Metabolic pathways varying with Se had considerable overlap with these pathways. Hierarchical cluster analysis (HCA) of individuals according to metabolites associated with Cd showed partial separation of disease types, with COPD/emphysema in the cluster with highest Cd, and non-diseased lungs in the cluster with the lowest Cd. When compared to HCA of metabolites associated with Se, the results showed that the cluster containing COPD/emphysema had the lowest Se, and the non-diseased lungs had the highest Se. A greater number of pathway associations occurred for Cd to Se ratio than either Cd or Se alone, indicating that metabolic patterns were more dependent on Cd to Se ratio than on either alone. Network analysis of interactions of Cd and Se showed network centrality was associated with pathways linked to polyunsaturated fatty acids involved in inflammatory signaling. Overall, the data show that metabolic pathway responses in human lung vary with Cd and Se in a pattern suggesting that Se is antagonistic to Cd toxicity in humans.

14.
J Cyst Fibros ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977937

RESUMO

BACKGROUND: Detecting airway inflammation non-invasively in infants with cystic fibrosis (CF) is difficult. We hypothesized that markers of inflammation in CF [IL-1ß, IL-6, IL-8, IL-10, IL-17A, neutrophil elastase (NE) and tumor necrosis factor (TNF-α)] could be measured in infants with CF from nasal fluid and would be elevated during viral infections or clinician-defined pulmonary exacerbations (PEx). METHODS: We collected nasal fluid, nasal swabs, and hair samples from 34 infants with CF during monthly clinic visits, sick visits, and hospitalizations. Nasal fluid was isolated and analyzed for cytokines. Respiratory viral detection on nasal swabs was performed using the Luminex NxTAG® Respiratory Pathogen Panel. Hair samples were analyzed for nicotine concentration by reverse-phase high-performance liquid chromatography. We compared nasal cytokine concentrations between the presence and absence of detected respiratory viruses, PEx, and smoke exposure. RESULTS: A total of 246 samples were analyzed. Compared to measurements in the absence of respiratory viruses, mean concentrations of IL-6, IL-8, TNF-α, and NE were significantly increased while IL-17A was significantly decreased in infants positive for respiratory viruses. IL-17A was significantly decreased and NE increased in those with a PEx. IL-8 and NE were significantly increased in infants with enteric pathogen positivity on airway cultures, but not P. aeruginosa or S. aureus. Compared to those with no smoke exposure, there were significantly higher levels of IL-6, IL-10, and NE in infants with detectable levels of nicotine. CONCLUSIONS: Noninvasive collection of nasal fluid may identify inflammation in infants with CF during changing clinical or environmental exposures.

15.
Free Radic Biol Med ; 206: 180-190, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37356776

RESUMO

Myeloperoxidase (MPO) is released by neutrophils in inflamed tissues. MPO oxidizes chloride, bromide, and thiocyanate to produce hypochlorous acid (HOCl), hypobromous acid (HOBr), and hypothiocyanous acid (HOSCN), respectively. These oxidants are toxic to pathogens, but may also react with host cells to elicit biological activity and potential toxicity. In cystic fibrosis (CF) and related diseases, increased neutrophil inflammation leads to increased airway MPO and airway epithelial cell (AEC) exposure to its oxidants. In this study, we investigated how equal dose-rate exposures of MPO-derived oxidants differentially impact the metabolome of human AECs (BEAS-2B cells). We utilized enzymatic oxidant production with rate-limiting glucose oxidase (GOX) coupled to MPO, and chloride, bromide (Br-), or thiocyanate (SCN-) as substrates. AECs exposed to GOX/MPO/SCN- (favoring HOSCN) were viable after 24 h, while exposure to GOX/MPO (favoring HOCl) or GOX/MPO/Br- (favoring HOBr) developed cytotoxicity after 6 h. Cell glutathione and peroxiredoxin-3 oxidation were insufficient to explain these differences. However, untargeted metabolomics revealed GOX/MPO and GOX/MPO/Br- diverged significantly from GOX/MPO/SCN- for dozens of metabolites. We noted methionine sulfoxide and dehydromethionine were significantly increased in GOX/MPO- or GOX/MPO/Br--treated cells, and analyzed them as potential biomarkers of lung damage in bronchoalveolar lavage fluid from 5-year-olds with CF (n = 27). Both metabolites were associated with increasing bronchiectasis, neutrophils, and MPO activity. This suggests MPO production of HOCl and/or HOBr may contribute to inflammatory lung damage in early CF. In summary, our in vitro model enabled unbiased identification of exposure-specific metabolite products which may serve as biomarkers of lung damage in vivo. Continued research with this exposure model may yield additional oxidant-specific biomarkers and reveal explicit mechanisms of oxidant byproduct formation and cellular redox signaling.


Assuntos
Fibrose Cística , Tiocianatos , Humanos , Pré-Escolar , Tiocianatos/metabolismo , Peroxidase/metabolismo , Brometos , Cloretos , Oxidantes/metabolismo , Antioxidantes , Ácido Hipocloroso/metabolismo , Células Epiteliais/metabolismo , Metabolômica
16.
Blood Adv ; 7(5): 778-799, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36399523

RESUMO

Troubling disparities in COVID-19-associated mortality emerged early, with nearly 70% of deaths confined to Black/African American (AA) patients in some areas. However, targeted studies on this vulnerable population are scarce. Here, we applied multiomics single-cell analyses of immune profiles from matching airways and blood samples of Black/AA patients during acute SARS-CoV-2 infection. Transcriptional reprogramming of infiltrating IFITM2+/S100A12+ mature neutrophils, likely recruited via the IL-8/CXCR2 axis, leads to persistent and self-sustaining pulmonary neutrophilia with advanced features of acute respiratory distress syndrome (ARDS) despite low viral load in the airways. In addition, exacerbated neutrophil production of IL-8, IL-1ß, IL-6, and CCL3/4, along with elevated levels of neutrophil elastase and myeloperoxidase, were the hallmarks of transcriptionally active and pathogenic airway neutrophilia. Although our analysis was limited to Black/AA patients and was not designed as a comparative study across different ethnicities, we present an unprecedented in-depth analysis of the immunopathology that leads to acute respiratory distress syndrome in a well-defined patient population disproportionally affected by severe COVID-19.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , COVID-19/patologia , Neutrófilos , Interleucina-8 , SARS-CoV-2 , Carga Viral , Pulmão/patologia , Proteínas de Membrana
17.
J Natl Cancer Inst Monogr ; 2023(61): 12-29, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37139973

RESUMO

The obesity pandemic currently affects more than 70 million Americans and more than 650 million individuals worldwide. In addition to increasing susceptibility to pathogenic infections (eg, SARS-CoV-2), obesity promotes the development of many cancer subtypes and increases mortality rates in most cases. We and others have demonstrated that, in the context of B-cell acute lymphoblastic leukemia (B-ALL), adipocytes promote multidrug chemoresistance. Furthermore, others have demonstrated that B-ALL cells exposed to the adipocyte secretome alter their metabolic states to circumvent chemotherapy-mediated cytotoxicity. To better understand how adipocytes impact the function of human B-ALL cells, we used a multi-omic RNA-sequencing (single-cell and bulk transcriptomic) and mass spectroscopy (metabolomic and proteomic) approaches to define adipocyte-induced changes in normal and malignant B cells. These analyses revealed that the adipocyte secretome directly modulates programs in human B-ALL cells associated with metabolism, protection from oxidative stress, increased survival, B-cell development, and drivers of chemoresistance. Single-cell RNA sequencing analysis of mice on low- and high-fat diets revealed that obesity suppresses an immunologically active B-cell subpopulation and that the loss of this transcriptomic signature in patients with B-ALL is associated with poor survival outcomes. Analyses of sera and plasma samples from healthy donors and those with B-ALL revealed that obesity is associated with higher circulating levels of immunoglobulin-associated proteins, which support observations in obese mice of altered immunological homeostasis. In all, our multi-omics approach increases our understanding of pathways that may promote chemoresistance in human B-ALL and highlight a novel B-cell-specific signature in patients associated with survival outcomes.


Assuntos
COVID-19 , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Animais , Camundongos , Proteômica , SARS-CoV-2 , Obesidade/complicações , Obesidade/metabolismo
18.
Nat Commun ; 14(1): 1638, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37015925

RESUMO

The pathogenesis of multi-organ dysfunction associated with severe acute SARS-CoV-2 infection remains poorly understood. Endothelial damage and microvascular thrombosis have been identified as drivers of COVID-19 severity, yet the mechanisms underlying these processes remain elusive. Here we show alterations in fluid shear stress-responsive pathways in critically ill COVID-19 adults as compared to non-COVID critically ill adults using a multiomics approach. Mechanistic in-vitro studies, using microvasculature-on-chip devices, reveal that plasma from critically ill COVID-19 adults induces fibrinogen-dependent red blood cell aggregation that mechanically damages the microvascular glycocalyx. This mechanism appears unique to COVID-19, as plasma from non-COVID sepsis patients demonstrates greater red blood cell membrane stiffness but induces less significant alterations in overall blood rheology. Multiomics analyses in pediatric patients with acute COVID-19 or the post-infectious multi-inflammatory syndrome in children (MIS-C) demonstrate little overlap in plasma cytokine and metabolite changes compared to adult COVID-19 patients. Instead, pediatric acute COVID-19 and MIS-C patients show alterations strongly associated with cytokine upregulation. These findings link high fibrinogen and red blood cell aggregation with endotheliopathy in adult COVID-19 patients and highlight differences in the key mediators of pathogenesis between adult and pediatric populations.


Assuntos
COVID-19 , Humanos , Criança , Adulto , SARS-CoV-2 , Estado Terminal , Citocinas , Fibrinogênio
19.
Curr Opin Pharmacol ; 65: 102238, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35649321

RESUMO

While discovery metabolomic studies have identified many potential biomarkers of cystic fibrosis (CF) airways disease, relatively few have been validated. We review the recent literature to identify the most promising metabolomic findings as those repeatedly observed over multiple studies. Reproducible metabolomic findings include increased airway amino acids and small peptides in CF airways, as well as changes in phospholipids and sphingolipids. Other commonly altered pathways include adenosine metabolism, polyamine synthesis, and oxidative stress. These pathways represent potential biomarkers and therapeutic targets, though findings require reevaluation in the era of highly effective modulator therapies. Analysis of airway biomarkers in exhaled breath holds promise for non-invasive detection, though technical challenges will need to be overcome.


Assuntos
Fibrose Cística , Biomarcadores/metabolismo , Fibrose Cística/metabolismo , Humanos , Metabolômica , Estresse Oxidativo
20.
Pediatr Pulmonol ; 57(9): 2189-2198, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35637404

RESUMO

BACKGROUND: In this pilot study, we investigated whether induced sputum (IS) could serve as a viable alternative to bronchoalveolar lavage (BAL) and yield robust inflammatory biomarkers in toddlers with cystic fibrosis (CF) featuring minimal structural lung disease. METHODS: We collected IS, BAL (right middle lobe and lingula), and blood, and performed chest computed tomography (CT) scans from 2-year-olds with CF (N = 11), all within a single visit. Inflammatory biomarkers included 20 soluble immune mediators and neutrophil elastase (NE), as well as frequency and phenotype of T cells, monocytes/macrophages, and neutrophils. RESULTS: At the molecular level, nine mediators showed similar levels in IS and BAL (CXCL1, CXCL8, IL-1α, IL-1RA, IL-6, CCL2, CXCL10, M-CSF, VEGF-A), four were higher in IS than in BAL (CXCL5, IL-1ß, CXCL11, TNFSF10), and two were present in IS, but undetectable in BAL (IL-10, IFN-γ). Meanwhile, soluble NE had lower activity in IS than in BAL. At the cellular level, T-cell frequency was lower in IS than in BAL. Monocytes/macrophages were dominant in IS and BAL with similar frequencies, but differing expression of CD16 (lower in IS), CD115, and surface-associated NE (higher in IS). Neutrophil frequency and phenotype did not differ between IS and BAL. Finally, neutrophil frequency in IS correlated positively with air trapping. CONCLUSIONS: IS collected from 2-year-olds with CF yields biomarkers of early airway inflammation with good agreement with BAL, notably with regard to molecular and cellular outcomes related to neutrophils and monocytes/macrophages.


Assuntos
Fibrose Cística , Escarro , Biomarcadores , Lavagem Broncoalveolar , Líquido da Lavagem Broncoalveolar , Humanos , Neutrófilos , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA