Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 754
Filtrar
1.
Nature ; 616(7955): 56-60, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36949191

RESUMO

Quantum error correction (QEC) aims to protect logical qubits from noises by using the redundancy of a large Hilbert space, which allows errors to be detected and corrected in real time1. In most QEC codes2-8, a logical qubit is encoded in some discrete variables, for example photon numbers, so that the encoded quantum information can be unambiguously extracted after processing. Over the past decade, repetitive QEC has been demonstrated with various discrete-variable-encoded scenarios9-17. However, extending the lifetimes of thus-encoded logical qubits beyond the best available physical qubit still remains elusive, which represents a break-even point for judging the practical usefulness of QEC. Here we demonstrate a QEC procedure in a circuit quantum electrodynamics architecture18, where the logical qubit is binomially encoded in photon-number states of a microwave cavity8, dispersively coupled to an auxiliary superconducting qubit. By applying a pulse featuring a tailored frequency comb to the auxiliary qubit, we can repetitively extract the error syndrome with high fidelity and perform error correction with feedback control accordingly, thereby exceeding the break-even point by about 16% lifetime enhancement. Our work illustrates the potential of hardware-efficient discrete-variable encodings for fault-tolerant quantum computation19.

2.
J Virol ; 98(2): e0154623, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38299865

RESUMO

Vaccine-induced mucosal immunity and broad protective capacity against various severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remain inadequate. Formyl peptide receptor-like 1 inhibitory protein (FLIPr), produced by Staphylococcus aureus, can bind to various Fcγ receptor subclasses. Recombinant lipidated FLIPr (rLF) was previously found to be an effective adjuvant. In this study, we developed a vaccine candidate, the recombinant Delta SARS-CoV-2 spike (rDS)-FLIPr fusion protein (rDS-F), which employs the property of FLIPr binding to various Fcγ receptors. Our study shows that rDS-F plus rLF promotes rDS capture by dendritic cells. Intranasal vaccination of mice with rDS-F plus rLF increases persistent systemic and mucosal antibody responses and CD4/CD8 T-cell responses. Importantly, antibodies induced by rDS-F plus rLF vaccination neutralize Delta, Wuhan, Alpha, Beta, and Omicron strains. Additionally, rDS-F plus rLF provides protective effects against various SARS-CoV-2 variants in hamsters by reducing inflammation and viral loads in the lung. Therefore, rDS-F plus rLF is a potential vaccine candidate to induce broad protective responses against various SARS-CoV-2 variants.IMPORTANCEMucosal immunity is vital for combating pathogens, especially in the context of respiratory diseases like COVID-19. Despite this, most approved vaccines are administered via injection, providing systemic but limited mucosal protection. Developing vaccines that stimulate both mucosal and systemic immunity to address future coronavirus mutations is a growing trend. However, eliciting strong mucosal immune responses without adjuvants remains a challenge. In our study, we have demonstrated that using a recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-formyl peptide receptor-like 1 inhibitory protein (FLIPr) fusion protein as an antigen, in combination with recombinant lipidated FLIPr as an effective adjuvant, induced simultaneous systemic and mucosal immune responses through intranasal immunization in mice and hamster models. This approach offered protection against various SARS-CoV-2 strains, making it a promising vaccine candidate for broad protection. This finding is pivotal for future broad-spectrum vaccine development.


Assuntos
Proteínas de Bactérias , Vacinas contra COVID-19 , COVID-19 , Imunidade nas Mucosas , Lipídeos , Proteínas Recombinantes de Fusão , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Cricetinae , Camundongos , Adjuvantes Imunológicos , Anticorpos Antivirais/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/química , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Células Dendríticas/imunologia , Modelos Animais de Doenças , Receptores de IgG/classificação , Receptores de IgG/imunologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Staphylococcus aureus , Desenvolvimento de Vacinas , Carga Viral
3.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37864296

RESUMO

Advances in single-cell sequencing and data analysis have made it possible to infer biological trajectories spanning heterogeneous cell populations based on transcriptome variation. These trajectories yield a wealth of novel insights into dynamic processes such as development and differentiation. However, trajectory analysis relies on an assumption of trajectory continuity, and experimental limitations preclude some real-world scenarios from meeting this condition. The current lack of assessment metrics makes it difficult to ascertain if/when a given trajectory deviates from continuity, and what impact such a divergence would have on inference accuracy is unclear. By analyzing simulated breaks introduced into in silico and real single-cell data, we found that discontinuity caused precipitous drops in the accuracy of trajectory inference. We then generate a simple scoring algorithm for assessing trajectory continuity, and found that continuity assessments in real-world cases of intestinal stem cell development and CD8 + T cells differentiation efficiently identifies trajectories consistent with empirical knowledge. This assessment approach can also be used in cases where a priori knowledge is lacking to screen a pool of inferred lineages for their adherence to presumed continuity, and serve as a means for weighing higher likelihood trajectories for validation via empirical studies, as exemplified by our case studies in psoriatic arthritis and acute kidney injury. This tool is freely available through github at qingshanni/scEGRET.


Assuntos
Algoritmos , Transcriptoma , Diferenciação Celular , Análise de Célula Única
4.
Proc Natl Acad Sci U S A ; 119(15): e2120081119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35380896

RESUMO

Plastid-mediated RNA interference (PM-RNAi) has emerged as a promising strategy for pest control. Expression from the plastid genome of stable double-stranded RNAs (dsRNAs) targeted against essential insect genes can effectively control some herbivorous beetles, but little is known about the efficacy of the transplastomic approach in other groups of pest insects, especially nonchewing insects that do not consume large amounts of leaf material. Here we have investigated the susceptibility of the western flower thrip (WFT, Frankliniella occidentalis), a notorious pest in greenhouses and open fields, to PM-RNAi. We show that WFTs ingest chloroplasts and take up plastid-expressed dsRNAs. We generated a series of transplastomic tobacco plants expressing dsRNAs and hairpin RNAs (hpRNAs) targeted against four essential WFT genes. Unexpectedly, we discovered plastid genome instability in transplastomic plants expressing hpRNAs, suggesting that dsRNA cassettes are preferable over hpRNA cassettes when designing PM-RNAi strategies. Feeding studies revealed that, unlike nuclear transgenic plants, transplastomic plants induced a potent RNAi response in WFTs, causing efficient suppression of the targeted genes and high insect mortality. Our study extends the application range of PM-RNAi technology to an important group of nonchewing insects, reveals design principles for the construction of dsRNA-expressing transplastomic plants, and provides an efficient approach to control one of the toughest insect pests in agriculture and horticulture.


Assuntos
Controle Biológico de Vetores , Plastídeos , Interferência de RNA , RNA de Plantas , Tisanópteros , Animais , Controle Biológico de Vetores/métodos , Plastídeos/genética , RNA de Cadeia Dupla , RNA de Plantas/genética , Tisanópteros/genética , Nicotiana/genética , Nicotiana/parasitologia
5.
Plant Biotechnol J ; 22(7): 2010-2019, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38426894

RESUMO

RNA interference (RNAi) has emerged as an efficient technology for pest control by silencing the essential genes of targeted insects. Owing to its nucleotide sequence-guided working mechanism, RNAi has a high degree of species-specificity without impacts on non-target organisms. However, as plants are inevitably under threat by two or more insect pests in nature, the species-specific mode of RNAi-based technology restricts its wide application for pest control. In this study, we artificially designed an intermediate dsRNA (iACT) targeting two ß-Actin (ACT) genes of sap-sucking pests Bemisia tabaci and Myzus persicae by mutual correction of their mismatches. When expressing hairpin iACT (hpiACT) from tobacco nuclear genome, transgenic plants are well protected from both B. tabaci and M. persicae, either individually or simultaneously, as evidenced by reduced fecundity and suppressed ACT gene expression, whereas expression of hpRNA targeting BtACT or MpACT in transgenic tobacco plants could only confer specific resistance to either B. tabaci or M. persicae, respectively. In sum, our data provide a novel proof-of-concept that two different insect species could be simultaneously controlled by artificial synthesis of dsRNA with sequence optimization, which expands the range of transgenic RNAi methods for crop protection.


Assuntos
Nicotiana , Plantas Geneticamente Modificadas , Interferência de RNA , RNA de Cadeia Dupla , RNA de Cadeia Dupla/genética , Animais , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/parasitologia , Nicotiana/genética , Nicotiana/parasitologia , Afídeos/genética , Afídeos/fisiologia , Hemípteros/genética , Actinas/genética , Actinas/metabolismo
6.
Opt Express ; 32(6): 8919-8928, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571137

RESUMO

The grating-based magneto-optical trap (GMOT) is a promising approach for miniaturizing cold-atom systems. However, the power consumption of a GMOT system dominates its feasibility in practical applications. In this study, we demonstrated a GMOT system based on planar elements that can operate with low power consumption. A high-diffraction-efficiency grating chip was used to cool atoms with a single incident beam. A planar coil chip was designed and fabricated with a low power consumption nested architecture. The grating and coil chips were adapted to a passive pump vacuum chamber, and up to 106 87Rb atoms were trapped. These elements effectively reduce the power consumption of the GMOT and have great potential for applications in practical cold-atom-based devices.

7.
Opt Express ; 32(7): 11202-11220, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38570974

RESUMO

On-chip microring resonators (MRRs) have been proposed to construct time-delayed reservoir computing (RC) systems, which offer promising configurations available for computation with high scalability, high-density computing, and easy fabrication. A single MRR, however, is inadequate to provide enough memory for the computation task with diverse memory requirements. Large memory requirements are satisfied by the RC system based on the MRR with optical feedback, but at the expense of its ultralong feedback waveguide. In this paper, a time-delayed RC is proposed by utilizing a silicon-based nonlinear MRR in conjunction with an array of linear MRRs. These linear MRRs possess a high quality factor, providing enough memory capacity for the RC system. We quantitatively analyze and assess the proposed RC structure's performance on three classical tasks with diverse memory requirements, i.e., the Narma 10, Mackey-Glass, and Santa Fe chaotic timeseries prediction tasks. The proposed system exhibits comparable performance to the system based on the MRR with optical feedback, when it comes to handling the Narma 10 task, which requires a significant memory capacity. Nevertheless, the dimension of the former is at least 350 times smaller than the latter. The proposed system lays a good foundation for the scalability and seamless integration of photonic RC.

8.
Opt Express ; 32(1): 313-324, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175058

RESUMO

Magnetic-free nonreciprocal optical devices have attracted great attention in recent years. Here, we investigated the magnetic-free polarization rotation of light in an atom vapor cell. Two mechanisms of magnetic-free nonreciprocity have been realized in ensembles of hot atoms, including electromagnetically induced transparency and optically-induced magnetization. For a linearly polarized input probe light, a rotation angle up to 86.4° has been realized with external control and pump laser powers of 10 mW and is mainly attributed to the optically-induced magnetization effect. Our demonstration offers a new approach to realize nonreciprocal devices, which can be applied to solid-state atom ensembles and may be useful in photonic integrated circuits.

9.
Opt Lett ; 49(1): 97-100, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134163

RESUMO

An integrated polarization-insensitive vortex beam generator is proposed in this study. It is composed of a holographic grating on a multi-layer waveguide, which enables conversion of Transverse Electric (TE) and Transverse Magnetic (TM) waveguide modes to y-polarized and x-polarized optical vortex beams, respectively. The conversion efficiency and the phase fidelity are numerically analyzed, and the working bandwidth is about 100 nm from 1500 nm to 1600 nm with a phase fidelity above 0.7. Moreover, the vortex beam with the superposition of the y-polarization and x-polarization states can be obtained with the incident of the superposition of TE and TM waveguide modes.

10.
Opt Lett ; 49(13): 3737-3740, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950255

RESUMO

An approach for continuous tuning of on-chip optical delay with a microring resonator is proposed and demonstrated. By introducing an electro-optically tunable waveguide coupler, the bus waveguide to the resonance coupling can be effectively tuned from the under-coupling regime to the over-coupling regime. The optical delay is experimentally characterized by measuring the relative phase shift between lasers and shows a large dynamic range of delay from -600 to 600 ps and an efficient tuning of delay from -430 to -180 ps and from 40 to 240 ps by only a 5 V voltage.

11.
Opt Lett ; 49(3): 570-573, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300061

RESUMO

Recently, there has been significant interest in the generation of coherent temporal solitons in optical microresonators. In this Letter, we present a demonstration of dissipative Kerr soliton generation in a microrod resonator using an auxiliary-laser-assisted thermal response control method. In addition, we are able to control the repetition rate of the soliton over a range of 200 kHz while maintaining the pump laser frequency, by applying external stress tuning. Through the precise control of the PZT voltage, we achieve a stability level of 3.9 × 10-10 for residual fluctuation of the repetition rate when averaged 1 s. Our platform offers precise tuning and locking capabilities for the repetition frequency of coherent mode-locked combs in microresonators. This advancement holds great potential for applications in spectroscopy and precision measurements.

12.
Phys Rev Lett ; 132(3): 033801, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38307075

RESUMO

We systematically investigated the intrinsic mechanical flexural modes of tapered optical fibers (TOFs) with a high aspect ratio up to 3×10^{4}. Based on the near-field scattering of the hemispherical microfiber tip to the vibrating TOF evanescent field, we detected more than 320 ordered intrinsic mechanical modes through the TOF transmission spectra which was enhanced by 72 dB compared to without near-field scattering. The trend of the vibration amplitude with the mode order was similar to pendulum waves. Our results open a pathway to study the mechanical modes of photonic microstructures-nanostructures that are expected to be used in waveguide QED, cavity optomechanical, and optical sensing.

13.
Phys Chem Chem Phys ; 26(4): 3500-3515, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38206084

RESUMO

Polymorphic transformation of molecular crystals is a fundamental phase transition process, and it is important practically in the chemical, material, biopharmaceutical, and energy storage industries. However, understanding of the transformation mechanism at the molecular level is poor due to the extreme simulating challenges in enhanced sampling and formulating order parameters (OPs) as the collective variables that can distinguish polymorphs with quite similar and complicated structures so as to describe the reaction coordinate. In this work, two kinds of OPs for CL-20 were constructed by the bond distances, bond orientations and relative orientations. A K-means clustering algorithm based on the Euclidean distance and sample weight was used to smooth the initial finite temperature string (FTS), and the minimum free energy path connecting ß-CL-20 and ε-CL-20 was sketched by the string method in collective variables, and the free energy profile along the path and the nucleation kinetics were obtained by Markovian milestoning with Voronoi tessellations. In comparison with the average-based sampling, the K-means clustering algorithm provided an improved convergence rate of FTS. The simulation of transformation was independent of OP types but was affected greatly by finite-size effects. A surface-mediated local nucleation mechanism was confirmed and the configuration located at the shoulder of potential of mean force, rather than overall maximum, was confirmed to be the critical nucleus formed by the cooperative effect of the intermolecular interactions. This work provides an effective way to explore the polymorphic transformation of caged molecular crystals at the molecular level.

14.
Appl Opt ; 63(7): 1719-1726, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437271

RESUMO

On-chip acousto-optic modulators that operate at an optical wavelength of 780 nm and a microwave frequency of 6.835 GHz are proposed. The modulators are based on a lithium-niobate-on-sapphire platform and efficiently excite surface acoustic waves and exhibit strong interactions with tightly confined optical modes in waveguides. In particular, a high-efficiency phase modulator and single-sideband mode converter are designed. We found that for both microwave and optical wavelengths below 1 µm, the interactions at the cross-sections of photonic waveguides are sensitive to the waveguide width and are significantly different from those in previous studies. Our designed devices have small footprints and high efficiencies, making them suitable for controlling rubidium atoms and realizing hybrid photonic-atomic chips. Furthermore, our devices have the potential to extend the acousto-optic modulators to other visible wavelengths for other atom transitions and for visible light applications, including imaging and sensing.

15.
Appetite ; 194: 107199, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38160733

RESUMO

Although depression has been linked to the habit of consuming sugar-sweetened beverages (SSBs), little is known about their long-term relationships and the mediating role of sleep problems. This study examines the associations between childhood depressive symptoms trajectories and adolescent SSB-habit trajectories and whether these associations were mediated by sleep problems. Data came from 1560 adolescents participating in a longitudinal study across grades 1 through 12 in northern Taiwan. Group-based trajectory modeling was used to identify development of childhood depressive symptoms and an SSB habit in adolescence. Multinomial logistic regression was conducted to examine the influence of childhood depressive symptoms and adolescent SSB habit. Mediation analysis was conducted to test whether sleep problems mediated the associations examined. Four distinct trajectories of childhood depressive symptoms were identified: low-stable (30.79%), moderate-stable (42.32%), increasing (12.29%), and high-stable (11.60%). Three distinct trajectories of SSB habit in adolescence were identified: low-stable (44.32%), increasing (15.02%), and high-stable (40.65%). Children who had moderate-stable (aOR = 1.35; CI: 1.04-1.77), high-stable (aOR = 2.01; CI: 1.28-3.15), or increasing (aOR = 1.97; CI: 1.26-3.06) trajectories of depressive symptoms relative to those in the low-stable group were significantly more likely to belong to the high-stable trajectory of SSBs than to the low-stable SSBs group. The Z-mediation test showed that sleep problems significantly mediated the associations between trajectories of childhood depressive symptoms and trajectories of SSBs during adolescence (all p < 0.05). Childhood depressive symptoms conferred risks for adolescent SSB habits; and the effects were seen, in part, through increasing sleep problems.


Assuntos
Transtornos do Sono-Vigília , Bebidas Adoçadas com Açúcar , Criança , Humanos , Adolescente , Depressão , Bebidas Adoçadas com Açúcar/efeitos adversos , Estudos Longitudinais , Hábitos , Transtornos do Sono-Vigília/epidemiologia , Transtornos do Sono-Vigília/etiologia , Bebidas
16.
Eur Child Adolesc Psychiatry ; 33(1): 179-191, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36752940

RESUMO

Late chronotype during adolescence is a critical risk factor for poor physical and mental health among adolescents. While social loneliness is confirmed to negatively influence sleep behaviors, the long-term effect of social loneliness on chronotype remains unknown. This study aims to investigate whether social loneliness trajectories from middle childhood to adolescence are associated with chronotype in late adolescence and examine the potential sex differences in these associations. Data were obtained from 2398 adolescents who participated in the Child and Adolescent Behaviors in Long-Term Evolution project. Chronotype was calculated as the midpoint of sleep on free days adjusted for sleep debt. Group-based trajectory modeling and multiple linear regression were employed to establish social loneliness trajectories and determine their associations with chronotype. Social loneliness trajectories were significantly associated with chronotype and varied by sex. Specifically, boys following a high-decreasing trajectory had earlier chronotype during late adolescence than did those following a low-decreasing trajectory (B = - 0.07; p < 0.05). By contrast, girls following a low-to-moderate-increasing trajectory exhibited later chronotype than did those following a low-stable trajectory (B = 0.07; p < 0.01). Social loneliness trajectories, especially those displaying significant fluctuations over time, are critical indicators influencing chronotype among adolescents. Furthermore, these trajectories and their associations with chronotype display sex differences. These findings highlight the need for early interventions for psychological factors such as social loneliness to ensure that the late chronotype can be prevented. In addition, sex variations must be considered.


Assuntos
Comportamento do Adolescente , Cronotipo , Humanos , Masculino , Criança , Adolescente , Feminino , Solidão/psicologia , Sono , Comportamento do Adolescente/psicologia , Fatores de Risco
17.
Nano Lett ; 23(10): 4176-4182, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37133858

RESUMO

We fabricate and characterize a hybrid quantum device that consists of five gate-defined double quantum dots (DQDs) and a high-impedance NbTiN transmission resonator. The controllable interactions between DQDs and the resonator are spectroscopically explored by measuring the microwave transmission through the resonator in the detuning parameter space. Utilizing the high tunability of the system parameters and the high cooperativity (Ctotal > 17.6) interaction between the qubit ensemble and the resonator, we tune the charge-photon coupling and observe the collective microwave response changing from linear to nonlinear. Our results present the maximum number of DQDs coupled to a resonator and manifest a potential platform for scaling up qubits and studying collective quantum effects in semiconductor-superconductor hybrid cavity quantum electrodynamics systems.

18.
Health Care Women Int ; : 1-19, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289647

RESUMO

In this study, the researchers aimed to understand the life experience of older widowed women living alone. Employing a phenomenological approach, we interviewed 15 older women (age 62 to 95) living alone at homes in two villages in Central Java. Through systematic text condensation procedure, we identified five themes: (1) negative feelings at times, (2) getting used to living alone, (3) needing help to support independent living, (4) coping toward negative feelings, (5) attachment to the original house. We depicted the struggles of older women living alone in their homes. Despite the coping strategies they have developed over time, older women needed help during hard times, especially when getting sick. Families and neighbors were the main resources to maintain their independent living. Improving the home environment to increase suitability for aging residents and providing a support system are the options that best fit the needs and values the older women believed.

19.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34370020

RESUMO

Recent advances in bioinformatics analyses have led to the development of novel tools enabling the capture and trajectory mapping of single-cell RNA sequencing (scRNAseq) data. However, there is a lack of methods to assess the contributions of biological pathways and transcription factors to an overall developmental trajectory mapped from scRNAseq data. In this manuscript, we present a simplified approach for trajectory inference of pathway significance (TIPS) that leverages existing knowledgebases of functional pathways and other gene lists to provide further mechanistic insights into a biological process. TIPS identifies key pathways which contribute to a process of interest, as well as the individual genes that best reflect these changes. TIPS also provides insight into the relative timing of pathway changes, as well as a suite of visualizations to enable simplified data interpretation of scRNAseq libraries generated using a wide range of techniques. The TIPS package can be run through either a web server or downloaded as a user-friendly GUI run in R, and may serve as a useful tool to help biologists perform deeper functional analyses and visualization of their single-cell data.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , RNA-Seq/métodos , Transdução de Sinais/genética , Análise de Célula Única/métodos , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Humanos , Internet , Reprodutibilidade dos Testes , Fatores de Tempo
20.
Opt Express ; 31(10): 16781-16794, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157750

RESUMO

Whispering gallery mode (WGM) resonators provide an important platform for fine measurement thanks to their small size, high sensitivity, and fast response time. Nevertheless, traditional methods focus on tracking single-mode changes for measurement, and a great deal of information from other resonances is ignored and wasted. Here, we demonstrate that the proposed multimode sensing contains more Fisher information than single mode tracking and has great potential to achieve better performance. Based on a microbubble resonator, a temperature detection system has been built to systematically investigate the proposed multimode sensing method. After the multimode spectral signals are collected by the automated experimental setup, a machine learning algorithm is used to predict the unknown temperature by taking full advantage of multiple resonances. The results show the average error of 3.8 × 10-3°C within the range from 25.00°C to 40.00°C by employing a generalized regression neural network (GRNN). In addition, we have also discussed the influence of the consumed data resource on its predicted performance, such as the amount of training data and the case of different temperate ranges between the training and test data. With high accuracy and large dynamic range, this work paves the way for WGM resonator-based intelligent optical sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA