Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell ; 184(5): 1188-1200.e19, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33577765

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is continuing to disrupt personal lives, global healthcare systems, and economies. Hence, there is an urgent need for a vaccine that prevents viral infection, transmission, and disease. Here, we present a two-component protein-based nanoparticle vaccine that displays multiple copies of the SARS-CoV-2 spike protein. Immunization studies show that this vaccine induces potent neutralizing antibody responses in mice, rabbits, and cynomolgus macaques. The vaccine-induced immunity protects macaques against a high-dose challenge, resulting in strongly reduced viral infection and replication in the upper and lower airways. These nanoparticles are a promising vaccine candidate to curtail the SARS-CoV-2 pandemic.


Assuntos
Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Macaca fascicularis , Glicoproteína da Espícula de Coronavírus/química , Animais , Anticorpos Neutralizantes , Linfócitos B/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Nanopartículas/administração & dosagem , Coelhos , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/sangue , Linfócitos T/imunologia , Carga Viral
2.
Nature ; 585(7826): 584-587, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32698191

RESUMO

Coronavirus disease 2019 (COVID-19) has rapidly become a global pandemic and no antiviral drug or vaccine is yet available for the treatment of this disease1-3. Several clinical studies are ongoing to evaluate the efficacy of repurposed drugs that have demonstrated antiviral efficacy in vitro. Among these candidates, hydroxychloroquine (HCQ) has been given to thousands of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-the virus that causes COVID-19-worldwide but there is no definitive evidence that HCQ is effective for treating COVID-194-7. Here we evaluated the antiviral activity of HCQ both in vitro and in SARS-CoV-2-infected macaques. HCQ showed antiviral activity in African green monkey kidney cells (Vero E6) but not in a model of reconstituted human airway epithelium. In macaques, we tested different treatment strategies in comparison to a placebo treatment, before and after peak viral load, alone or in combination with azithromycin (AZTH). Neither HCQ nor the combination of HCQ and AZTH showed a significant effect on viral load in any of the analysed tissues. When the drug was used as a pre-exposure prophylaxis treatment, HCQ did not confer protection against infection with SARS-CoV-2. Our findings do not support the use of HCQ, either alone or in combination with AZTH, as an antiviral drug for the treatment of COVID-19 in humans.


Assuntos
Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Hidroxicloroquina/uso terapêutico , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Animais , Azitromicina/farmacologia , Azitromicina/uso terapêutico , COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/patologia , Infecções por Coronavirus/fisiopatologia , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Humanos , Hidroxicloroquina/farmacocinética , Hidroxicloroquina/farmacologia , Técnicas In Vitro , Cinética , Macaca fascicularis , Masculino , Pandemias , Pneumonia Viral/patologia , Pneumonia Viral/fisiopatologia , Profilaxia Pré-Exposição , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/virologia , SARS-CoV-2 , Fatores de Tempo , Falha de Tratamento , Células Vero , Carga Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
3.
PLoS Comput Biol ; 17(3): e1008785, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33730053

RESUMO

Non-human primates infected with SARS-CoV-2 exhibit mild clinical signs. Here we used a mathematical model to characterize in detail the viral dynamics in 31 cynomolgus macaques for which nasopharyngeal and tracheal viral load were frequently assessed. We identified that infected cells had a large burst size (>104 virus) and a within-host reproductive basic number of approximately 6 and 4 in nasopharyngeal and tracheal compartment, respectively. After peak viral load, infected cells were rapidly lost with a half-life of 9 hours, with no significant association between cytokine elevation and clearance, leading to a median time to viral clearance of 10 days, consistent with observations in mild human infections. Given these parameter estimates, we predict that a prophylactic treatment blocking 90% of viral production or viral infection could prevent viral growth. In conclusion, our results provide estimates of SARS-CoV-2 viral kinetic parameters in an experimental model of mild infection and they provide means to assess the efficacy of future antiviral treatments.


Assuntos
COVID-19/virologia , Macaca fascicularis/virologia , SARS-CoV-2/fisiologia , Animais , Antivirais/farmacologia , Número Básico de Reprodução , COVID-19/sangue , COVID-19/prevenção & controle , Citocinas/sangue , Modelos Animais de Doenças , Nasofaringe/virologia , SARS-CoV-2/efeitos dos fármacos , Traqueia/virologia , Carga Viral , Replicação Viral/efeitos dos fármacos
4.
J Immunol ; 204(12): 3375-3388, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32385135

RESUMO

DNA vaccines delivered with electroporation (EP) have shown promising results in preclinical models and are evaluated in clinical trials. In this study, we aim to characterize early mechanisms occurring in the skin after intradermal injection and EP of the auxoGTUmultiSIV DNA vaccine in nonhuman primates. First, we show that EP acts as an adjuvant by enhancing local inflammation, notably via granulocytes, monocytes/macrophages, and CD1aint-expressing cell recruitment. EP also induced Langerhans cell maturation, illustrated by CD86, CD83, and HLA-DR upregulation and their migration out of the epidermis. Second, we demonstrate the crucial role of the DNA vaccine in soluble factors release, such as MCP-1 or IL-15. Transcriptomic analysis showed that EP played a major role in gene expression changes postvaccination. However, the DNA vaccine is required to strongly upregulate several genes involved in inflammatory responses (e.g., Saa4), cell migration (e.g., Ccl3, Ccl5, or Cxcl10), APC activation (e.g., Cd86), and IFN-inducible genes (e.g., Ifit3, Ifit5, Irf7, Isg15, orMx1), illustrating an antiviral response signature. Also, AIM-2, a cytosolic DNA sensor, appeared to be strongly upregulated only in the presence of the DNA vaccine and trends to positively correlate with several IFN-inducible genes, suggesting the potential role of AIM-2 in vaccine sensing and the subsequent innate response activation leading to strong adaptive T cell responses. Overall, these results demonstrate that a combined stimulation of the immune response, in which EP and the auxoGTUmultiSIV vaccine triggered different components of the innate immunity, led to strong and persistent cellular recall responses.


Assuntos
Imunidade Celular/imunologia , Imunidade Inata/imunologia , Pele/imunologia , Linfócitos T/imunologia , Vacinas de DNA/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Movimento Celular/imunologia , Proteínas de Ligação a DNA/imunologia , Eletroporação/métodos , Epiderme/imunologia , Expressão Gênica/imunologia , Perfilação da Expressão Gênica/métodos , Inflamação/imunologia , Interferons/imunologia , Interleucina-15/imunologia , Macaca fascicularis , Masculino , Regulação para Cima/imunologia , Vacinação/métodos
5.
Eur J Immunol ; 46(3): 689-700, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26678013

RESUMO

The development of new immunization strategies requires a better understanding of early molecular and cellular events occurring at the site of injection. The skin is particularly rich in immune cells and represents an attractive site for vaccine administration. Here, we specifically targeted vaccine antigens to epidermal Langerhans cells (LCs) using a fusion protein composed of HIV antigens and a monoclonal antibody targeting Langerin. We developed a fluorescence imaging approach to visualize, in vivo, the vaccine-targeted cells. Studies were performed in nonhuman primates (NHPs) because of their relevance as a model to assess human vaccines. We directly demonstrated that in NHPs, intradermally injected anti-Langerin-HIVGag specifically targets epidermal LCs and induces rapid changes in the LC network, including LC activation and migration out of the epidermis. Vaccine targeting of LCs significantly improved anti-HIV immune response without requirement of an adjuvant. Although the co-injection of the TLR-7/8 synthetic ligand, R-848 (resiquimod), with the vaccine, did not enhance significantly the antibody response, it stimulated recruitment of HLA-DR+ inflammatory cells to the site of immunization. This study allowed us to characterize the dynamics of early local events following the injection of a vaccine-targeted epidermal LCs and R-848.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Antígenos CD/imunologia , Células de Langerhans/imunologia , Lectinas Tipo C/imunologia , Lectinas de Ligação a Manose/imunologia , Vacinas/administração & dosagem , Animais , Anticorpos Antivirais/sangue , Antígenos CD/administração & dosagem , Células Epidérmicas , Epiderme/imunologia , Proteína do Núcleo p24 do HIV/administração & dosagem , Proteína do Núcleo p24 do HIV/imunologia , Humanos , Imidazóis/administração & dosagem , Imidazóis/imunologia , Injeções Intradérmicas , Microscopia Intravital , Células de Langerhans/ultraestrutura , Lectinas Tipo C/administração & dosagem , Macaca fascicularis , Lectinas de Ligação a Manose/administração & dosagem , Imagem Óptica , Vacinas/imunologia
6.
J Immunol ; 193(5): 2416-26, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25057007

RESUMO

Dendritic cells are major APCs that can efficiently prime immune responses. However, the roles of skin-resident Langerhans cells (LCs) in eliciting immune responses have not been fully understood. In this study, we demonstrate for the first time, to our knowledge, that LCs in cynomolgus macaque skin are capable of inducing antiviral-specific immune responses in vivo. Targeting HIV-Gag or influenza hemagglutinin Ags to skin LCs using recombinant fusion proteins of anti-Langerin Ab and Ags resulted in the induction of the viral Ag-specific responses. We further demonstrated that such Ag-specific immune responses elicited by skin LCs were greatly enhanced by TLR ligands, polyriboinosinic polyribocytidylic acid, and R848. These enhancements were not due to the direct actions of TLR ligands on LCs, but mainly dependent on TNF-α secreted from macrophages and neutrophils recruited to local tissues. Skin LC activation and migration out of the epidermis are associated with macrophage and neutrophil infiltration into the tissues. More importantly, blocking TNF-α abrogated the activation and migration of skin LCs. This study highlights that the cross-talk between innate immune cells in local tissues is an important component for the establishment of adaptive immunity. Understanding the importance of local immune networks will help us to design new and effective vaccines against microbial pathogens.


Assuntos
HIV-1/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/farmacologia , Vírus da Influenza A/imunologia , Células de Langerhans/imunologia , Pele/imunologia , Fator de Necrose Tumoral alfa/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/farmacologia , Imunidade Adaptativa/efeitos dos fármacos , Imunidade Adaptativa/fisiologia , Animais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imidazóis/farmacologia , Macaca mulatta , Macrófagos/imunologia , Neutrófilos/imunologia , Poli I/farmacologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia
7.
NPJ Vaccines ; 9(1): 113, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902327

RESUMO

The characterization of vaccine distribution to relevant tissues after in vivo administration is critical to understanding their mechanisms of action. Vaccines based on mRNA lipid nanoparticles (LNPs) are now being widely considered against infectious diseases and cancer. Here, we used in vivo imaging approaches to compare the trafficking of two LNP formulations encapsulating mRNA following intramuscular administration: DLin-MC3-DMA (MC3) and the recently developed DOG-IM4. The mRNA formulated in DOG-IM4 LNPs persisted at the injection site, whereas mRNA formulated in MC3 LNPs rapidly migrated to the draining lymph nodes. Furthermore, MC3 LNPs induced the fastest increase in blood neutrophil counts after injection and greater inflammation, as shown by IL-1RA, IL-15, CCL-1, and IL-6 concentrations in nonhuman primate sera. These observations highlight the influence of the nature of the LNP on mRNA vaccine distribution and early immune responses.

8.
Commun Med (Lond) ; 4(1): 62, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570605

RESUMO

BACKGROUND: The fight against COVID-19 requires mass vaccination strategies, and vaccines inducing durable cross-protective responses are still needed. Inactivated vaccines have proven lasting efficacy against many pathogens and good safety records. They contain multiple protein antigens that may improve response breadth and can be easily adapted every year to maintain preparedness for future seasonally emerging variants. METHODS: The vaccine dose was determined using ELISA and pseudoviral particle-based neutralization assay in the mice. The immunogenicity was assessed in the non-human primates with multiplex ELISA, neutralization assays, ELISpot and intracellular staining. The efficacy was demonstrated by viral quantification in fluids using RT-qPCR and respiratory tissue lesions evaluation. RESULTS: Here we report the immunogenicity and efficacy of VLA2001 in animal models. VLA2001 formulated with alum and the TLR9 agonist CpG 1018™ adjuvant generate a Th1-biased immune response and serum neutralizing antibodies in female BALB/c mice. In male cynomolgus macaques, two injections of VLA2001 are sufficient to induce specific and polyfunctional CD4+ T cell responses, predominantly Th1-biased, and high levels of antibodies neutralizing SARS-CoV-2 infection in cell culture. These antibodies also inhibit the binding of the Spike protein to human ACE2 receptor of several variants of concern most resistant to neutralization. After exposure to a high dose of homologous SARS-CoV-2, vaccinated groups exhibit significant levels of protection from viral replication in the upper and lower respiratory tracts and from lung tissue inflammation. CONCLUSIONS: We demonstrate that the VLA2001 adjuvanted vaccine is immunogenic both in mouse and NHP models and prevent cynomolgus macaques from the viruses responsible of COVID-19.


Mass vaccination in response to the COVID-19 pandemic has substantially reduced the number of severe cases and hospitalizations. As the virus continues to evolve and give rise to new variants that cause local outbreaks, there is a need to develop new vaccine candidates capable of stopping the viral transmission. In this study, we explore the immune responses induced by the vaccine candidate VLA2001 in animal models. We highlight the vaccine's ability to induce an immune response capable of blocking the virus and eliminating infected cells. We show that it can protect the host from developing severe disease.

9.
Eur J Immunol ; 42(8): 2019-30, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22585548

RESUMO

The pivotal role of DCs in initiating immune responses led to their use as vaccine vectors. However, the relationship between DC subsets involved in antigen presentation and the type of elicited immune responses underlined the need for the characterization of the DCs generated in vitro. The phenotypes of tissue-derived APCs from a cynomolgus macaque model for human vaccine development were compared with ex vivo-derived DCs. Monocyte/macrophages predominated in bone marrow (BM) and blood. Myeloid DCs (mDCs) were present in all tested tissues and were more highly represented than plasmacytoid DCs (pDCs). As in human skin, Langerhans cells (LCs) resided exclusively in the macaque epidermis, expressing CD11c, high levels of CD1a and langerin (CD207). Most DC subsets were endowed with tissue-specific combinations of PRRs. DCs generated from CD34(+) BM cells (CD34-DCs) were heterogeneous in phenotype. CD34-DCs shared properties (differentiation and PRR) of dermal and epidermal DCs. After injection into macaques, CD34-DCs expressing HIV-Gag induced Gag-specific CD4(+) and CD8(+) T cells producing IFN-γ, TNF-α, MIP-1ß, or IL-2. In high responding animals, the numbers of polyfunctional CD8(+) T cells increased with the number of booster injections. This DC-based vaccine strategy elicited immune responses relevant to the DC subsets generated in vitro.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Ativação Linfocitária , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Animais , Apresentação de Antígeno , Antígenos CD/biossíntese , Antígenos CD1/biossíntese , Antígenos CD34/genética , Células da Medula Óssea , Antígeno CD11c/biossíntese , Diferenciação Celular , Interferon gama/biossíntese , Interleucina-2/biossíntese , Lectinas Tipo C/biossíntese , Macaca fascicularis/imunologia , Macrófagos , Masculino , Lectinas de Ligação a Manose/biossíntese , RNA Mensageiro/genética , Fator de Necrose Tumoral alfa/biossíntese
10.
EJNMMI Phys ; 9(1): 22, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35316846

RESUMO

INTRODUCTION: A Vereos PET/CT device was adapted to be compatible with the experimentation in large animals within BSL-3 environment. The aim of this study was to investigate the impact of this modification on the performance according to NEMA NU2-2012 standard. METHODS: Spatial resolution, sensitivity, count rate performance, accuracies of corrections and image quality were assessed using the NEMA NU2-2012 standards before and after installation of a transparent poly-methyl methacrylate tube of 8 mm thickness, 680 mm diameter and 2800 mm long inside the tunnel of the system. In addition, CT performance tests were performed according to manufacturer standard procedure. RESULTS: Although the presence of the tube led to a slight decrease in sensitivity, performance measurements were in accordance with manufacturer preconisation ranges and comparable to previous performance published data. CONCLUSION: Modifications of Vereos PET/CT system allowing its use in BSL-3 conditions did not affect significantly its performance according to NEMA NU2-2012 standard. KEY POINTS: Question. Does a BSL-3 compatible modification alter Philips Vereos PET/CT performances according to NEMA NU2-2012 standards? Pertinent findings. Our Vereos PET/CT system was modified by a wall separating BSL-1 and BSL-3 sides and an 8 mm thickness PMMA tube inserted into the bore of the camera in order to extend the BSL-3 containment along the bed movement. The performances of our modified system according to NEMA NU2-2012 standards were not significantly impacted by the modifications and were in accordance with the values prescribed by the manufacturer. Implications for patients care. Our clinical PET/CT device was modified for human infectious diseases studies in Non-Human Primates. This unusual set up may then provide truly transposable data from preclinical studies into clinical application in infected patients.

11.
iScience ; 25(4): 104101, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35313622

RESUMO

Non-human primates (NHPs) are particularly relevant as preclinical models for SARS-CoV-2 infection and nuclear imaging may represent a valuable tool for monitoring infection in this species. We investigated the benefit of computed X-ray tomography (CT) and [18F]-FDG positron emission tomography (PET) to monitor the early phase of the disease in a large cohort (n = 76) of SARS-CoV-2 infected macaques. Following infection, animals showed mild COVID-19 symptoms including typical lung lesions. CT scores at the acute phase reflect the heterogeneity of lung burden following infection. Moreover, [18F]-FDG PET revealed that FDG uptake was significantly higher in the lungs, nasal cavities, lung-draining lymph nodes, and spleen of NHPs by 5 days postinfection compared to pre-infection levels, indicating early local inflammation. The comparison of CT and PET data from previous COVID-19 treatments or vaccines we tested in NHP, to this large cohort of untreated animals demonstrated the value of in vivo imaging in preclinical trials.

12.
Nat Commun ; 13(1): 5108, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042198

RESUMO

The COVID-19 pandemic has exemplified that rigorous evaluation in large animal models is key for translation from promising in vitro results to successful clinical implementation. Among the drugs that have been largely tested in clinical trials but failed so far to bring clear evidence of clinical efficacy is favipiravir, a nucleoside analogue with large spectrum activity against several RNA viruses in vitro and in small animal models. Here, we evaluate the antiviral activity of favipiravir against Zika or SARS-CoV-2 virus in cynomolgus macaques. In both models, high doses of favipiravir are initiated before infection and viral kinetics are evaluated during 7 to 15 days after infection. Favipiravir leads to a statistically significant reduction in plasma Zika viral load compared to untreated animals. However, favipiravir has no effects on SARS-CoV-2 viral kinetics, and 4 treated animals have to be euthanized due to rapid clinical deterioration, suggesting a potential role of favipiravir in disease worsening in SARS-CoV-2 infected animals. To summarize, favipiravir has an antiviral activity against Zika virus but not against SARS-CoV-2 infection in the cynomolgus macaque model. Our results support the clinical evaluation of favipiravir against Zika virus but they advocate against its use against SARS-CoV-2 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , Infecção por Zika virus , Zika virus , Amidas , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Macaca fascicularis , Pandemias , Primatas , Pirazinas , SARS-CoV-2 , Infecção por Zika virus/tratamento farmacológico
13.
Curr Opin HIV AIDS ; 16(4): 232-239, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34039844

RESUMO

PURPOSE OF REVIEW: The persistence of HIV-1-infected cells, despite the introduction of the combinatorial antiretroviral therapy, is a major obstacle to HIV-1 eradication. Understanding the nature of HIV reservoir will lead to novel therapeutic approaches for the functional cure or eradication of the virus. In this review, we will update the recent development in imaging applications toward HIV-1/simian immunodeficiency virus (SIV) viral reservoirs research and highlight some of their limitations. RECENT FINDINGS: CD4 T cells are the primary target of HIV-1/SIV and the predominant site for productive and latent reservoirs. This viral reservoir preferentially resides in lymphoid compartments that are difficult to access, which renders sampling and measurements problematical and a hurdle for understanding HIV-1 pathogenicity. Novel noninvasive technologies are needed to circumvent this and urgently help to find a cure for HIV-1. Recent technological advancements have had a significant impact on the development of imaging methodologies allowing the visualization of relevant biomarkers with high resolution and analytical capacity. Such methodologies have provided insights into our understanding of cellular and molecular interactions in health and disease. SUMMARY: Imaging of the HIV-1 reservoir can provide significant insights for the nature (cell types), spatial distribution, and the role of the tissue microenvironment for its in vivo dynamics and potentially lead to novel targets for the virus elimination.


Assuntos
Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD4-Positivos , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Humanos , Macaca mulatta , Carga Viral , Latência Viral , Replicação Viral
14.
Commun Biol ; 4(1): 861, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253821

RESUMO

Mucosal exposure to infected semen accounts for the majority of HIV-1 transmission events, with rectal intercourse being the route with the highest estimated risk of transmission. Yet, the impact of semen inflammation on colorectal HIV-1 transmission has never been addressed. Here we use cynomolgus macaques colorectal tissue explants to explore the effect of leukocytospermia, indicative of male genital tract inflammation, on SIVmac251 infection. We show that leukocytospermic seminal plasma (LSP) has significantly higher concentration of a number of pro-inflammatory molecules compared to normal seminal plasma (NSP). In virus-exposed explants, LSP enhance SIV infection more efficiently than NSP, being the increased viral replication linked to the level of inflammatory and immunomodulatory cytokines. Moreover, LSP induce leukocyte accumulation on the apical side of the colorectal lamina propria and the recruitment of a higher number of intraepithelial dendritic cells than with NSP. These results suggest that the outcome of mucosal HIV-1 infection is influenced by the inflammatory state of the semen donor, and provide further insights into mucosal SIV/HIV-1 pathogenesis.


Assuntos
Colo/virologia , Células Dendríticas/virologia , Reto/virologia , Sêmen/virologia , Vírus da Imunodeficiência Símia/fisiologia , Replicação Viral/fisiologia , Animais , Colo/metabolismo , Citocinas/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/transmissão , Infecções por HIV/virologia , HIV-1/fisiologia , Leucócitos/metabolismo , Leucócitos/patologia , Leucócitos/virologia , Macaca mulatta , Masculino , Reto/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Técnicas de Cultura de Tecidos
15.
Curr Res Microb Sci ; 2: 100072, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34841362

RESUMO

BACKGROUND: The resurgence of whooping cough in many countries highlights the crucial need for a better understanding of the pathogenesis of respiratory infection by Bordetella pertussis. Exposure of baboons to B. pertussis by the intranasal and intra-tracheal routes is a recently described preclinical model that reproduces both B. pertussis infection of humans and whooping cough disease. Here, we tested both intranasal and intranasal+intra-tracheal exposure routes and assessed their impact on disease development and immunity. METHODS: Young baboons were intranasally exposed to the B1917 clinical isolate, representative of circulating strains in Europe, or its green-fluorescent protein expressing derivative. Animals were followed for pertussis symptoms and bacterial colonization and by in vivo probe-based confocal laser endomicroscopy (pCLE) imaging. Sero-conversion and protection against subsequent infection were then evaluated. RESULTS: Seroconversion and bacterial colonization of both the nasopharynx and trachea was observed in baboons exposed to B. pertussis by the intranasal route only, and also in those animals challenged by both the intranasal and intra-tracheal routes together. However, baboons exposed solely by the intranasal route developed only mild clinical symptoms, with no paroxysmal cough. These animals were protected against re-infection by B. pertussis. CONCLUSIONS: Intranasal exposure of baboons to B. pertussis does not induce disease but elicits immune mechanisms that protect them from subsequent exposure to the bacteria. These findings suggest that the intranasal route of inoculation in this non-human primate model could be used in the pre-clinical evaluation of nasal candidate vaccines against pertussis.

16.
Vaccines (Basel) ; 9(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205932

RESUMO

Vaccines represent one of the major advances of modern medicine. Despite the many successes of vaccination, continuous efforts to design new vaccines are needed to fight "old" pandemics, such as tuberculosis and malaria, as well as emerging pathogens, such as Zika virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Vaccination aims at reaching sterilizing immunity, however assessing vaccine efficacy is still challenging and underscores the need for a better understanding of immune protective responses. Identifying reliable predictive markers of immunogenicity can help to select and develop promising vaccine candidates during early preclinical studies and can lead to improved, personalized, vaccination strategies. A systems biology approach is increasingly being adopted to address these major challenges using multiple high-dimensional technologies combined with in silico models. Although the goal is to develop predictive models of vaccine efficacy in humans, applying this approach to animal models empowers basic and translational vaccine research. In this review, we provide an overview of vaccine immune signatures in preclinical models, as well as in target human populations. We also discuss high-throughput technologies used to probe vaccine-induced responses, along with data analysis and computational methodologies applied to the predictive modeling of vaccine efficacy.

17.
Nat Commun ; 12(1): 5215, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471122

RESUMO

Achieving sufficient worldwide vaccination coverage against SARS-CoV-2 will require additional approaches to currently approved viral vector and mRNA vaccines. Subunit vaccines may have distinct advantages when immunizing vulnerable individuals, children and pregnant women. Here, we present a new generation of subunit vaccines targeting viral antigens to CD40-expressing antigen-presenting cells. We demonstrate that targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein to CD40 (αCD40.RBD) induces significant levels of specific T and B cells, with long-term memory phenotypes, in a humanized mouse model. Additionally, we demonstrate that a single dose of the αCD40.RBD vaccine, injected without adjuvant, is sufficient to boost a rapid increase in neutralizing antibodies in convalescent non-human primates (NHPs) exposed six months previously to SARS-CoV-2. Vaccine-elicited antibodies cross-neutralize different SARS-CoV-2 variants, including D614G, B1.1.7 and to a lesser extent B1.351. Such vaccination significantly improves protection against a new high-dose virulent challenge versus that in non-vaccinated convalescent animals.


Assuntos
Antígenos CD40/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Linfócitos B/imunologia , Convalescença , Humanos , Macaca , Camundongos , Mutação , Domínios Proteicos , Reinfecção/prevenção & controle , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Linfócitos T/imunologia , Vacinação , Vacinas de Subunidades Antigênicas/imunologia
18.
Nat Commun ; 12(1): 6097, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671037

RESUMO

Effective treatments against Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) are urgently needed. Monoclonal antibodies have shown promising results in patients. Here, we evaluate the in vivo prophylactic and therapeutic effect of COVA1-18, a neutralizing antibody highly potent against the B.1.1.7 isolate. In both prophylactic and therapeutic settings, SARS-CoV-2 remains undetectable in the lungs of treated hACE2 mice. Therapeutic treatment also causes a reduction in viral loads in the lungs of Syrian hamsters. When administered at 10 mg kg-1 one day prior to a high dose SARS-CoV-2 challenge in cynomolgus macaques, COVA1-18 shows very strong antiviral activity in the upper respiratory compartments. Using a mathematical model, we estimate that COVA1-18 reduces viral infectivity by more than 95% in these compartments, preventing lymphopenia and extensive lung lesions. Our findings demonstrate that COVA1-18 has a strong antiviral activity in three preclinical models and could be a valuable candidate for further clinical evaluation.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Anticorpos Neutralizantes/administração & dosagem , Antivirais/administração & dosagem , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/genética , Animais , Anticorpos Monoclonais/farmacocinética , Antivirais/farmacocinética , COVID-19/sangue , COVID-19/imunologia , COVID-19/virologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Pulmão/metabolismo , Pulmão/virologia , Macaca fascicularis , Masculino , Mesocricetus , Camundongos , Camundongos Transgênicos , SARS-CoV-2/isolamento & purificação , Distribuição Tecidual , Carga Viral
19.
Cell Host Microbe ; 29(9): 1437-1453.e8, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34428428

RESUMO

The SARS-CoV-2 pandemic has affected more than 185 million people worldwide resulting in over 4 million deaths. To contain the pandemic, there is a continued need for safe vaccines that provide durable protection at low and scalable doses and can be deployed easily. Here, AAVCOVID-1, an adeno-associated viral (AAV), spike-gene-based vaccine candidate demonstrates potent immunogenicity in mouse and non-human primates following a single injection and confers complete protection from SARS-CoV-2 challenge in macaques. Peak neutralizing antibody titers are sustained at 1 year and complemented by functional memory T cell responses. The AAVCOVID vector has no relevant pre-existing immunity in humans and does not elicit cross-reactivity to common AAVs used in gene therapy. Vector genome persistence and expression wanes following injection. The single low-dose requirement, high-yield manufacturability, and 1-month stability for storage at room temperature may make this technology well suited to support effective immunization campaigns for emerging pathogens on a global scale.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/genética , Dependovirus/genética , Dependovirus/metabolismo , Feminino , Humanos , Imunogenicidade da Vacina/imunologia , Memória Imunológica/imunologia , Macaca fascicularis , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Transgenes/genética , Vacinação/métodos , Carga Viral/imunologia
20.
Mol Imaging Biol ; 11(1): 31-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18773246

RESUMO

PURPOSE: The purpose of the study is to track iron-oxide nanoparticle-labelled adult rat bone marrow-derived stem cells (IO-rBMSCs) by magnetic resonance imaging (MRI) and determine their effect in host cardiac tissue using 2-deoxy-2-[F-18]fluoro-D: -glucose-positron emission tomography (FDG-PET). PROCEDURES: Infarcted rats were randomised to receive (1) live IO-rBMSCs by direct local injection, or (2) dead IO-rBMSCs as controls; (3) sham-operated rats received live IO-rBMSCs. The rats were then imaged from 2 days to 6 weeks post-cell implantation using both MRI at 9.4T and FDG-PET. RESULTS: Implanted IO-rBMSCs were visible in the heart by MRI for the duration of the study. Histological analysis confirmed that the implanted IO-rBMSCs were present for up to 6 weeks post-implantation. At 1 week post-IO-rBMSC transplantation, PET studies demonstrated an increase in FDG uptake in infarcted regions implanted with live IO-rBMSC compared to controls. CONCLUSIONS: Noninvasive multimodality imaging allowed us to visualise IO-rBMSCs and establish their affect on cardiac function in a rat model of myocardial infarction (MI).


Assuntos
Imageamento por Ressonância Magnética/métodos , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/diagnóstico , Tomografia por Emissão de Pósitrons/métodos , Transplante de Células-Tronco/métodos , Animais , Células da Medula Óssea/citologia , Células Cultivadas , Compostos Férricos/química , Fluoresceína-5-Isotiocianato/metabolismo , Corantes Fluorescentes/metabolismo , Fluordesoxiglucose F18 , Masculino , Nanopartículas , Tamanho da Partícula , Compostos Radiofarmacêuticos , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA