RESUMO
A fundamental question in biology is how single cells can reliably produce progeny of different cell types. Notch signalling frequently facilitates fate determination. Asymmetric cell division (ACD) often controls segregation of Notch signalling by imposing unequal inheritance of regulators of Notch. Here, we assessed the functional relationship between Notch and ACD in mouse T cell development. To attain immunological specificity, developing T cells must pass through a pivotal stage termed ß-selection, which involves Notch signalling and ACD. We assessed functional interactions between Notch1 and ACD during ß-selection through direct presentation of Notch ligands, DL1 and DL4, and pharmacological inhibition of Notch signalling. Contrary to prevailing models, we demonstrate that Notch signalling controls the distribution of Notch1 itself and cell fate determinants, α-adaptin and Numb. Furthermore, Notch and CXCR4 signalling cooperated to drive polarity during division. Thus, Notch signalling directly orchestrates ACD, and Notch1 is differentially inherited by sibling cells.This article has an associated First Person interview with the first author of the paper.
Assuntos
Divisão Celular Assimétrica , Proliferação de Células , Receptor Notch1/metabolismo , Linfócitos T/citologia , Animais , Comunicação Celular , Morte Celular , Diferenciação Celular , Linhagem Celular , Polaridade Celular , Células Cultivadas , Células-Tronco Hematopoéticas/citologia , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais , Linfócitos T/imunologiaRESUMO
Networks of nanoscale fibrous coatings made from self-assembled peptides are promising candidates for biomaterials that can promote the growth of mammalian cells. One particularly attractive feature is the possibility of adding biofunctional sequences to peptides to promote cell attachment. We deconvolute the topographic and chemical effects of nanoscale fibrils on cells by depositing a plasma polymer film on TTR1-based fibrils decorated with a range of cell adhesive chemistries (RGD and cycloRGDfK), producing a surface that retains the nanoscale fibrous topography of surface-bound fibrils but lacks the fibril surface chemistry. The surface topography was found to influence cell toxicity and spreading, and the fibril surface chemistry influenced cell attachment and spreading. This study highlights the importance of considering both the chemical and physical features of novel biomaterials and illustrates the use of plasma polymer deposition as a tool for examining the relationship between amyloid fibril structure and function.
Assuntos
Amiloide/química , Materiais Biocompatíveis/química , Biomimética , Peptídeos/química , Amiloide/ultraestrutura , Animais , Adesão Celular/efeitos dos fármacos , Matriz Extracelular/química , Matriz Extracelular/ultraestrutura , Humanos , Microscopia Eletrônica de Transmissão , Relação Estrutura-AtividadeRESUMO
Randomly spread fibroblasts on fibronectin-coated elastomeric membranes respond to cyclic strain by a varying degree of focal adhesion assembly and actin reorganization. We speculated that the individual shape of the cells, which is linked to cytoskeletal structure and pre-stress, might tune these integrin-dependent mechanotransduction events. To this aim, fibronectin circles, squares and rectangles of identical surface area (2000µm(2)) were micro-contact printed onto elastomeric substrates. Fibroblasts plated on these patterns occupied the corresponding shapes. Cyclic 10% equibiaxial strain was applied to patterned cells for 30min, and changes in cytoskeleton and cell-matrix adhesions were quantified after fluorescence staining. After strain, megakaryocytic leukemia-1 protein translocated to the nucleus in most cells, indicating efficient RhoA activation independently of cell shape. However, circular and square cells (with radial symmetry) showed a significantly greater increase in the number of actin stress fibers and vinculin-positive focal adhesions after cyclic strain than rectangular (bipolar) cells of identical size. Conversely, cyclic strain induced larger changes in pY397-FAK positive focal complexes and zyxin relocation from focal adhesions to stress fibers in bipolar compared to symmetric cells. Thus, radially symmetric cells responded to cyclic strain with a larger increase in assembly, whereas bipolar cells reacted with more pronounced reorganization of actin stress fibers and matrix contacts. We conclude that integrin-mediated responses to external mechanical strain are differentially modulated in cells that have the same spreading area but different geometries, and do not only depend on mere cell size.
Assuntos
Forma Celular , Fibroblastos/citologia , Estresse Mecânico , Animais , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Forma Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Fibroblastos/efeitos dos fármacos , Fibronectinas/farmacologia , Adesões Focais/efeitos dos fármacos , Adesões Focais/metabolismo , Cavalos , Camundongos , Modelos Biológicos , Impressão , Transporte Proteico/efeitos dos fármacos , Fibras de Estresse/efeitos dos fármacos , Fibras de Estresse/metabolismo , Transativadores/metabolismo , Zixina/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismoRESUMO
Fibrous networks assembled from synthetic peptides are promising candidates for biomimetic cell culture platforms and implantable biomaterials. The ability of the materials to reproduce physiological cell-matrix interactions is essential. However, the synthetic complexity of such systems limits their applications, thus alternative materials are desirable. Here, we design lysozyme derived amyloid fibril networks with controllable topographies, and perform a comprehensive study of the response of cultured fibroblast and epithelial cells. At high surface coverage a favorable increase in spreading and the generation of focal adhesions was observed, due to a combination of biomimetic chemistry and morphology. Their ease of synthesis, makes the nanoscale fibrils presented here ideal materials for future clinical applications whereby large volumes of biomimetic biomaterials are required. Furthermore, the surface chemistry of the fibrils is sufficient for the promotion of focal adhesions with cultured cells, eliminating the need for complex protocols for fibril decoration with bioactive moieties.
Assuntos
Amiloide/química , Células Epiteliais/citologia , Fibroblastos/citologia , Muramidase/química , Engenharia de Proteínas , Amiloide/síntese química , Amiloide/metabolismo , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Células Epiteliais/química , Células Epiteliais/metabolismo , Fibroblastos/química , Fibroblastos/metabolismo , Camundongos , Muramidase/metabolismoRESUMO
Analyzing the dynamics of mitochondrial content in developing T cells is crucial for understanding the metabolic state during T cell development. However, monitoring mitochondrial content in real-time needs a balance of cell viability and image resolution. In this chapter, we present experimental protocols for measuring mitochondrial content in developing T cells using three modalities: bulk analysis via flow cytometry, volumetric imaging in laser scanning confocal microscopy, and dynamic live-cell monitoring in spinning disc confocal microscopy. Next, we provide an image segmentation and centroid tracking-based analysis pipeline for automated quantification of a large number of microscopy images. These protocols together offer comprehensive approaches to investigate mitochondrial dynamics in developing T cells, enabling a deeper understanding of their metabolic processes.
Assuntos
Citometria de Fluxo , Microscopia Confocal , Mitocôndrias , Análise de Célula Única , Linfócitos T , Citometria de Fluxo/métodos , Mitocôndrias/metabolismo , Análise de Célula Única/métodos , Linfócitos T/metabolismo , Linfócitos T/citologia , Microscopia Confocal/métodos , Animais , Processamento de Imagem Assistida por Computador/métodos , Humanos , Camundongos , Dinâmica MitocondrialRESUMO
Nerve growth factor (NGF) plays a crucial role in cellular growth and neurodifferentiation. To achieve significant neuronal regeneration and repair using in vitro NGF delivery, spatiotemporal control that follows the natural neuronal processes must be developed. Notably, a challenge hindering this is the uncontrolled burst release from the growth factor delivery systems. The rapid depletion of NGF reduces treatment efficacy, leading to poor cellular response. To address this, we developed a highly controllable system using graphene oxygen (GO) and GelMA hydrogels modulated by electrical stimulation. Our system showed superior control over the release kinetics, reducing the burst up 30-fold. We demonstrate that the system is also able to sequester and retain NGF up to 10-times more efficiently than GelMA hydrogels alone. Our controlled release system enabled neurodifferentiation, as revealed by gene expression and immunostaining analysis. The increased retention and reduced burst release from our system show a promising pathway for nerve tissue engineering research toward effective regeneration.
Assuntos
Materiais Biocompatíveis , Estimulação Elétrica , Grafite , Hidrogéis , Fator de Crescimento Neural , Regeneração Nervosa , Hidrogéis/química , Hidrogéis/farmacologia , Grafite/química , Grafite/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Animais , Tamanho da Partícula , Teste de Materiais , Ratos , Células PC12 , Engenharia TecidualRESUMO
The neurological symptoms of COVID-19, often referred to as neuro-COVID include neurological pain, memory loss, cognitive and sensory disruption. These neurological symptoms can persist for months and are known as Post-Acute Sequalae of COVID-19 (PASC). The molecular origins of neuro-COVID, and how it contributes to PASC are unknown, however a growing body of research highlights that the self-assembly of protein fragments from SARS-CoV-2 into amyloid nanofibrils may play a causative role. Previously, we identified two fragments from the SARS-CoV-2 proteins, Open Reading Frame (ORF) 6 and ORF10, that self-assemble into neurotoxic amyloid assemblies. Here we further our understanding of the self-assembly mechanisms and nano-architectures formed by these fragments and their biological responses. By solubilising the peptides in a fluorinated solvent, we eliminate insoluble aggregates in the starting materials (seeds) that change the polymorphic landscape of the assemblies. The resultant assemblies are dominated by structures with higher free energies (e.g. ribbons and amorphous aggregates) that are less toxic to cultured neurons but do affect their mitochondrial respiration. We also show the first direct evidence of cellular uptake of viral amyloids. This work highlights the importance of understanding the polymorphic behaviour of amyloids and the correlation to neurotoxicity, particularly in the context of neuro-COVID and PASC.
Assuntos
Amiloide , COVID-19 , Neurônios , SARS-CoV-2 , SARS-CoV-2/metabolismo , SARS-CoV-2/química , Amiloide/química , Amiloide/metabolismo , Humanos , Neurônios/metabolismo , Neurônios/patologia , Peptídeos/química , Animais , Proteínas Virais/química , Proteínas Virais/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismoRESUMO
A critical stage of T cell development is ß-selection; at this stage, the T cell receptor ß (TCRß) chain is generated, and the developing T cell starts to acquire antigenic specificity. Progression through ß-selection is assisted by low-affinity interactions between the nascent TCRß chain and peptide presented on stromal major histocompatibility complex and cues provided by the niche. In this study, we identify a cue within the developing T cell niche that is critical for T cell development. E-cadherin mediates cell-cell interactions and influences cell fate in many developmental systems. In developing T cells, E-cadherin contributed to the formation of an immunological synapse and the alignment of the mitotic spindle with the polarity axis during division, which facilitated subsequent T cell development. Collectively, these data suggest that E-cadherin facilitates interactions with the thymic niche to coordinate the ß-selection stage of T cell development.
Assuntos
Caderinas , Linfócitos T , Animais , Camundongos , Caderinas/metabolismo , Comunicação Celular , Receptores de Antígenos de Linfócitos T alfa-beta , Linfócitos T/citologia , Linfócitos T/metabolismo , Timo , Fuso Acromático/metabolismoRESUMO
During T cell development, the first step in creating a unique T cell receptor (TCR) is genetic recombination of the TCRß chain. The quality of the new TCRß is assessed at the ß-selection checkpoint. Most cells fail this checkpoint and die, but the coordination of fate at the ß-selection checkpoint is not yet understood. We shed new light on fate determination during ß-selection using a selective inhibitor of histone deacetylase 6, ACY1215. ACY1215 disrupted the ß-selection checkpoint. Characterising the basis for this disruption revealed a new, pivotal stage in ß-selection, bookended by up-regulation of TCR co-receptors, CD28 and CD2, respectively. Within this "DN3bPre" stage, CD5 and Lef1 are up-regulated to reflect pre-TCR signalling, and their expression correlates with proliferation. These findings suggest a refined model of ß-selection in which a coordinated increase in expression of pre-TCR, CD28, CD5 and Lef1 allows for modulating TCR signalling strength and culminates in the expression of CD2 to enable exit from the ß-selection checkpoint.
Assuntos
Antígenos CD28 , Receptores de Antígenos de Linfócitos T alfa-beta , Antígenos CD28/genética , Antígenos CD28/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Histonas/metabolismo , Desacetilase 6 de Histona/metabolismo , Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismoRESUMO
COVID-19 is primarily known as a respiratory disease caused by SARS-CoV-2. However, neurological symptoms such as memory loss, sensory confusion, severe headaches, and even stroke are reported in up to 30% of cases and can persist even after the infection is over (long COVID). These neurological symptoms are thought to be produced by the virus infecting the central nervous system, however we don't understand the molecular mechanisms triggering them. The neurological effects of COVID-19 share similarities to neurodegenerative diseases in which the presence of cytotoxic aggregated amyloid protein or peptides is a common feature. Following the hypothesis that some neurological symptoms of COVID-19 may also follow an amyloid etiology we identified two peptides from the SARS-CoV-2 proteome that self-assemble into amyloid assemblies. Furthermore, these amyloids were shown to be highly toxic to neuronal cells. We suggest that cytotoxic aggregates of SARS-CoV-2 proteins may trigger neurological symptoms in COVID-19.
Assuntos
COVID-19 , COVID-19/complicações , Humanos , Peptídeos , Proteoma , RNA Viral , SARS-CoV-2 , Síndrome de COVID-19 Pós-AgudaRESUMO
This work explores time-resolved emission imaging microscopy (TREM) for noninvasive imaging and mapping of live cells on a hitherto uncharted microsecond time scale. Simple robust molecules for this purpose have long been sought. We have developed highly emissive, synthetically versatile, and photostable platinum(II) complexes that make TREM a practicable reality. [PtLCl], {HL = 1,3-di(2-pyridyl)benzene and derivatives}, are charge-neutral, small molecules that have low cytotoxicity and accumulate intracellularly within a remarkably short incubation time of 5 min, apparently under diffusion control. Their microsecond lifetimes and emission quantum yields of up to 70% are exceptionally high for transition metal complexes and permit the application of TREM to be demonstrated in a range of live cell types-normal human dermal fibroblast, neoplastic C8161 and CHO cells. [PtLCl] are thus likely to be suitable emission labels for any eukaryotic cell types. The high photostability of [PtLCl] under intense prolonged irradiation has allowed the development of tissue-friendly NIR two-photon excitation (TPE) in conjunction with transition metal complexes in live cells. A combination of confocal one-photon excitation, nonlinear TPE, and microsecond time-resolved imaging has revealed (i) preferential localization of the complexes to intracellular nucleic acid structures, in particular the nucleoli and (ii) the possibility of measuring intracellular emission lifetimes in the microsecond range. The combination of TREM, TPE, and Pt(II) complexes will be a powerful tool for investigating intracellular processes in vivo, because the long lifetimes allow discrimination from autofluorescence and open up the use of commonplace technology.
Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/métodos , Compostos de Platina , Absorção , Animais , Linhagem Celular , Sobrevivência Celular , Cricetinae , Humanos , Cinética , Fatores de TempoRESUMO
The ß-selection checkpoint of T cell development tests whether the cell has recombined its genomic DNA to produce a functional T cell receptor ß (TCRß). Passage through the ß-selection checkpoint requires the nascent TCRß protein to mediate signaling through a pre-TCR complex. In this study, we show that developing T cells at the ß-selection checkpoint establish an immunological synapse in in vitro and in situ, resembling that of the mature T cell. The immunological synapse is dependent on two key signaling pathways known to be critical for the transition beyond the ß-selection checkpoint, Notch and CXCR4 signaling. In vitro and in situ analyses indicate that the immunological synapse promotes passage through the ß-selection checkpoint. Collectively, these data indicate that developing T cells regulate pre-TCR signaling through the formation of an immunological synapse. This signaling platform integrates cues from Notch, CXCR4, and MHC on the thymic stromal cell to allow transition beyond the ß-selection checkpoint.
Assuntos
Sinapses Imunológicas/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Linfócitos T/imunologia , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Polaridade Celular , Proliferação de Células , Humanos , Complexo Principal de Histocompatibilidade , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Centro Organizador dos Microtúbulos/metabolismo , Modelos Biológicos , Mimetismo Molecular , Receptores CXCR4/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Células Estromais/metabolismo , Linfócitos T/citologia , Timo/metabolismoRESUMO
Mesenchymal stem cell therapies show great promise in regenerative medicine. However, to generate clinically relevant numbers of these stem cells, significant in vitro expansion of the cells is required before transplantation into the affected wound or defect. The current gold standard protocol for recovering in vitro cultured cells involves treatment with enzymes such as trypsin which can affect the cell phenotype and ability to interact with the environment. Alternative enzyme free methods of adherent cell recovery have been investigated, but none match the convenience and performance of enzymatic detachment. In this work we have developed a synthetically simple, low cost cell culture substrate functionalized with gold nanorods that can support cell proliferation and detachment. When these nanorods are irradiated with biocompatible low intensity near infrared radiation (785 nm, 560 mWcm-2) they generate localized surface plasmon resonance induced nanoscale heating effects which trigger detachment of adherent mesenchymal stem cells. Through simulations and thermometry experiments we show that this localized heating is concentrated at the cell-nanorod interface, and that the stem cells detached using this technique show either similar or improved multipotency, viability and ability to differentiate into clinically desirable osteo and adipocytes, compared to enzymatically harvested cells. This proof-of-principle work shows that photothermally mediated cell detachment is a promising method for recovering mesenchymal stem cells from in vitro culture substrates, and paves the way for further studies to scale up this process and facilitate its clinical translation. STATEMENT OF SIGNIFICANCE: New non-enzymatic methods of harvesting adherent cells without damaging or killing them are highly desirable in fields such as regenerative medicine. Here, we present a synthetically simple, non-toxic, infra-red induced method of harvesting mesenchymal stem cells from gold nanorod functionalized substrates. The detached cells retain their ability to differentiate into therapeutically valuable osteo and adipocytes. This work represents a significant improvement on similar cell harvesting studies due to: its simplicity; the use of clinically valuable stem cells as oppose to immortalized cell lines; and the extensive cellular characterization performed. Understanding, not just if cells live or die but how they proliferate and differentiate after photothermal detachment will be essential for the translation of this and similar techniques into commercial devices.
Assuntos
Células-Tronco Mesenquimais , Nanotubos , Raios Infravermelhos , Ressonância de Plasmônio de SuperfícieRESUMO
Our aim was to develop a biodegradable fibrous dressing to act as a tissue guide for in situ wound repair while releasing Ibuprofen to reduce inflammation in wounds and reduce pain for patients on dressing changes. Dissolving the acid form of Ibuprofen (from 1% to 10% by weight) in the same solvent as 75% polylactide, 25% polyglycolide (PLGA) polymers gave uniformly loaded electrospun fibers which gave rapid release of drug within the first 8 h and then slower release over several days. Scaffolds with 10% Ibuprofen degraded within 6 days. The Ibuprofen released from these scaffolds significantly reduced the response of fibroblasts to major pro-inflammatory stimulators. Fibroblast attachment and proliferation on scaffolds was unaffected by the addition of 1-5% Ibuprofen. Scaffolds loaded with 10% Ibuprofen initially showed reduced cell attachment but this was restored by soaking scaffolds in media for 24 h. In summary, addition of Ibuprofen to electrospun biodegradable scaffolds can give acute protection of adjacent cells to inflammation while the scaffolds provide an open 3D fibrous network to which cells can attach and migrate. By 6 days, such scaffolds will have completely dissolved into the wound bed obviating any need for dressing removal.
Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Fibroblastos/efeitos dos fármacos , Ibuprofeno/administração & dosagem , Poliésteres/química , Ácido Poliglicólico/química , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Preparações de Ação Retardada/química , Fibroblastos/citologia , Humanos , Queratinócitos/citologia , Engenharia TecidualRESUMO
Nanodiamonds containing the nitrogen vacancy centre (NV) have a significant role in biosensing, bioimaging, drug delivery, and as biomarkers in fluorescence imaging, due to their photo-stability and biocompatibility. The optical read out of the NV unpaired electron spin has been used in diamond magnetometry to image living cells and magnetically labelled cells. Diamond magnetometry is mostly based on the use of bulk diamond with a large concentration of NV centres in a wide field fluorescence microscope equipped with microwave excitation. It is possible to correlate the fluorescence maps with the magnetic field maps of magnetically labelled cells with diffraction limit resolution. Nanodiamonds have not as yet been implemented to image magnetic fields within complex biological systems at the nanometre scale. Here we demonstrate the suitability of nanodiamonds to correlate the fluorescence map with the magnetic imaging map of magnetically labelled cells. Nanoscale optical images with 17 nm resolution of nanodiamonds labelling fixed cells bound to iron oxide magnetic nanoparticles are demonstrated by using a single molecule localisation microscope. Nanoscale magnetic field images of the magnetised magnetic nanoparticles spatially assigned to individual cells are superresolved by the NV centres within nanodiamonds conjugated with the magnetic nanoparticles with 20 nm resolutions. Our method offers a new platform for the super-resolution of optical magnetic imaging in biological samples conjugated with nanodiamonds and iron-oxide magnetic nanoparticles.
Assuntos
Ferro/química , Nanopartículas de Magnetita/química , Nanodiamantes/química , Nitrogênio/química , Imagem Óptica/métodos , Biotina/química , Biotina/metabolismo , Linhagem Celular Tumoral , Humanos , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Óxidos/química , Estreptavidina/química , Estreptavidina/metabolismoRESUMO
The melanocortin peptides alpha-MSH, Lys-Pro-Val and Lys-Pro-D-Val are known to be potent anti-inflammatory agents; however their role as antibacterial peptides is less clear. The aim of this study was to determine whether these peptides displayed antibacterial properties, and specifically whether the Lys-Pro-D-Val tripeptide was more potent than Lys-Pro-Val, consistent with their anti-inflammatory actions. alpha-MSH, Ac-Lys-Pro-D-Val-NH2 and Ac-Lys-Pro-Val-NH2 were found to be antibacterial against both Gram-positive and Gram-negative bacteria (Staphylococcus aureus and Escherichia coli) over a broad range of concentrations compared to a control peptide, Ac-Ala-Ala-Ala-NH2. However, the relative potency of alpha-MSH, Ac-Lys-Pro-D-Val-NH2, Ac-Lys-Pro-Val-NH2 did not differ. Furthermore, it was found that the cationic charge on the lysine residue was not required for activity as a variant peptide Ac-Ala-Pro-D-Val-NH2 was also antibacterial. We therefore describe a novel X-Pro-D/L-Val peptide sequence with similarity to the short melanocortin peptides, which possess antibacterial activity. The combined anti-inflammatory and antibacterial action of such peptides may also have potential value therapeutically.
Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Melanocortinas/farmacologia , Oligopeptídeos/farmacologia , Sequência de Aminoácidos , Antibacterianos/química , Dipeptídeos/química , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Humanos , Melanocortinas/química , Hormônios Estimuladores de Melanócitos/química , Hormônios Estimuladores de Melanócitos/metabolismo , Dados de Sequência Molecular , Oligopeptídeos/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Temperatura , Fatores de TempoRESUMO
Cell polarity is an essential process shared by almost all animal tissues. Moreover, cell polarity enables cells to sense and respond to the cues provided by the neighboring cells and the surrounding microenvironment. These responses play a critical role in regulating key physiological processes, including cell migration, proliferation, differentiation, vesicle trafficking and immune responses. The polarity protein complexes regulating these interactions are highly evolutionarily conserved between vertebrates and invertebrates. Interestingly, these polarity complexes interact with each other and key signaling pathways in a cell-polarity context-dependent manner. However, the exact mechanisms by which these interactions take place are poorly understood. In this review, we will focus on the roles of the key polarity complexes SCRIB, PAR and Crumbs in regulating different forms of cell polarity, including epithelial cell polarity, cell migration, asymmetric cell division and the T-cell immunological synapse assembly and signaling.
Assuntos
Polaridade Celular/fisiologia , Microambiente Celular , Animais , Biomarcadores , Movimento Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Transdução de SinaisRESUMO
Dense networks of amyloid nanofibrils fabricated from common globular proteins adsorbed to solid supports can improve cell adhesion, spreading and differentiation compared to traditional flat, stiff 2D cell culture substrates like Tissue Culture Polystyrene (TCPS). This is due to the fibrous, nanotopographic nature of the amyloid fibril networks and the fact that they closely mimic the mechanical properties and architecture of the extracellular matrix (ECM). However, precise cell responses are strongly dependent on the nanostructure of the network at the cell culture interface, thus accurate characterization of the immobilized network is important. Due to its exquisite lateral resolution and simple sample preparation techniques, Atomic Force Microscopy (AFM) is an ideal technique to characterize the fibril network morphology. Thus, here we describe a detailed protocol, for the characterization of amyloid fibril networks by tapping mode AFM.
RESUMO
Networks of amyloid nanofibrils fabricated from common globular proteins such as lysozyme and ß-lactoglobulin have material properties that mimic the extracellular microenvironment of many cell types. Cells cultured on such amyloid fibril networks show improved attachment, spreading and in the case of mesenchymal stem cells improved differentiation. Here we describe a detailed protocol for fabricating amyloid fibril networks suitable for eukaryotic cell culture applications.