Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Kidney Int ; 90(2): 363-372, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27350175

RESUMO

Mutations in the INF2 (inverted formin 2) gene, encoding a diaphanous formin family protein that regulates actin cytoskeleton dynamics, cause human focal segmental glomerulosclerosis (FSGS). INF2 interacts directly with certain other mammalian diaphanous formin proteins (mDia) that function as RhoA effector molecules. FSGS-causing INF2 mutations impair these interactions and disrupt the ability of INF2 to regulate Rho/Dia-mediated actin dynamics in vitro. However, the precise mechanisms by which INF2 regulates and INF2 mutations impair glomerular structure and function remain unknown. Here, we characterize an Inf2 R218Q point-mutant (knockin) mouse to help answer these questions. Knockin mice have no significant renal pathology or proteinuria at baseline despite diminished INF2 protein levels. INF2 mutant podocytes do show impaired reversal of protamine sulfate-induced foot process effacement by heparin sulfate perfusion. This is associated with persistent podocyte cytoplasmic aggregation, nephrin phosphorylation, and nephrin and podocin mislocalization, as well as impaired recovery of mDia membrane localization. These changes were partially mimicked in podocyte outgrowth cultures, in which podocytes from knockin mice show altered cellular protrusions compared to those from wild-type mice. Thus, in mice, normal INF2 function is not required for glomerular development but normal INF2 is required for regulation of the actin-based behaviors necessary for response to and/or recovery from injury.


Assuntos
Injúria Renal Aguda/metabolismo , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/metabolismo , Proteínas dos Microfilamentos/genética , Podócitos/metabolismo , Actinas/metabolismo , Injúria Renal Aguda/induzido quimicamente , Animais , Células Cultivadas , Modelos Animais de Doenças , Forminas , Heparina/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Microscopia Eletrônica de Transmissão , Fenótipo , Fosforilação , Podócitos/efeitos dos fármacos , Podócitos/patologia , Podócitos/ultraestrutura , Mutação Puntual , Protaminas/toxicidade , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP
3.
J Am Soc Nephrol ; 25(9): 1942-53, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24676634

RESUMO

FSGS is characterized by the presence of partial sclerosis of some but not all glomeruli. Studies of familial FSGS have been instrumental in identifying podocytes as critical elements in maintaining glomerular function, but underlying mutations have not been identified for all forms of this genetically heterogeneous condition. Here, exome sequencing in members of an index family with dominant FSGS revealed a nonconservative, disease-segregating variant in the PAX2 transcription factor gene. Sequencing in probands of a familial FSGS cohort revealed seven rare and private heterozygous single nucleotide substitutions (4% of individuals). Further sequencing revealed seven private missense variants (8%) in a cohort of individuals with congenital abnormalities of the kidney and urinary tract. As predicted by in silico structural modeling analyses, in vitro functional studies documented that several of the FSGS-associated PAX2 mutations perturb protein function by affecting proper binding to DNA and transactivation activity or by altering the interaction of PAX2 with repressor proteins, resulting in enhanced repressor activity. Thus, mutations in PAX2 may contribute to adult-onset FSGS in the absence of overt extrarenal manifestations. These results expand the phenotypic spectrum associated with PAX2 mutations, which have been shown to lead to congenital abnormalities of the kidney and urinary tract as part of papillorenal syndrome. Moreover, these results indicate PAX2 mutations can cause disease through haploinsufficiency and dominant negative effects, which could have implications for tailoring individualized drug therapy in the future.


Assuntos
Glomerulosclerose Segmentar e Focal/genética , Mutação , Fator de Transcrição PAX2/genética , Adolescente , Adulto , Idade de Início , Idoso , Sequência de Aminoácidos , Sequência de Bases , Estudos de Coortes , Simulação por Computador , Sequência Conservada , Análise Mutacional de DNA , Exoma , Feminino , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Fator de Transcrição PAX2/química , Fator de Transcrição PAX2/metabolismo , Linhagem , Polimorfismo de Nucleotídeo Único , Conformação Proteica , Eletricidade Estática , Anormalidades Urogenitais , Refluxo Vesicoureteral/genética , Adulto Jovem
4.
Kidney Int ; 83(2): 316-22, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23014460

RESUMO

Mutations in the inverted formin 2 gene (INF2) have recently been identified as the most common cause of autosomal dominant focal and segmental glomerulosclerosis (FSGS). To quantify the contribution of various genes contributing to FSGS, we sequenced INF2 where all mutations have previously been described (exons 2 to 5) in a total of 215 probands and 281 sporadic individuals with FSGS, along with other known genes accounting for autosomal dominant FSGS (ACTN4, TRPC6, and CD2AP) in 213 probands. Variants were classified as disease-causing if they altered the amino acid sequence and if they were not found in control samples and in families segregated with disease. Mutations in INF2 were found in a total of 20 of the 215 families (including those previously reported) in our cohort of autosomal dominant familial nephrotic syndrome or FSGS, thereby explaining disease in 9%. INF2 mutations were found in 2 of 281 individuals with sporadic FSGS. In contrast, ACTN4- and TRPC6-related diseases accounted for 3 and 2% of our familial cohort, respectively. INF2-related disease showed variable penetrance, with onset of disease ranging widely from childhood to adulthood, and commonly leading to end-stage renal disease in the third and fourth decade of life. Thus, mutations in INF2 are a more common, although still a minor, monogenic cause of familial FSGS when compared with other known autosomal dominant genes associated with FSGS.


Assuntos
Glomerulosclerose Segmentar e Focal/genética , Proteínas dos Microfilamentos/genética , Mutação , Actinina/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Criança , Proteínas do Citoesqueleto/genética , Forminas , Humanos , Proteínas dos Microfilamentos/química , Pessoa de Meia-Idade , Dados de Sequência Molecular , Canais de Cátion TRPC/genética , Canal de Cátion TRPC6
5.
PLoS One ; 10(5): e0125410, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25933006

RESUMO

Two coding variants in the APOL1 gene (G1 and G2) explain most of the high rate of kidney disease in African Americans. APOL1-associated kidney disease risk inheritance follows an autosomal recessive pattern: The relative risk of kidney disease associated with inheritance of two high-risk variants is 7-30 fold, depending on the specific kidney phenotype. We wished to determine if the variability in phenotype might in part reflect structural differences in APOL1 gene. We analyzed sequence coverage from 1000 Genomes Project Phase 3 samples as well as exome sequencing data from African American kidney disease cases for copy number variation. 8 samples sequenced in the 1000 Genomes Project showed increased coverage over a ~100kb region that includes APOL2, APOL1 and part of MYH9, suggesting the presence of APOL1 copy number greater than 2. We reasoned that such duplications should be enriched in apparent G1 heterozygotes with kidney disease. Using a PCR-based assay, we observed the presence of this duplication in additional samples from apparent G0G1 or G0G2 individuals. The frequency of this APOL1 duplication was compared among cases (n = 123) and controls (n = 255) with apparent G0G1 heterozygosity. The presence of APOL1 duplication was observed in 4.06% of cases and 0.78% controls, preliminary evidence that this APOL1 duplication may alter susceptibility to kidney disease (p = 0.03). Taqman-based copy number assays confirmed the presence of 3 APOL1 copies in individuals positive for this specific duplication by PCR assay, but also identified a small number of individuals with additional APOL1 copies of presumably different structure. These observations motivate further studies to better assess the contribution of APOL1 copy number on kidney disease risk and on APOL1 function. Investigators and clinicians genotyping APOL1 should also consider whether the particular genotyping platform used is subject to technical errors when more than two copies of APOL1 are present.


Assuntos
Apolipoproteínas/genética , Variações do Número de Cópias de DNA , Duplicação Gênica , Predisposição Genética para Doença , Nefropatias/genética , Lipoproteínas HDL/genética , Negro ou Afro-Americano , Apolipoproteína L1 , Apolipoproteínas L , Estudos de Casos e Controles , Expressão Gênica , Frequência do Gene , Genes Recessivos , Loci Gênicos , Genoma Humano , Heterozigoto , Projeto Genoma Humano , Humanos , Rim/metabolismo , Rim/patologia , Nefropatias/diagnóstico , Nefropatias/etnologia , Nefropatias/patologia , Proteínas Motores Moleculares/genética , Cadeias Pesadas de Miosina/genética , Linhagem , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA