Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Nature ; 599(7886): 622-627, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34759320

RESUMO

Zero hunger and good health could be realized by 2030 through effective conservation, characterization and utilization of germplasm resources1. So far, few chickpea (Cicer arietinum) germplasm accessions have been characterized at the genome sequence level2. Here we present a detailed map of variation in 3,171 cultivated and 195 wild accessions to provide publicly available resources for chickpea genomics research and breeding. We constructed a chickpea pan-genome to describe genomic diversity across cultivated chickpea and its wild progenitor accessions. A divergence tree using genes present in around 80% of individuals in one species allowed us to estimate the divergence of Cicer over the last 21 million years. Our analysis found chromosomal segments and genes that show signatures of selection during domestication, migration and improvement. The chromosomal locations of deleterious mutations responsible for limited genetic diversity and decreased fitness were identified in elite germplasm. We identified superior haplotypes for improvement-related traits in landraces that can be introgressed into elite breeding lines through haplotype-based breeding, and found targets for purging deleterious alleles through genomics-assisted breeding and/or gene editing. Finally, we propose three crop breeding strategies based on genomic prediction to enhance crop productivity for 16 traits while avoiding the erosion of genetic diversity through optimal contribution selection (OCS)-based pre-breeding. The predicted performance for 100-seed weight, an important yield-related trait, increased by up to 23% and 12% with OCS- and haplotype-based genomic approaches, respectively.


Assuntos
Cicer/genética , Variação Genética , Genoma de Planta/genética , Análise de Sequência de DNA , Produtos Agrícolas/genética , Haplótipos/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único/genética
2.
BMC Plant Biol ; 24(1): 379, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720284

RESUMO

BACKGROUND: Rice bean (Vigna umbellata), an underrated legume, adapts to diverse climatic conditions with the potential to support food and nutritional security worldwide. It is used as a vegetable, minor food crop and a fodder crop, being a rich source of proteins, minerals, and essential fatty acids. However, little effort has been made to decipher the genetic and molecular basis of various useful traits in this crop. Therefore, we considered three economically important traits i.e., flowering, maturity and seed weight of rice bean and identified the associated candidate genes employing an associative transcriptomics approach on 100 diverse genotypes out of 1800 evaluated rice bean accessions from the Indian National Genebank. RESULTS: The transcriptomics-based genotyping of one-hundred diverse rice bean cultivars followed by pre-processing of genotypic data resulted in 49,271 filtered markers. The STRUCTURE, PCA and Neighbor-Joining clustering of 100 genotypes revealed three putative sub-populations. The marker-trait association analysis involving various genome-wide association study (GWAS) models revealed significant association of 82 markers on 48 transcripts for flowering, 26 markers on 22 transcripts for maturity and 22 markers on 21 transcripts for seed weight. The transcript annotation provided information on the putative candidate genes for the considered traits. The candidate genes identified for flowering include HSC80, P-II PsbX, phospholipid-transporting-ATPase-9, pectin-acetylesterase-8 and E3-ubiquitin-protein-ligase-RHG1A. Further, the WRKY1 and DEAD-box-RH27 were found to be associated with seed weight. Furthermore, the associations of PIF3 and pentatricopeptide-repeat-containing-gene with maturity and seed weight, and aldo-keto-reductase with flowering and maturity were revealed. CONCLUSION: This study offers insights into the genetic basis of key agronomic traits in rice bean, including flowering, maturity, and seed weight. The identified markers and associated candidate genes provide valuable resources for future exploration and targeted breeding, aiming to enhance the agronomic performance of rice bean cultivars. Notably, this research represents the first transcriptome-wide association study in pulse crop, uncovering the candidate genes for agronomically useful traits.


Assuntos
Flores , Estudo de Associação Genômica Ampla , Sementes , Transcriptoma , Sementes/genética , Sementes/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Vigna/genética , Vigna/crescimento & desenvolvimento , Genes de Plantas , Genótipo , Perfilação da Expressão Gênica , Mapeamento Cromossômico , Locos de Características Quantitativas/genética , Fenótipo
3.
Planta ; 260(2): 38, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951258

RESUMO

MAIN CONCLUSION: Our findings shed light on the regulation of anthocyanin and proanthocyanidin biosynthesis in chickpea seed coats. Expression of R2R3-MYB transcription factors CaLAP1 and CaLAP2 enhanced the anthocyanins and proanthocyanidins content in chickpea. The seed coat color is a major economic trait in leguminous crop chickpea (Cicer arietinum). Anthocyanins and proanthocyanidins (PAs) are two classes of flavonoids that mainly contribute to the flower, seed coat and color of Desi chickpea cultivars. Throughout the land plant lineage, the accumulation of anthocyanins and PAs is regulated by MYB and bHLH transcription factors (TFs), which form an MBW (MYB, bHLH, and WD40) complex. Here, we report two R2R3-MYB TFs in chickpea belonging to the anthocyanin-specific subgroup-6, CaLAP1 (Legume Anthocyanin Production 1), and CaLAP2 (Legume Anthocyanin Production 2), which are mainly expressed in the flowers and developmental stages of the seeds. CaLAP1 and CaLAP2 interact with TT8-like CabHLH1 and WD40, forming the MBW complex, and bind to the promoter sequences of anthocyanin- and PA biosynthetic genes CaCHS6, CaDFR2, CaANS, and CaANR, leading to anthocyanins and PA accumulation in the seed coat of chickpea. Moreover, these CaLAPs partially complement the anthocyanin-deficient phenotype in the Arabidopsis thaliana sextuple mutant seedlings. Overexpression of CaLAPs in chickpea resulted in significantly higher expression of anthocyanin and PA biosynthetic genes leading to a darker seed coat color with higher accumulation of anthocyanin and PA. Our findings show that CaLAPs positively modulate anthocyanin and PA content in seed coats, which might influence plant development and resistance to various biotic and abiotic stresses.


Assuntos
Antocianinas , Cicer , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Proantocianidinas , Sementes , Fatores de Transcrição , Cicer/genética , Cicer/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Antocianinas/biossíntese , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proantocianidinas/biossíntese , Proantocianidinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Plantas Geneticamente Modificadas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Flores/crescimento & desenvolvimento
4.
J Exp Bot ; 75(2): 642-657, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37158162

RESUMO

Lateral roots are a major component of root system architecture, and lateral root count (LRC) positively contributes to yield under drought in chickpea. To understand the genetic regulation of LRC, a biparental mapping population derived from two chickpea accessions having contrasting LRCs was genotyped by sequencing, and phenotyped to map four major quantitative trait loci (QTLs) contributing to 13-32% of the LRC trait variation. A single- nucleotide polymorphism tightly linked to the locus contributing to highest trait variation was located on the coding region of a gene (CaWIP2), orthologous to NO TRANSMITTING TRACT/WIP domain protein 2 (NTT/WIP2) gene of Arabidopsis thaliana. A polymorphic simple sequence repeat (SSR) in the CaWIP2 promoter showed differentiation between low versus high LRC parents and mapping individuals, suggesting its utility for marker-assisted selection. CaWIP2 promoter showed strong expression in chickpea apical root meristem and lateral root primordia. Expression of CaWIP2 under its native promoter in the Arabidopsis wip2wip4wip5 mutant rescued its rootless phenotype to produce more lateral roots than the wild-type plants, and led to formation of amyloplasts in the columella. CaWIP2 expression also induced the expression of genes that regulate lateral root emergence. Our study identified a gene-based marker for LRC which will be useful for developing drought-tolerant, high-yielding chickpea varieties.


Assuntos
Cicer , Locos de Características Quantitativas , Humanos , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Cicer/genética , Genótipo , Marcadores Genéticos
5.
BMC Biol ; 21(1): 15, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36721195

RESUMO

BACKGROUND: Rhizoctonia solani is a polyphagous fungal pathogen that causes diseases in crops. The fungal strains are classified into anastomosis groups (AGs); however, genomic complexity, diversification into the AGs and the evolution of pathogenicity-associated genes remain poorly understood. RESULTS: We report a recent whole-genome duplication and sequential segmental duplications in AG1-IA strains of R. solani. Transposable element (TE) clusters have caused loss of synteny in the duplicated blocks and introduced differential structural alterations in the functional domains of several pathogenicity-associated paralogous gene pairs. We demonstrate that the TE-mediated structural variations in a glycosyl hydrolase domain and a GMC oxidoreductase domain in two paralogous pairs affect the pathogenicity of R. solani. Furthermore, to investigate the association of TEs with the natural selection and evolution of pathogenicity, we sequenced the genomes of forty-two rice field isolates of R. solani AG1-IA. The genomic regions with high population mutation rates and with the lowest nucleotide diversity are enriched with TEs. Genetic diversity analysis predicted the genes that are most likely under diversifying and purifying selections. We present evidence that a smaller variant of a glucosamine phosphate N-acetyltransferase (GNAT) protein, predicted to be under purifying selection, and an LPMP_AA9 domain-containing protein, predicted to be under diversifying selection, are important for the successful pathogenesis of R. solani in rice as well as tomato. CONCLUSIONS: Our study has unravelled whole-genome duplication, TE-mediated neofunctionalization of genes and evolution of pathogenicity traits in R. solani AG1-IA. The pathogenicity-associated genes identified during the study can serve as novel targets for disease control.


Assuntos
Duplicação Gênica , Oryza , Virulência/genética , Rhizoctonia/genética , Genômica , Elementos de DNA Transponíveis
6.
New Phytol ; 238(2): 798-816, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36683398

RESUMO

Flavonoids are important plant pigments and defense compounds; understanding the transcriptional regulation of flavonoid biosynthesis may enable engineering crops with improved nutrition and stress tolerance. Here, we characterize R2R3-MYB domain subgroup 7 transcription factor CaMYB39, which regulates flavonol biosynthesis primarily in chickpea trichomes. CaMYB39 overexpression in chickpea was accompanied by a change in flux availability for the phenylpropanoid pathway, particularly flavonol biosynthesis. Lines overexpressing CaMYB39 showed higher isoflavonoid levels, suggesting its role in regulating isoflavonoid pathway. CaMYB39 transactivates the transcription of early flavonoid biosynthetic genes (EBG). FLAVONOL SYNTHASE2, an EBG, encodes an enzyme with higher substrate specificity for dihydrokaempferol than other dihydroflavonols explaining the preferential accumulation of kaempferol derivatives as prominent flavonols in chickpea. Interestingly, CaMYB39 overexpression increased trichome density and enhanced the accumulation of diverse flavonol derivatives in trichome-rich tissues. Moreover, CaMYB39 overexpression reduced reactive oxygen species levels and induced defense gene expression which aids in partially blocking the penetration efficiency of the fungal pathogen, Ascochyta rabiei, resulting in lesser symptoms, thus establishing its role against deadly Ascochyta blight (AB) disease. Overall, our study reports an instance where R2R3-MYB-SG7 member, CaMYB39, besides regulating flavonol biosynthesis, modulates diverse pathways like general phenylpropanoid, isoflavonoid, trichome density, and defense against necrotrophic fungal infection in chickpea.


Assuntos
Cicer , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Cicer/genética , Cicer/metabolismo , Flavonoides , Flavonóis , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
7.
Plant Cell Environ ; 46(11): 3501-3517, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37427826

RESUMO

Plants deposit lignin in the secondary cell wall as a common response to drought and pathogen attacks. Cell wall localised multicopper oxidase family enzymes LACCASES (LACs) catalyse the formation of monolignol radicals and facilitate lignin formation. We show an upregulation of the expression of several LAC genes and a downregulation of microRNA397 (CamiR397) in response to natural drought in chickpea roots. CamiR397 was found to target LAC4 and LAC17L out of twenty annotated LACs in chickpea. CamiR397 and its target genes are expressed in the root. Overexpression of CamiR397 reduced expression of LAC4 and LAC17L and lignin deposition in chickpea root xylem causing reduction in xylem wall thickness. Downregulation of CamiR397 activity by expressing a short tandem target mimic (STTM397) construct increased root lignin deposition in chickpea. CamiR397-overexpressing and STTM397 chickpea lines showed sensitivity and tolerance, respectively, towards natural drought. Infection with a fungal pathogen Macrophomina phaseolina, responsible for dry root rot (DRR) disease in chickpea, induced local lignin deposition and LAC gene expression. CamiR397-overexpressing and STTM397 chickpea lines showed more sensitivity and tolerance, respectively, to DRR. Our results demonstrated the regulatory role of CamiR397 in root lignification during drought and DRR in an agriculturally important crop chickpea.

8.
J Exp Bot ; 74(1): 130-148, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36205079

RESUMO

Flower and seed coat colour are important agronomic traits in chickpea (Cicer arietinum L.). Cultivated chickpeas are of two types namely, desi (dark seeded, purple flowered) and kabuli (light seeded, white flowered). There has been limited information about the molecular mechanism underlying colour variation of flower and seed coats in desi and kabuli chickpea. We profiled the anthocyanin and proanthocyanidin (PA) contents in chickpea flowers and seed coats. Tissue-specific silencing of two genes encoding a basic helix-loop-helix (CabHLH) protein and a tonoplast-localized multidrug and toxic compound extrusion (CaMATE1) transporter in a desi genotype resulted in the reduction in expression of anthocyanin and PA biosynthetic genes and anthocyanin and PA contents in the flower and seed coat, and produced flowers and seeds with kabuli characteristics. Transcriptional regulation of a subset of anthocyanin and PA biosynthetic genes by a natural CabHLH variant and transport assay of a natural CaMATE1 variant explained the association of these alleles with the kabuli phenotype. We carried out a detailed molecular characterization of these genes, and provided evidence that kabuli chickpea flower and seed colour phenotypes can be derived by manipulation of single genes in a desi chickpea background.


Assuntos
Cicer , Proantocianidinas , Cicer/genética , Antocianinas/metabolismo , Proantocianidinas/metabolismo , Cor , Sementes/genética , Sementes/metabolismo , Flores/genética
10.
Plant Physiol ; 182(3): 1387-1403, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31949029

RESUMO

Deficiency of water and phosphate induce lignin deposition in roots. LACCASEs, a family of cell wall-localized multicopper oxidases, are involved in lignin biosynthesis. We demonstrate here that LACCASE2 (LAC2) acts as a negative regulator of lignin deposition in root vascular tissues during water deficit. An Arabidopsis (Arabidopsis thaliana) transfer DNA insertion mutant of LAC2 displayed a short primary root and high lignin deposition in root vascular tissues. However, restoration of LAC2 expression rescued these phenotypes. LAC2 expression was significantly down-regulated under water deficit and posttranscriptionally regulated by microRNA397b (miR397b) in roots under normal and water-deficit conditions. Down-regulation of miR397b activity increased LAC2 expression and root length, and decreased lignin content in root vasculature. Similarly, phosphate (Pi) deficiency inversely affected miR397b and LAC2 expression. Lignin deposition in the root elongation zone under Pi-limited conditions was dependent on LAC2 expression. Localized iron accumulation and callose deposition in the root elongation zone under Pi deficiency increased with LAC2-dependent lignification, suggesting a direct relationship between these processes. Our study reveals a regulatory role for the miR397b-LAC2 module in root lignification during water and phosphate deficiency.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfatos/metabolismo , Raízes de Plantas/metabolismo , Água/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo
11.
Plant Biotechnol J ; 18(11): 2225-2240, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32181964

RESUMO

Cytokinin group of phytohormones regulate root elongation and branching during post-embryonic development. Cytokinin-degrading enzymes cytokinin oxidases/dehydrogenases (CKXs) have been deployed to investigate biological activities of cytokinin and to engineer root growth. We expressed chickpea cytokinin oxidase 6 (CaCKX6) under the control of a chickpea root-specific promoter of CaWRKY31 in Arabidopsis thaliana and chickpea having determinate and indeterminate growth patterns, respectively, to study the effect of cytokinin depletion on root growth and drought tolerance. Root-specific expression of CaCKX6 led to a significant increase in lateral root number and root biomass in Arabidopsis and chickpea without any penalty to vegetative and reproductive growth of shoot. Transgenic chickpea lines showed increased CKX activity in root. Soil-grown advanced chickpea transgenic lines exhibited higher root-to-shoot biomass ratio and enhanced long-term drought tolerance. These chickpea lines were not compromised in root nodulation and nitrogen fixation. The seed yield in some lines was up to 25% higher with no penalty in protein content. Transgenic chickpea seeds possessed higher levels of zinc, iron, potassium and copper. Our results demonstrated the potential of cytokinin level manipulation in increasing lateral root number and root biomass for agronomic trait improvement in an edible legume crop with indeterminate growth habit.


Assuntos
Cicer , Cicer/genética , Secas , Oxirredutases , Raízes de Plantas
12.
J Exp Bot ; 70(1): 133-147, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239807

RESUMO

Co-ordination of auxin and cytokinin activities determines root meristem size during post-embryonic development. Calcineurin B-like proteins (CBLs) and their interacting protein kinases (CIPKs) constitute signaling modules that relay calcium signals. Here we report that CIPK25 is involved in regulating the root meristem size. Arabidopsis plants lacking CIPK25 expression displayed a short root phenotype and a slower root growth rate with fewer meristem cells. This phenotype was rescued by restoration of CIPK25 expression. CIPK25 interacted with CBL4 and -5, and displayed strong gene expression in the flower and root, except in the cell proliferation domain in the root apical meristem. Its expression in the root was positively and negatively regulated by auxin and cytokinin, respectively. The cipk25 T-DNA insertion line was compromised in auxin transport and auxin-responsive promoter activity. The cipk25 mutant line showed altered expression of auxin efflux carriers (PIN1 and PIN2) and an Aux/IAA family gene SHY2. Decreased PIN1 and PIN2 expression in the cipk25 mutant line was completely restored when combined with a SHY2 loss-of-function mutation, resulting in recovery of root growth. SHY2 and PIN1 expression was partially regulated by cytokinin even in the absence of CIPK25, suggesting a CIPK25-independent cytokinin signaling pathway(s). Our results revealed that CIPK25 plays an important role in the co-ordination of auxin and cytokinin signaling in root meristem development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/imunologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Citocininas/farmacologia , DNA Bacteriano/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia
14.
BMC Genomics ; 18(1): 430, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28576139

RESUMO

BACKGROUND: Cultivated tomato (Solanum lycopersicum L.) is the second most important vegetable crop after potato and a member of thirteen interfertile species of Solanum genus. Domestication and continuous selection for desirable traits made cultivated tomato species susceptible to many stresses as compared to the wild species. In this study, we analyzed and compared the genomes of wild and cultivated tomato accessions to identify the genomic regions that encountered changes during domestication. RESULTS: Analysis was based on SNP and InDel mining of twentynine accessions of twelve wild tomato species and forty accessions of cultivated tomato. Percentage of common SNPs among the accessions within a species corresponded with the reproductive behavior of the species. SNP profiles of the wild tomato species within a phylogenetic subsection varied with their geographical distribution. Interestingly, the ratio of genic SNP to total SNPs increased with phylogenetic distance of the wild tomato species from the domesticated species, suggesting that variations in gene-coding region play a major role in speciation. We retrieved 2439 physical positions in 1594 genes including 32 resistance related genes where all the wild accessions possessed a common wild variant allele different from all the cultivated accessions studied. Tajima's D analysis predicted a very strong purifying selection associated with domestication in nearly 1% of its genome, half of which is contributed by chromosome 11. This genomic region with a low Tajima's D value hosts a variety of genes associated with important agronomic trait such as, fruit size, tiller number and wax deposition. CONCLUSION: Our analysis revealed a broad-spectrum genetic base in wild tomato species and erosion of that in cultivated tomato due to recurrent selection for agronomically important traits. Identification of the common wild variant alleles and the genomic regions undergoing purifying selection during cultivation would facilitate future breeding program by introgression from wild species.


Assuntos
Mapeamento Cromossômico , Genômica , Mutação INDEL , Polimorfismo de Nucleotídeo Único , Solanum lycopersicum/genética , Mineração de Dados , Genoma de Planta/genética , Solanum lycopersicum/crescimento & desenvolvimento , Especificidade da Espécie
15.
J Exp Bot ; 68(13): 3573-3584, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28541442

RESUMO

Cytosolic calcium ion (Ca2+) is an essential mediator of the plant innate immune response. Here, we report that a calcium-regulated protein kinase Calcineurin B-like protein (CBL)-interacting protein kinase 6 (CIPK6) functions as a negative regulator of immunity against the bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana. Arabidopsis lines with compromised expression of CIPK6 exhibited enhanced disease resistance to the bacterial pathogen and to P. syringae harboring certain but not all avirulent effectors, while restoration of CIPK6 expression resulted in abolition of resistance. Plants overexpressing CIPK6 were more susceptible to P. syringae. Enhanced resistance in the absence of CIPK6 was accompanied by increased accumulation of salicylic acid and elevated expression of defense marker genes. Salicylic acid accumulation was essential for improved immunity in the absence of CIPK6. CIPK6 negatively regulated the oxidative burst associated with perception of pathogen-associated microbial patterns (PAMPs) and bacterial effectors. Accelerated and enhanced activation of the mitogen-activated protein kinase cascade in response to bacterial and fungal elicitors was observed in the absence of CIPK6. The results of this study suggested that CIPK6 negatively regulates effector-triggered and PAMP-triggered immunity in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/imunologia , Imunidade Vegetal/genética , Proteínas Quinases/genética , Pseudomonas syringae/fisiologia , Proteínas de Arabidopsis/metabolismo , Resistência à Doença/genética , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Proteínas Quinases/metabolismo
16.
Plant Mol Biol ; 90(1-2): 171-87, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26577640

RESUMO

Pathogenesis related-10 (PR-10) proteins are present as multigene family in most of the higher plants. The role of PR-10 proteins in plant is poorly understood. A sequence analysis revealed that a large number of PR-10 proteins possess conserved motifs found in aldo/keto reductases (AKRs) of yeast and fungi. We took three PR-10 proteins, CaARP from chickpea, ABR17 from pea and the major pollen allergen Bet v1 from silver birch as examples and showed that these purified recombinant proteins possessed AKR activity using various cytotoxic aldehydes including methylglyoxal and malondialdehyde as substrates and the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) as co-factor. Essential amino acids for this catalytic activity were identified by substitution with other amino acids. CaARP was able to discriminate between the reduced and oxidized forms of NADP independently of its catalytic activity and underwent structural change upon binding with NADPH. CaARP protein was preferentially localized in cytosol. When expressed in bacteria, yeast or plant, catalytically active variants of CaARP conferred tolerance to salinity, oxidative stress or cytotoxic aldehydes. CaARP-expressing plants showed lower lipid peroxidation product content in presence or absence of stress suggesting that the protein functions as a scavenger of cytotoxic aldehydes produced by metabolism and lipid peroxidation. Our result proposes a new biochemical property of a PR-10 protein.


Assuntos
Aldeído Redutase/metabolismo , Cicer/enzimologia , Proteínas de Plantas/metabolismo , Aldeído Redutase/genética , Aldeídos/metabolismo , Aldo-Ceto Redutases , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/fisiologia , Catálise , Cicer/genética , Cicer/fisiologia , Peroxidação de Lipídeos , Malondialdeído/metabolismo , Dados de Sequência Molecular , Oxirredução , Estresse Oxidativo , Proteínas de Plantas/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes , Tolerância ao Sal , Alinhamento de Sequência
17.
Plant J ; 74(5): 715-29, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23489434

RESUMO

Cicer arietinum L. (chickpea) is the third most important food legume crop. We have generated the draft sequence of a desi-type chickpea genome using next-generation sequencing platforms, bacterial artificial chromosome end sequences and a genetic map. The 520-Mb assembly covers 70% of the predicted 740-Mb genome length, and more than 80% of the gene space. Genome analysis predicts the presence of 27,571 genes and 210 Mb as repeat elements. The gene expression analysis performed using 274 million RNA-Seq reads identified several tissue-specific and stress-responsive genes. Although segmental duplicated blocks are observed, the chickpea genome does not exhibit any indication of recent whole-genome duplication. Nucleotide diversity analysis provides an assessment of a narrow genetic base within the chickpea cultivars. We have developed a resource for genetic markers by comparing the genome sequences of one wild and three cultivated chickpea genotypes. The draft genome sequence is expected to facilitate genetic enhancement and breeding to develop improved chickpea varieties.


Assuntos
Cicer/genética , Genoma de Planta , Análise de Sequência de DNA/métodos , Transcriptoma/genética , Composição de Bases/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Fabaceae/classificação , Fabaceae/genética , Variação Genética , Genótipo , Repetições de Microssatélites/genética , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Sintenia
18.
BMC Plant Biol ; 14: 315, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25518738

RESUMO

BACKGROUND: Availability of the draft nuclear genome sequences of small-seeded desi-type legume crop Cicer arietinum has provided an opportunity for investigating unique chickpea genomic features and evaluation of their biological significance. The increasing number of legume genome sequences also presents a challenge for developing reliable and information-driven bioinformatics applications suitable for comparative exploration of this important class of crop plants. RESULTS: The Chickpea Genomic Web Resource (CGWR) is an implementation of a suite of web-based applications dedicated to chickpea genome visualization and comparative analysis, based on next generation sequencing and assembly of Cicer arietinum desi-type genotype ICC4958. CGWR has been designed and configured for mapping, scanning and browsing the significant chickpea genomic features in view of the important existing and potential roles played by the various legume genome projects in mutant mapping and cloning. It also enables comparative informatics of ICC4958 DNA sequence analysis with other wild and cultivated genotypes of chickpea, various other leguminous species as well as several non-leguminous model plants, to enable investigations into evolutionary processes that shape legume genomes. CONCLUSIONS: CGWR is an online database offering a comprehensive visual and functional genomic analysis of the chickpea genome, along with customized maps and gene-clustering options. It is also the only plant based web resource supporting display and analysis of nucleosome positioning patterns in the genome. The usefulness of CGWR has been demonstrated with discoveries of biological significance made using this server. The CGWR is compatible with all available operating systems and browsers, and is available freely under the open source license at http://www.nipgr.res.in/CGWR/home.php.


Assuntos
Cicer/genética , Biologia Computacional/instrumentação , Genoma de Planta , Internet , Proteínas de Plantas/genética , Núcleo Celular/genética , Mapeamento Cromossômico , Fabaceae/genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Análise de Sequência de DNA , Software
19.
Mol Biol Rep ; 41(8): 5123-34, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24752408

RESUMO

Mungbean yellow mosaic India virus (MYMIV), a bipartite begomovirus, causes yellow mosaic disease to soybean. Studies related to host gene expression in response to begomovirus infection have mostly been performed with systemically infected tissues at a later period of infection. In this study, soybean gene expression analysis has been performed to understand local responses against MYMIV at an early stage of infection before appearance of detectable limit of late viral transcripts. 444 soybean transcripts belonging to eleven functional categories showed significant changes in expression level at two days after infection. MYMIV infection resulted in enhanced expression of genes associated with hypersensitive response, programmed cell death and resistance response pathways and reduced expression of genes for photosynthesis and sugar transport. Comparative expression analysis of selected transcripts in the susceptible and a resistant variety displayed differential expression of host genes involved in intercellular virus movement and long distance signaling of systemic acquired resistance.


Assuntos
Begomovirus/patogenicidade , Regulação da Expressão Gênica de Plantas , Glycine max/genética , Glycine max/virologia , Doenças das Plantas/genética , DNA Viral/genética , Genes de Plantas , Análise em Microsséries , Doenças das Plantas/virologia , Imunidade Vegetal , Análise de Sequência de DNA
20.
Plant Physiol Biochem ; 211: 108601, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38696867

RESUMO

Neurotransmitters are naturally found in many plants, but the molecular processes that govern their actions still need to be better understood. Acetylcholine, γ-Aminobutyric acid, histamine, melatonin, serotonin, and glutamate are the most common neurotransmitters in animals, and they all play a part in the development and information processing. It is worth noting that all these chemicals have been found in plants. Although much emphasis has been placed on understanding how neurotransmitters regulate mood and behaviour in humans, little is known about how they regulate plant growth and development. In this article, the information was reviewed and updated considering current thinking on neurotransmitter signaling in plants' metabolism, growth, development, salt tolerance, and the associated avenues for underlying research. The goal of this study is to advance neurotransmitter signaling research in plant biology, especially in the area of salt stress physiology.


Assuntos
Neurotransmissores , Fenômenos Fisiológicos Vegetais , Estresse Salino , Transdução de Sinais , Neurotransmissores/metabolismo , Plantas/metabolismo , Tolerância ao Sal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA