Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nat Chem Biol ; 18(1): 56-63, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34782742

RESUMO

Nuclear receptor-binding SET domain-containing 2 (NSD2) is the primary enzyme responsible for the dimethylation of lysine 36 of histone 3 (H3K36), a mark associated with active gene transcription and intergenic DNA methylation. In addition to a methyltransferase domain, NSD2 harbors two proline-tryptophan-tryptophan-proline (PWWP) domains and five plant homeodomains (PHDs) believed to serve as chromatin reading modules. Here, we report a chemical probe targeting the N-terminal PWWP (PWWP1) domain of NSD2. UNC6934 occupies the canonical H3K36me2-binding pocket of PWWP1, antagonizes PWWP1 interaction with nucleosomal H3K36me2 and selectively engages endogenous NSD2 in cells. UNC6934 induces accumulation of endogenous NSD2 in the nucleolus, phenocopying the localization defects of NSD2 protein isoforms lacking PWWP1 that result from translocations prevalent in multiple myeloma (MM). Mutations of other NSD2 chromatin reader domains also increase NSD2 nucleolar localization and enhance the effect of UNC6934. This chemical probe and the accompanying negative control UNC7145 will be useful tools in defining NSD2 biology.


Assuntos
Nucléolo Celular/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Sondas Moleculares/química , Domínios Proteicos , Proteínas Repressoras/metabolismo , Metilação , Mieloma Múltiplo/metabolismo , Nucleossomos/metabolismo
2.
J Chem Inf Model ; 64(13): 5344-5355, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38916159

RESUMO

We herewith applied a priori a generic hit identification method (POEM) for difficult targets of known three-dimensional structure, relying on the simple knowledge of physicochemical and topological properties of a user-selected cavity. Searching for local similarity to a set of fragment-bound protein microenvironments of known structure, a point cloud registration algorithm is first applied to align known subpockets to the target cavity. The resulting alignment then permits us to directly pose the corresponding seed fragments in a target cavity space not typically amenable to classical docking approaches. Last, linking potentially connectable atoms by a deep generative linker enables full ligand enumeration. When applied to the WD40 repeat (WDR) central cavity of leucine-rich repeat kinase 2 (LRRK2), an unprecedented binding site, POEM was able to quickly propose 94 potential hits, five of which were subsequently confirmed to bind in vitro to LRRK2-WDR.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Simulação de Acoplamento Molecular , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Sítios de Ligação , Domínios Proteicos , Humanos , Ligantes , Ligação Proteica , Repetições WD40 , Algoritmos
3.
Biochim Biophys Acta ; 1850(9): 1842-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26002201

RESUMO

BACKGROUND: Dysregulation of methylation of lysine 36 on histone H3 (H3K36) have been implicated in a variety of diseases including cancers. ASH1L and SETD2 are two enzymes among others that catalyze H3K36 methylation. H3K4 methylation has also been reported for ASH1L. METHODS: Radioactivity-based enzyme assays, Western and immunoblotting using specific antibodies and molecular modeling were used to characterize substrate specificity of ASH1L and SETD2. RESULTS: Here we report on the assay development and kinetic characterization of ASH1L and SETD2 and their substrate specificities in vitro. Both enzymes were active with recombinant nucleosome as substrate. However, SETD2 but not ASH1L methylated histone peptides as well indicating that the interaction of the basic post-SET extension with substrate may not be critical for SETD2 activity. Both enzymes were not active with nucleosome containing a H3K36A mutation indicating their specificity for H3K36. Analyzing the methylation state of the products of ASH1L and SETD2 reactions also confirmed that both enzymes mono- and dimethylate H3K36 and are inactive with H3K4 as substrate, and that only SETD2 is able to trimethylate H3K36 in vitro. CONCLUSIONS: We determined the kinetic parameters for ASH1L and SETD2 activity enabling screening for inhibitors that can be used to further investigate the roles of these two proteins in health and disease. Both ASH1L and SETD2 are H3K36 specific methyltransferases but only SETD2 can trimethylate this mark. The basic post-SET extension is critical for ASH1L but not SETD2 activity. GENERAL SIGNIFICANCE: We provide full kinetic characterization of ASH1L and SETD2 activity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas de Ligação a DNA/química , Histona-Lisina N-Metiltransferase/química , Humanos , Cinética , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Especificidade por Substrato , Fatores de Transcrição/química
4.
J Biol Chem ; 289(17): 12177-12188, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24634223

RESUMO

PRDM9 (PR domain-containing protein 9) is a meiosis-specific protein that trimethylates H3K4 and controls the activation of recombination hot spots. It is an essential enzyme in the progression of early meiotic prophase. Disruption of the PRDM9 gene results in sterility in mice. In human, several PRDM9 SNPs have been implicated in sterility as well. Here we report on kinetic studies of H3K4 methylation by PRDM9 in vitro indicating that PRDM9 is a highly active histone methyltransferase catalyzing mono-, di-, and trimethylation of the H3K4 mark. Screening for other potential histone marks, we identified H3K36 as a second histone residue that could also be mono-, di-, and trimethylated by PRDM9 as efficiently as H3K4. Overexpression of PRDM9 in HEK293 cells also resulted in a significant increase in trimethylated H3K36 and H3K4 further confirming our in vitro observations. Our findings indicate that PRDM9 may play critical roles through H3K36 trimethylation in cells.


Assuntos
Metilação de DNA , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Calorimetria , Histonas/química , Humanos , Cinética , Espectrometria de Massas , Especificidade por Substrato
5.
Biochem J ; 449(1): 151-9, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22989411

RESUMO

WDR5 (WD40 repeat protein 5) is an essential component of the human trithorax-like family of SET1 [Su(var)3-9 enhancer-of-zeste trithorax 1] methyltransferase complexes that carry out trimethylation of histone 3 Lys4 (H3K4me3), play key roles in development and are abnormally expressed in many cancers. In the present study, we show that the interaction between WDR5 and peptides from the catalytic domain of MLL (mixed-lineage leukaemia protein) (KMT2) can be antagonized with a small molecule. Structural and biophysical analysis show that this antagonist binds in the WDR5 peptide-binding pocket with a Kd of 450 nM and inhibits the catalytic activity of the MLL core complex in vitro. The degree of inhibition was enhanced at lower protein concentrations consistent with a role for WDR5 in directly stabilizing the MLL multiprotein complex. Our data demonstrate inhibition of an important protein-protein interaction and form the basis for further development of inhibitors of WDR5-dependent enzymes implicated in MLL-rearranged leukaemias or other cancers.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Proteína de Leucina Linfoide-Mieloide/antagonistas & inibidores , Proteína de Leucina Linfoide-Mieloide/metabolismo , Domínio Catalítico/fisiologia , Cristalografia por Raios X , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia
6.
J Med Chem ; 67(7): 5837-5853, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38533580

RESUMO

The methyl-lysine reader protein SPIN1 plays important roles in various human diseases. However, targeting methyl-lysine reader proteins has been challenging. Very few cellularly active SPIN1 inhibitors have been developed. We previously reported that our G9a/GLP inhibitor UNC0638 weakly inhibited SPIN1. Here, we present our comprehensive structure-activity relationship study that led to the discovery of compound 11, a dual SPIN1 and G9a/GLP inhibitor, and compound 18 (MS8535), a SPIN1 selective inhibitor. We solved the cocrystal structure of SPIN1 in complex with 11, confirming that 11 occupied one of the three Tudor domains. Importantly, 18 displayed high selectivity for SPIN1 over 38 epigenetic targets, including G9a/GLP, and concentration dependently disrupted the interactions of SPIN1 and H3 in cells. Furthermore, 18 was bioavailable in mice. We also developed 19 (MS8535N), which was inactive against SPIN1, as a negative control of 18. Collectively, these compounds are useful chemical tools to study biological functions of SPIN1.


Assuntos
Lisina , Domínio Tudor , Humanos , Animais , Camundongos , Relação Estrutura-Atividade
7.
bioRxiv ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37873443

RESUMO

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to significant global morbidity and mortality. A crucial viral protein, the non-structural protein 14 (nsp14), catalyzes the methylation of viral RNA and plays a critical role in viral genome replication and transcription. Due to the low mutation rate in the nsp region among various SARS-CoV-2 variants, nsp14 has emerged as a promising therapeutic target. However, discovering potential inhibitors remains a challenge. In this work, we introduce a computational pipeline for the rapid and efficient identification of potential nsp14 inhibitors by leveraging virtual screening and the NCI open compound collection, which contains 250,000 freely available molecules for researchers worldwide. The introduced pipeline provides a cost-effective and efficient approach for early-stage drug discovery by allowing researchers to evaluate promising molecules without incurring synthesis expenses. Our pipeline successfully identified seven promising candidates after experimentally validating only 40 compounds. Notably, we discovered NSC620333, a compound that exhibits a strong binding affinity to nsp14 with a dissociation constant of 427 ± 84 nM. In addition, we gained new insights into the structure and function of this protein through molecular dynamics simulations. We identified new conformational states of the protein and determined that residues Phe367, Tyr368, and Gln354 within the binding pocket serve as stabilizing residues for novel ligand interactions. We also found that metal coordination complexes are crucial for the overall function of the binding pocket. Lastly, we present the solved crystal structure of the nsp14-MTase complexed with SS148 (PDB:8BWU), a potent inhibitor of methyltransferase activity at the nanomolar level (IC50 value of 70 ± 6 nM). Our computational pipeline accurately predicted the binding pose of SS148, demonstrating its effectiveness and potential in accelerating drug discovery efforts against SARS-CoV-2 and other emerging viruses.

8.
Nat Chem Biol ; 7(8): 566-74, 2011 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-21743462

RESUMO

Protein lysine methyltransferases G9a and GLP modulate the transcriptional repression of a variety of genes via dimethylation of Lys9 on histone H3 (H3K9me2) as well as dimethylation of non-histone targets. Here we report the discovery of UNC0638, an inhibitor of G9a and GLP with excellent potency and selectivity over a wide range of epigenetic and non-epigenetic targets. UNC0638 treatment of a variety of cell lines resulted in lower global H3K9me2 levels, equivalent to levels observed for small hairpin RNA knockdown of G9a and GLP with the functional potency of UNC0638 being well separated from its toxicity. UNC0638 markedly reduced the clonogenicity of MCF7 cells, reduced the abundance of H3K9me2 marks at promoters of known G9a-regulated endogenous genes and disproportionately affected several genomic loci encoding microRNAs. In mouse embryonic stem cells, UNC0638 reactivated G9a-silenced genes and a retroviral reporter gene in a concentration-dependent manner without promoting differentiation.


Assuntos
Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/metabolismo , Quinazolinas/farmacologia , Animais , Linhagem Celular , Inativação Gênica , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/genética , Humanos , Camundongos , Estrutura Molecular
9.
Eur J Med Chem ; 260: 115713, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37597437

RESUMO

Protein arginine methyltransferases (PRMTs) catalyze the methylation of the terminal nitrogen atoms of the guanidino group of arginine of protein substrates. The aberrant expression of these methyltransferases is linked to various diseases, making them promising therapeutic targets. Currently, PRMT inhibitors are at different stages of clinical development, which validated their significance as drug targets. Structural Genomics Consortium (SGC) has reported several small fragment inhibitors as Class I PRMT inhibitors, which can be the starting point for rational drug development. Herein, we report the successful application of a fragment-based approach toward the discovery of selective Class I PRMT inhibitors. Structure-based ligand optimization was performed by strategic incorporation of fragment hits on the drug-like quinazoline core and subsequent fragment growth in the desired orientation towards identified hydrophobic shelf. A clear SAR was established, and the lead compounds 55 and 56 displayed potent inhibition of Class I PRMTs with IC50 values of 92 nM and 37 nM against PRMT4. We report the systematic development of potent Class I PRMT inhibitors with good potency and about 100-fold selectivity when tested against a panel of 31 human DNA, RNA, and protein lysine and arginine methyltransferases. These improved small molecules will provide new options for the development of novel potent and selective PRMT4 inhibitors.


Assuntos
Desenho de Fármacos , Proteína-Arginina N-Metiltransferases , Humanos , Desenvolvimento de Medicamentos , Arginina , Catálise
10.
Biochim Biophys Acta Gen Subj ; 1867(4): 130319, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36764586

RESUMO

Seven coronaviruses have infected humans (HCoVs) to-date. SARS-CoV-2 caused the current COVID-19 pandemic with the well-known high mortality and severe socioeconomic consequences. MERS-CoV and SARS-CoV caused epidemic of MERS and SARS, respectively, with severe respiratory symptoms and significant fatality. However, HCoV-229E, HCoV-NL63, HCoV-HKU1, and HCoV-OC43 cause respiratory illnesses with less severe symptoms in most cases. All coronaviruses use RNA capping to evade the immune systems of humans. Two viral methyltransferases, nsp14 and nsp16, play key roles in RNA capping and are considered valuable targets for development of anti-coronavirus therapeutics. But little is known about the kinetics of nsp10-nsp16 methyltransferase activities of most HCoVs, and reliable assays for screening are not available. Here, we report the expression, purification, and kinetic characterization of nsp10-nsp16 complexes from six HCoVs in parallel with previously characterized SARS-CoV-2. Probing the active sites of all seven by SS148 and WZ16, the two recently reported dual nsp14 / nsp10-nsp16 inhibitors, revealed pan-inhibition. Overall, our study show feasibility of developing broad-spectrum dual nsp14 / nsp10-nsp16-inhibitor therapeutics.


Assuntos
COVID-19 , Humanos , Metiltransferases/química , Pandemias , RNA , SARS-CoV-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA