Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Virol J ; 7: 200, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20735849

RESUMO

BACKGROUND: Recent and previous studies have shown that guinea pigs can be infected with, and transmit, human influenza viruses. Therefore guinea pig may be a useful animal model for better understanding influenza infection and assessing vaccine strategies. To more fully characterize the model, antibody responses following either infection/re-infection with human influenza A/Wyoming/03/2003 H3N2 or immunization with its homologous recombinant hemagglutinin (HA) protein were studied. RESULTS: Serological samples were collected and tested for anti-HA immunoglobulin by ELISA, antiviral antibodies by hemagglutination inhibition (HI), and recognition of linear epitopes by peptide scanning (PepScan). Animals inoculated with infectious virus demonstrated pronounced viral replication and subsequent serological conversion. Animals either immunized with the homologous HA antigen or infected, showed a relatively rapid rise in antibody titers to the HA glycoprotein in ELISA assays. Antiviral antibodies, measured by HI assay, were detectable after the second inoculation. PepScan data identified both previously recognized and newly defined linear epitopes. CONCLUSIONS: Infection and/or recombinant HA immunization of guinea pigs with H3N2 Wyoming influenza virus resulted in a relatively rapid production of viral-specific antibody thus demonstrating the strong immunogenicity of the major viral structural proteins in this animal model for influenza infection. The sensitivity of the immune response supports the utility of the guinea pig as a useful animal model of influenza infection and immunization.


Assuntos
Anticorpos Antivirais/sangue , Hemaglutininas Virais/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Epitopos/imunologia , Cobaias , Testes de Inibição da Hemaglutinação , Imunoglobulina G/sangue
3.
Vaccine ; 26(49): 6189-99, 2008 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-18852005

RESUMO

A large number of the world's most widespread and problematic pathogens evade host immune responses by inducing strain-specific immunity to immunodominant epitopes with high mutation rates capable of altering antigenic profiles. The immune system appears to be decoyed into reacting to these immunodominant epitopes that offer little cross protection between serotypes or subtypes. For example, during HIV-1 infection, the immune system reacts strongly to the V1, V2, and/or V3 loops of the surface envelope glycoprotein but not to epitopes that afford broad protection against strain variants. Similarly, the host mounts strain-specific immunity to immunodominant epitopes of the influenza hemagglutinin (HA) protein. A large number of pathogens appear to exploit this weakness in the host immune system by focusing antigenic attention upon highly variable epitopes while avoiding surveillance toward more highly conserved receptor binding sites or other essential functional domains. Because the propensity of the immune system to react against immunodominant strain-specific epitopes appears to be genetically hard-wired, the phenomenon has been termed "deceptive imprinting." In this review, the authors describe observations related to deceptive imprinting in multiple systems and propose strategies for overcoming this phenomenon in the design of vaccines capable of inducing protection against highly variable pathogens.


Assuntos
Vacinas/imunologia , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Animais , Vírus da Artrite-Encefalite Caprina/genética , Vírus da Artrite-Encefalite Caprina/imunologia , Desenho de Fármacos , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/imunologia , HIV-1/genética , HIV-1/imunologia , Humanos , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Orthomyxoviridae/genética , Orthomyxoviridae/imunologia , Rhinovirus/imunologia , Vacinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA