Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Acta Anaesthesiol Scand ; 67(5): 569-575, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36691710

RESUMO

This rapid practice guideline provides evidence-based recommendations for the use of awake proning in adult patients with acute hypoxemic respiratory failure due to COVID-19. The panel included 20 experts from 12 countries, including one patient representative, and used a strict conflict of interest policy for potential financial and intellectual conflicts of interest. Methodological support was provided by the guidelines in intensive care, development, and evaluation (GUIDE) group. Based on an updated systematic review, and the grading of recommendations, assessment, development, and evaluation (GRADE) method we evaluated the certainty of evidence and developed recommendations using the Evidence-to-Decision framework. We conducted an electronic vote, requiring >80% agreement amongst the panel for a recommendation to be adopted. The panel made a strong recommendation for a trial of awake proning in adult patients with COVID-19 related hypoxemic acute respiratory failure who are not invasively ventilated. Awake proning appears to reduce the risk of tracheal intubation, although it may not reduce mortality. The panel judged that most patients would want a trial of awake proning, although this may not be feasible in some patients and some patients may not tolerate it. However, given the high risk of clinical deterioration amongst these patients, awake proning should be conducted in an area where patients can be monitored by staff experienced in rapidly detecting and managing clinical deterioration. This RPG panel recommends a trial of awake prone positioning in patients with acute hypoxemic respiratory failure due to COVID-19.


Assuntos
COVID-19 , Deterioração Clínica , Insuficiência Respiratória , Adulto , Humanos , COVID-19/complicações , COVID-19/terapia , Decúbito Ventral , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/terapia , SARS-CoV-2 , Vigília
2.
Transfus Apher Sci ; 61(6): 103497, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35842293

RESUMO

INTRODUCTION: Various therapies have been tried for Covid disease including the use of antivirals, steroids, monoclonal antibodies and convalescent plasma. METHOD: The study was conducted on convalescent plasma transfused ICU patients. Part A of the study involves clinical outcomes based on gender, age, comorbidities, blood group,and the average length of stay. Part B investigates clinical outcomes in patients transfused with convalescent plasma before and after the November 2021 guidelines. Part C of the study includes patients in cytokine storm and the efficacy of tocilizumab in these patients. RESULT: Out of the 326 ICU patients transfused with convalescent plasma the overall mortality was 152 (53.3 %). On comparing blood groups and clinical outcomes, a clinically significant result was found. A clinically significant association was also seen on comparing the clinical outcome of 18-50 years and 61-70 years age group and in female gender patients. The average number of ICU days had a positive impact on the overall patient survival. Out of the patients in 'cytokine storm' (n = 109), on day 20, the survival percentage in the non-Tocilizumab group showed a downward trend throughout. However, in the Tocilizumab group, the survival percentage remained stable throughout till around day 50. CONCLUSION: Amongst the convalescent plasma transfused ICU patients, females, having blood group B, and an average length of stay of fewer than 20 days had a better chance of survival. The patients given tocilizumab and convalescent plasma had a better chance of survival compared to tocilizumab alone.


Assuntos
Antígenos de Grupos Sanguíneos , COVID-19 , Humanos , Feminino , COVID-19/terapia , SARS-CoV-2 , Síndrome da Liberação de Citocina , Imunização Passiva/efeitos adversos , Resultado do Tratamento , Citocinas , Unidades de Terapia Intensiva , Soroterapia para COVID-19
3.
Acta Anaesthesiol Scand ; 65(5): 702-710, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33583027

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) can lead to severe hypoxic respiratory failure and death. Corticosteroids decrease mortality in severely or critically ill patients with COVID-19. However, the optimal dose remains unresolved. The ongoing randomised COVID STEROID 2 trial investigates the effects of higher vs lower doses of dexamethasone (12 vs 6 mg intravenously daily for up to 10 days) in 1,000 adult patients with COVID-19 and severe hypoxia. METHODS: This protocol outlines the rationale and statistical methods for a secondary, pre-planned Bayesian analysis of the primary outcome (days alive without life support at day 28) and all secondary outcomes registered up to day 90. We will use hurdle-negative binomial models to estimate the mean number of days alive without life support in each group and present results as mean differences and incidence rate ratios with 95% credibility intervals (CrIs). Additional count outcomes will be analysed similarly and binary outcomes will be analysed using logistic regression models with results presented as probabilities, relative risks and risk differences with 95% CrIs. We will present probabilities of any benefit/harm, clinically important benefit/harm and probabilities of effects smaller than pre-defined clinically minimally important differences for all outcomes analysed. Analyses will be adjusted for stratification variables and conducted using weakly informative priors supplemented by sensitivity analyses using sceptic priors. DISCUSSION: This secondary, pre-planned Bayesian analysis will supplement the primary, conventional analysis and may help clinicians, researchers and policymakers interpret the results of the COVID STEROID 2 trial while avoiding arbitrarily dichotomised interpretations of the results. TRIAL REGISTRATION: ClinicalTrials.gov: NCT04509973; EudraCT: 2020-003363-25.


Assuntos
Tratamento Farmacológico da COVID-19 , Dexametasona/administração & dosagem , Hipóxia/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , SARS-CoV-2 , Teorema de Bayes , Humanos
4.
Acta Anaesthesiol Scand ; 65(6): 834-845, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33583034

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has resulted in millions of deaths and overburdened healthcare systems worldwide. Systemic low-dose corticosteroids have proven clinical benefit in patients with severe COVID-19. Higher doses of corticosteroids are used in other inflammatory lung diseases and may offer additional clinical benefits in COVID-19. At present, the balance between benefits and harms of higher vs. lower doses of corticosteroids for patients with COVID-19 is unclear. METHODS: The COVID STEROID 2 trial is an investigator-initiated, international, parallel-grouped, blinded, centrally randomised and stratified clinical trial assessing higher (12 mg) vs. lower (6 mg) doses of dexamethasone for adults with COVID-19 and severe hypoxia. We plan to enrol 1,000 patients in Denmark, Sweden, Switzerland and India. The primary outcome is days alive without life support (invasive mechanical ventilation, circulatory support or renal replacement therapy) at day 28. Secondary outcomes include serious adverse reactions at day 28; all-cause mortality at day 28, 90 and 180; days alive without life support at day 90; days alive and out of hospital at day 90; and health-related quality of life at day 180. The primary outcome will be analysed using the Kryger Jensen and Lange test adjusted for stratification variables and reported as adjusted mean differences and median differences. The full statistical analysis plan is outlined in this protocol. DISCUSSION: The COVID STEROID 2 trial will provide evidence on the optimal dosing of systemic corticosteroids for COVID-19 patients with severe hypoxia with important implications for patients, their relatives and society.


Assuntos
Anti-Inflamatórios/administração & dosagem , Tratamento Farmacológico da COVID-19 , Dexametasona/administração & dosagem , Pandemias , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , SARS-CoV-2 , Anti-Inflamatórios/efeitos adversos , COVID-19/complicações , Dinamarca , Dexametasona/efeitos adversos , Relação Dose-Resposta a Droga , Método Duplo-Cego , Mortalidade Hospitalar , Humanos , Hidrocortisona/uso terapêutico , Hipóxia/tratamento farmacológico , Hipóxia/etiologia , Índia , Cuidados para Prolongar a Vida/estatística & dados numéricos , Padrões de Prática Médica/estatística & dados numéricos , Qualidade de Vida , Análise de Sobrevida , Suécia , Suíça
5.
JAMA ; 326(18): 1807-1817, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34673895

RESUMO

Importance: A daily dose with 6 mg of dexamethasone is recommended for up to 10 days in patients with severe and critical COVID-19, but a higher dose may benefit those with more severe disease. Objective: To assess the effects of 12 mg/d vs 6 mg/d of dexamethasone in patients with COVID-19 and severe hypoxemia. Design, Setting, and Participants: A multicenter, randomized clinical trial was conducted between August 2020 and May 2021 at 26 hospitals in Europe and India and included 1000 adults with confirmed COVID-19 requiring at least 10 L/min of oxygen or mechanical ventilation. End of 90-day follow-up was on August 19, 2021. Interventions: Patients were randomized 1:1 to 12 mg/d of intravenous dexamethasone (n = 503) or 6 mg/d of intravenous dexamethasone (n = 497) for up to 10 days. Main Outcomes and Measures: The primary outcome was the number of days alive without life support (invasive mechanical ventilation, circulatory support, or kidney replacement therapy) at 28 days and was adjusted for stratification variables. Of the 8 prespecified secondary outcomes, 5 are included in this analysis (the number of days alive without life support at 90 days, the number of days alive out of the hospital at 90 days, mortality at 28 days and at 90 days, and ≥1 serious adverse reactions at 28 days). Results: Of the 1000 randomized patients, 982 were included (median age, 65 [IQR, 55-73] years; 305 [31%] women) and primary outcome data were available for 971 (491 in the 12 mg of dexamethasone group and 480 in the 6 mg of dexamethasone group). The median number of days alive without life support was 22.0 days (IQR, 6.0-28.0 days) in the 12 mg of dexamethasone group and 20.5 days (IQR, 4.0-28.0 days) in the 6 mg of dexamethasone group (adjusted mean difference, 1.3 days [95% CI, 0-2.6 days]; P = .07). Mortality at 28 days was 27.1% in the 12 mg of dexamethasone group vs 32.3% in the 6 mg of dexamethasone group (adjusted relative risk, 0.86 [99% CI, 0.68-1.08]). Mortality at 90 days was 32.0% in the 12 mg of dexamethasone group vs 37.7% in the 6 mg of dexamethasone group (adjusted relative risk, 0.87 [99% CI, 0.70-1.07]). Serious adverse reactions, including septic shock and invasive fungal infections, occurred in 11.3% in the 12 mg of dexamethasone group vs 13.4% in the 6 mg of dexamethasone group (adjusted relative risk, 0.83 [99% CI, 0.54-1.29]). Conclusions and Relevance: Among patients with COVID-19 and severe hypoxemia, 12 mg/d of dexamethasone compared with 6 mg/d of dexamethasone did not result in statistically significantly more days alive without life support at 28 days. However, the trial may have been underpowered to identify a significant difference. Trial Registration: ClinicalTrials.gov Identifier: NCT04509973 and ctri.nic.in Identifier: CTRI/2020/10/028731.


Assuntos
Tratamento Farmacológico da COVID-19 , Dexametasona/administração & dosagem , Glucocorticoides/administração & dosagem , Cuidados para Prolongar a Vida , Idoso , COVID-19/complicações , COVID-19/mortalidade , Dexametasona/efeitos adversos , Relação Dose-Resposta a Droga , Feminino , Glucocorticoides/efeitos adversos , Humanos , Hipóxia/etiologia , Hipóxia/terapia , Masculino , Pessoa de Meia-Idade , Micoses/etiologia , Respiração Artificial , Choque Séptico/etiologia , Método Simples-Cego
6.
Indian J Crit Care Med ; 24(8): 609-610, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33024358

RESUMO

How to cite this article: Chawla R, Nasa P. Ventilatory Management of COVID-19-related ARDS: Stick to Basics and Infection Control. Indian J Crit Care Med 2020;24(8):609-610.

7.
Indian J Crit Care Med ; 24(12): 1174-1179, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33446968

RESUMO

INTRODUCTION: Coronavirus disease-2019 (COVID-19) systemic illness caused by a novel coronavirus severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has been spreading across the world. The objective of this study is to identify the clinical and laboratory variables as predictors of in-hospital death at the time of admission in a tertiary care hospital in India. MATERIALS AND METHODS: Demographic profile, clinical, and laboratory variables of 425 patients admitted from April to June 2020 with symptoms and laboratory-confirmed diagnosis through real-time polymerase chain reaction (RT-PCR) were studied. Descriptive statistics, an association of these variables, logistic regression, and CART models were developed to identify early predictors of in-hospital death. RESULTS: Twenty-two patients (5.17%) had expired in course of their hospital stay. The median age [interquartile range (IQR)] of the patients admitted was 49 years (21-77 years). Gender distribution was male - 73.38% (mortality rate 5.83%) and female-26.62% (mortality rate 3.34%). The study shows higher association for age (>47 years) [odds ratio (OR) 4.52], male gender (OR 1.78), shortness of breath (OR 2.02), oxygen saturation <93% (OR 9.32), respiratory rate >24 (OR 5.31), comorbidities like diabetes (OR 2.70), hypertension (OR 2.12), and coronary artery disease (OR 3.18) toward overall mortality. The significant associations in laboratory variables include lymphopenia (<12%) (OR 8.74), C-reactive protein (CRP) (OR 1.99), ferritin (OR 3.18), and lactate dehydrogenase (LDH) (OR 3.37). Using this statistically significant 16 clinical and laboratory variables, the logistic regression model had an area under receiver operating characteristic (ROC) curve of 0.86 (train) and 0.75 (test). CONCLUSION: Age above 47 years, associated with comorbidities like hypertension and diabetes, with oxygen saturation below 93%, tachycardia, and deranged laboratory variables like lymphopenia and raised CRP, LDH, and ferritin are important predictors of in-hospital mortality. HOW TO CITE THIS ARTICLE: Jain AC, Kansal S, Sardana R, Bali RK, Kar S, Chawla R. A Retrospective Observational Study to Determine the Early Predictors of In-hospital Mortality at Admission with COVID-19. Indian J Crit Care Med 2020;24(12):1174-1179.

8.
Indian J Crit Care Med ; 24(Suppl 1): S61-S81, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32205957

RESUMO

A. ACUTE HYPERCAPNIC RESPIRATORY FAILURE A1. Acute Exacerbation of COPD: Recommendations: NIV should be used in management of acute exacerbation of COPD in patients with acute or acute-on-chronic respiratory acidosis (pH = 7.25-7.35). (1A) NIV should be attempted in patients with acute exacerbation of COPD (pH <7.25 & PaCO2 ≥ 45) before initiating invasive mechanical ventilation (IMV) except in patients requiring immediate intubation. (2A). Lower the pH higher the chance of failure of NIV. (2B) NIV should not to be used routinely in normo- or mildly hyper-capneic patients with acute exacerbation of COPD, without acidosis (pH > 7.35). (2B) A2. NIV in ARF due to Chest wall deformities/Neuromuscular diseases: Recommendations: NIV may be used in patients of ARF due to chest wall deformity/Neuromuscular diseases. (PaCO2 ≥ 45) (UPP) A3. NIV in ARF due to Obesity hypoventilation syndrome (OHS): Recommendations: NIV may be used in AHRF in OHS patients when they present with acute hypercapnic or acute on chronic respiratory failure (pH 45). (3B) NIV/CPAP may be used in obese, hypercapnic patients with OHS and/or right heart failure in the absence of acidosis. (UPP) B. NIV IN ACUTE HYPOXEMIC RESPIRATORY FAILURE: B1. NIV in Acute Cardiogenic Pulmonary Oedema: Recommendations: NIV is recommended in hospital patients with ARF, due to Cardiogenic pulmonary edema. (1A). NIV should be used in patients with acute heart failure/ cardiogenic pulmonary edema, right from emergency department itself. (1B) Both CPAP and BiPAP modes are safe and effective in patients with cardiogenic pulmonary edema. (1A). However, BPAP (NIV-PS) should be preferred in cardiogenic pulmonary edema with hypercapnia. (3A) B2. NIV in acute hypoxemic respiratory failure: Recommendations: NIV may be used over conventional oxygen therapy in mild early acute hypoxemic respiratory failure (P/F ratio <300 and >200 mmHg), under close supervision. (2B) We strongly recommend against a trial of NIV in patients with acute hypoxemic failure with P/F ratio <150. (2A) B3. NIV in ARF due to Chest Trauma: Recommendations: NIV may be used in traumatic flail chest along with adequate pain relief. (3B) B4. NIV in Immunocompromised Host: Recommendations: In Immunocompromised patients with early ARF, we may consider NIV over conventional oxygen. (2B). B5. NIV in Palliative Care: Recommendations: We strongly recommend use of NIV for reducing dyspnea in palliative care setting. (2A) B6. NIV in post-operative cases: Recommendations: NIV should be used in patients with post-operative acute respiratory failure. (2A) B6a. NIV in abdominal surgery: Recommendations: NIV may be used in patients with ARF following abdominal surgeries. (2A) B6b. NIV in bariatric surgery: Recommendations: NIV may be used in post-bariatric surgery patients with pre-existent OSA or OHS. (3A) B6c. NIV in Thoracic surgery: Recommendations: In cardiothoracic surgeries, use of NIV is recommended post operatively for acute respiratory failure to improve oxygenation and reduce chance of reintubation. (2A) NIV should not be used in patients undergoing esophageal surgery. (UPP) B6d. NIV in post lung transplant: Recommendations: NIV may be used for shortening weaning time and to avoid re-intubation following lung transplantation. (2B) B7. NIV during Procedures (ETI/Bronchoscopy/TEE/Endoscopy): Recommendations: NIV may be used for pre-oxygenation before intubation. (2B) NIV with appropriate interface may be used in patients of ARF during Bronchoscopy/Endoscopy to improve oxygenation. (3B) B8. NIV in Viral Pneumonitis ARDS: Recommendations: NIV cannot be considered as a treatment of choice for patients with acute respiratory failure with H1N1 pneumonia. However, it may be reasonable to use NIV in selected patients with single organ involvement, in a strictly controlled environment with close monitoring. (2B) B9. NIV and Acute exacerbation of Pulmonary Tuberculosis: Recommendations: Careful use of NIV in patients with acute Tuberculosis may be considered, with effective infection control precautions to prevent air-borne transmission. (3B) B10. NIV after planned extubation in high risk patients: Recommendation: We recommend that NIV may be used to wean high risk patients from invasive mechanical ventilation as it reduces re-intubation rate. (2B) B11. NIV for respiratory distress post extubation: Recommendations: We recommend that NIV therapy should not be used to manage respiratory distress post-extubation in high risk patients. (2B) C. APPLICATION OF NIV: Recommendation: Choice of mode should be mainly decided by factors like disease etiology and severity, the breathing effort by the patient and the operator familiarity and experience. (UPP) We suggest using flow trigger over pressure triggering in assisted modes, as it provides better patient ventilator synchrony. Especially in COPD patients, flow triggering has been found to benefit auto PEEP. (3B) D. MANAGEMENT OF PATIENT ON NIV: D1. Sedation: Recommendations: A non-pharmacological approach to calm the patient (Reassuring the patient, proper environment) should always be tried before administrating sedatives. (UPP) In patients on NIV, sedation may be used with extremely close monitoring and only in an ICU setting with lookout for signs of NIV failure. (UPP) E. EQUIPMENT: Recommendations: We recommend that portable bilevel ventilators or specifically designed ICU ventilators with non-invasive mode should be used for delivering Non-invasive ventilation in critically ill patients. (UPP) Both critical care ventilators with leak compensation and bi-level ventilators have been equally effective in decreasing the WOB, RR, and PaCO2. (3B) Currently, Oronasal mask is the most preferred interface for non-invasive ventilation for acute respiratory failure. (3B) F. WEANING: Recommendations: We recommend that weaning from NIV may be done by a standardized protocol driven approach of the unit. (2B) How to cite this article: Chawla R, Dixit SB, Zirpe KG, Chaudhry D, Khilnani GC, Mehta Y, et al. ISCCM Guidelines for the Use of Non-invasive Ventilation in Acute Respiratory Failure in Adult ICUs. Indian J Crit Care Med 2020;24(Suppl 1):S61-S81.

9.
Indian J Crit Care Med ; 24(11): 1028-1036, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33384507

RESUMO

INTRODUCTION: Fluid therapy in critically ill patients, especially timing and fluid choice, is controversial. Previous randomized trials produced conflicting results. This observational study evaluated the effect of colloid use on 90-day mortality and acute kidney injury (RIFLE F) within the Rational Fluid Therapy in Asia (RaFTA) registry in intensive care units. MATERIALS AND METHODS: RaFTA is a prospective, observational study in Asian intensive care unit (ICU) patients focusing on fluid therapy and related outcomes. Logistic regression was performed to identify risk factors for increased 90-day mortality and acute kidney injury (AKI). RESULTS: Twenty-four study centers joined the RaFTA registry and collected 3,187 patient data sets from November 2011 to September 2012. A follow-up was done 90 days after ICU admission. For 90-day mortality, significant risk factors in the overall population were sepsis at admission (OR 2.185 [1.799; 2.654], p < 0.001), cumulative fluid balance (OR 1.032 [1.018; 1.047], p < 0.001), and the use of vasopressors (OR 3.409 [2.694; 4.312], p < 0.001). The use of colloids was associated with a reduced risk of 90-day mortality (OR 0.655 [0.478; 0.900], p = 0.009). The initial colloid dose was not associated with an increased risk for AKI (OR 1.094 [0.754; 1.588], p = 0.635). CONCLUSION: RaFTA adds the important finding that colloid use was not associated with increased 90-day mortality or AKI after adjustment for baseline patient condition. CLINICAL SIGNIFICANCE: Early resuscitation with colloids showed potential mortality benefit in the present analysis. Elucidating these findings may be an approach for future research. HOW TO CITE THIS ARTICLE: Jacob M, Sahu S, Singh YP, Mehta Y, Yang K-Y, Kuo S-W, et al. A Prospective Observational Study of Rational Fluid Therapy in Asian Intensive Care Units: Another Puzzle Piece in Fluid Therapy. Indian J Crit Care Med 2020;24(11):1028-1036.

10.
Indian J Crit Care Med ; 23(1): 27-30, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31065205

RESUMO

CONTEXT: Time to detection (TTD) given by continuous monitoring automated blood culture systems (CMABS) have been found to be a predictor of clinical outcome, drug resistance and type of microorganism in cases of bacteremia but the studies evaluating TTD with respect to fungemia are scarce especially from India. AIMS: To evaluate TTD for yeast isolates in fungal bloodstream infections with respect to the type of yeast isolates, risk factors and outcome and to study yeast susceptibility and distribution of yeast isolates with respect to patient population. MATERIALS AND METHODS: All blood culture specimens were processed in CMABS. The TTD for yeast isolates were recorded. The identification of yeast and susceptibility testing was done by automated methods. A correlation of TTD was done with respect to prior/concurrent yeast isolates, use of antifungal, risk factors and clinical outcome. RESULTS: Out of 80 yeast isolates, the maximum was C. parapsilosis (26.25%) followed by C. albicans (16.25%) and C. tropicalis (13.75%). A statistically significant difference in the occurrence of yeasts with early TTD (TTD < = 48 hours) and late TTD (TTD > 48 hours) was found. TTD of C. glabrata was significantly longer (p = 0.002) while TTD of C. tropicalis was significantly shorter (p = 0.013). There was an observable favorable outcome in shorter TTD (< = 48 hours). C. albicans and C. tropicalis depicted 100% susceptibility for Azoles, Amphotericin B and Echinocandins. CONCLUSION: TTD may be used as both diagnostic and prognostic adjunct in fungal bloodstream infections. This study is a step towards this novel approach. We also emphasize on the importance of speciation of yeast isolates and susceptibility testing. HOW TO CITE THIS ARTICLE: Butta H, Sardana R, Mendiratta L, Sibal A, Gupta V, Chawla R, Jafri AA. Time to Detection of Yeast Isolates in Pediatric and Adult Patients with Fungemia and its Relevance to Clinical Profile and Outcome. Indian Journal of Critical Care Medicine, January 2019;23(1):27-30.

11.
Indian J Crit Care Med ; 22(1): 20-26, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29422728

RESUMO

BACKGROUND: There is limited data regarding the microbiology of Intensive Care Unit (ICU)-acquired infections, such as ventilator-associated pneumonia (VAP), catheter-associated urinary tract infections (CAUTI), and catheter-related bloodstream infections (CRBSI) from India. OBJECTIVES: To explore the microbiology and resistance patterns of ICU-acquired infections and evaluate their outcomes. MATERIALS AND METHODS: This was a multicenter observational study, conducted by Indian Society of Critical Care Medicine (MOSER study) between August 2011 and October 2012. Patients in the ICU ≥48 h with any ICU-acquired infection within 14 days of index ICU stay were included. Patient demographics, relevant clinical, and microbiological details were collected. Follow-up until hospital discharge or death was done, and 6-month survival data were collected. RESULTS: Of the 381 patients included in the study, 346 patients had 1 ICU infection and 35 had more than one ICU infection. Among patients with single infections, 223 had VAP with Acinetobacter being the most common isolate. CAUTI was seen in 42 patients with Klebsiella as the most common organism. CRBSI was seen in 81 patients and Klebsiella was the most common causative organism. Multidrug resistance was noted in 87.5% of Acinetobacter, 75.5% of Klebsiella, 61.9% of Escherichia coli, and 58.9% of Pseudomonas isolates, respectively. Staphylococcus constituted only 2.4% of isolates. Mortality rates were 26%, 11.9%, and 34.6% in VAP, CAUTI, and CRBSI, respectively. CONCLUSION: VAP is the most common infection followed by CRBSI and CAUTI. Multidrug-resistant Gram-negative bacteria are the most common organisms. Staphylococcus aureus is uncommon in the Indian setting.

12.
Indian J Crit Care Med ; 20(4): 216-25, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27186054

RESUMO

AIMS: To obtain information on organizational aspects, case mix and practices in Indian Intensive Care Units (ICUs). PATIENTS AND METHODS: An observational, 4-day point prevalence study was performed between 2010 and 2011 in 4209 patients from 124 ICUs. ICU and patient characteristics, and interventions were recorded for 24 h of the study day, and outcomes till 30 days after the study day. Data were analyzed for 4038 adult patients from 120 ICUs. RESULTS: On the study day, mean age, Acute Physiology and Chronic Health Evaluation (APACHE II) and sequential organ failure assessment (SOFA) scores were 54.1 ± 17.1 years, 17.4 ± 9.2 and 3.8 ± 3.6, respectively. About 46.4% patients had ≥1 organ failure. Nearly, 37% and 22.2% patients received mechanical ventilation (MV) and vasopressors or inotropes, respectively. Nearly, 12.2% patients developed an infection in the ICU. About 28.3% patients had severe sepsis or septic shock (SvSpSS) during their ICU stay. About 60.7% patients without infection received antibiotics. There were 546 deaths and 183 terminal discharges (TDs) from ICU (including left against medical advice or discharged on request), with ICU mortality 729/4038 (18.1%). In 1627 patients admitted within 24 h of the study day, the standardized mortality ratio was 0.67. The APACHE II and SOFA scores, public hospital ICUs, medical ICUs, inadequately equipped ICUs, medical admission, self-paying patient, presence of SvSpSS, acute respiratory failure or cancer, need for a fluid bolus, and MV were independent predictors of mortality. CONCLUSIONS: The high proportion of TDs and the association of public hospitals, self-paying patients, and inadequately equipped hospitals with mortality has important implications for critical care in India.

13.
Indian J Crit Care Med ; 18(9): 575-84, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25249742

RESUMO

BACKGROUND AND AIM: Use of sedation, analgesia and neuromuscular blocking agents is widely practiced in Intensive Care Units (ICUs). Our aim is to study the current practice patterns related to mobilization, analgesia, relaxants and sedation (MARS) to help in standardizing best practices in these areas in the ICU. MATERIALS AND METHODS: A web-based nationwide survey involving physicians of the Indian Society of Critical Care Medicine (ISCCM) and the Indian Society of Anesthesiologists (ISA) was carried out. A questionnaire included questions on demographics, assessment scales for delirium, sedation and pain, as also the pharmacological agents and the practice methods. RESULTS: Most ICUs function in a semi-closed model. Midazolam (94.99%) and Fentanyl (47.04%) were the most common sedative and analgesic agents used, respectively. Vecuronium was the preferred neuromuscular agent. Monitoring of sedation, analgesia and delirium in the ICU. Ramsay's Sedation Scale (56.1%) and Visual Analogue Scale (48.07%) were the preferred sedation and pain scales, respectively. CAM (Confusion Assessment Method)-ICU was the most preferred method of delirium assessment. Haloperidol was the most commonly used agent for delirium. Majority of the respondents were aware of the benefit of early mobilization, but lack of support staff and safety concerns were the main obstacles to its implementation. CONCLUSION: The results of the survey suggest that compliance with existing guidelines is low. Benzodiazepines still remain the predominant ICU sedative. The recommended practice of giving analgesia before sedation is almost non-existent. Delirium remains an underrecognized entity. Monitoring of sedation levels, analgesia and delirium is low and validated and recommended scales for the same are rarely used. Although awareness of the benefits of early mobilization are high, the implementation is low.

14.
J Vasc Access ; : 11297298241242163, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539085

RESUMO

BACKGROUND: Central line-associated bloodstream infection (CLABSI) rates in intensive care units (ICUs) across Latin America exceed those in high-income countries significantly. METHODS: We implemented the INICC multidimensional approach, incorporating an 11-component bundle, in 122 ICUs spanning nine Asian countries. We computed the CLABSI rate using the CDC/NSHN definition and criteria. The CLABSI rate per 1000 CL-days was calculated at baseline and throughout different phases of the intervention, including the 2nd month, 3rd month, 4-16 month, and 17-29 month periods. A two-sample t-test was employed to compare baseline CLABSI rates with intervention rates. Additionally, we utilized a generalized linear mixed model with a Poisson distribution to analyze the association between exposure and outcome. RESULTS: A total of 124,946 patients were hospitalized over 717,270 patient-days, with 238,595 central line (CL)-days recorded. The rates of CLABSI per 1000 CL-days significantly decreased from 16.64 during the baseline period to 6.51 in the 2nd month (RR = 0.39; 95% CI = 0.36-0.42; p < 0.001), 3.71 in the 3rd month (RR = 0.22; 95% CI = 0.21-0.25; p < 0.001), 2.80 in the 4-16 month (RR = 0.17; 95% CI = 0.15-0.19; p < 0.001), and 2.18 in the 17-29 month (RR = 0.13; 95% CI = 0.11-0.15; p < 0.001) intervals. A multilevel Poisson regression model demonstrated a sustained, continuous, and statistically significant decrease in ratios of incidence rates, reaching 0.35 (p < 0.0001) during the 17-29 month period. Moreover, the all-cause in-ICU mortality rate significantly decreased from 13.23% to 10.96% (p = 0.0001) during the 17-29 month period. CONCLUSIONS: Our intervention led to an 87% reduction in CLABSI rates, with a 29-month follow-up.

15.
Am J Infect Control ; 52(1): 54-60, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37499758

RESUMO

BACKGROUND: Identify urinary catheter (UC)-associated urinary tract infections (CAUTI) incidence and risk factors (RF) in 235 ICUs in 8 Asian countries: India, Malaysia, Mongolia, Nepal, Pakistan, the Philippines, Thailand, and Vietnam. METHODS: From January 1, 2014, to February 12, 2022, we conducted a prospective cohort study. To estimate CAUTI incidence, the number of UC days was the denominator, and CAUTI was the numerator. To estimate CAUTI RFs, we analyzed 11 variables using multiple logistic regression. RESULTS: 84,920 patients hospitalized for 499,272 patient days acquired 869 CAUTIs. The pooled CAUTI rate per 1,000 UC-days was 3.08; for those using suprapubic-catheters (4.11); indwelling-catheters (2.65); trauma-ICU (10.55), neurologic-ICU (7.17), neurosurgical-ICU (5.28); in lower-middle-income countries (3.05); in upper-middle-income countries (1.71); at public-hospitals (5.98), at private-hospitals (3.09), at teaching-hospitals (2.04). The following variables were identified as CAUTI RFs: Age (adjusted odds ratio [aOR] = 1.01; 95% CI = 1.01-1.02; P < .0001); female sex (aOR = 1.39; 95% CI = 1.21-1.59; P < .0001); using suprapubic-catheter (aOR = 4.72; 95% CI = 1.69-13.21; P < .0001); length of stay before CAUTI acquisition (aOR = 1.04; 95% CI = 1.04-1.05; P < .0001); UC and device utilization-ratio (aOR = 1.07; 95% CI = 1.01-1.13; P = .02); hospitalized at trauma-ICU (aOR = 14.12; 95% CI = 4.68-42.67; P < .0001), neurologic-ICU (aOR = 14.13; 95% CI = 6.63-30.11; P < .0001), neurosurgical-ICU (aOR = 13.79; 95% CI = 6.88-27.64; P < .0001); public-facilities (aOR = 3.23; 95% CI = 2.34-4.46; P < .0001). DISCUSSION: CAUTI rate and risk are higher for older patients, women, hospitalized at trauma-ICU, neurologic-ICU, neurosurgical-ICU, and public facilities. All of them are unlikely to change. CONCLUSIONS: It is suggested to focus on reducing the length of stay and the Urinary catheter device utilization ratio, avoiding suprapubic catheters, and implementing evidence-based CAUTI prevention recommendations.


Assuntos
Infecções Relacionadas a Cateter , Infecção Hospitalar , Infecções Urinárias , Humanos , Feminino , Estudos Prospectivos , Infecção Hospitalar/prevenção & controle , Incidência , Infecções Relacionadas a Cateter/epidemiologia , Infecções Relacionadas a Cateter/prevenção & controle , Infecções Urinárias/prevenção & controle , Unidades de Terapia Intensiva , Cateteres de Demora/efeitos adversos , Fatores de Risco , Paquistão/epidemiologia
16.
Am J Infect Control ; 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38185380

RESUMO

BACKGROUND: Reporting on the International Nosocomial Infection Control Consortium study results from 2015 to 2020, conducted in 630 intensive care units across 123 cities in 45 countries spanning Africa, Asia, Eastern Europe, Latin America, and the Middle East. METHODS: Prospective intensive care unit patient data collected via International Nosocomial Infection Control Consortium Surveillance Online System. Centers for Disease Control and Prevention/National Health Care Safety Network definitions applied for device-associated health care-associated infections (DA-HAI). RESULTS: We gathered data from 204,770 patients, 1,480,620 patient days, 936,976 central line (CL)-days, 637,850 mechanical ventilators (MV)-days, and 1,005,589 urinary catheter (UC)-days. Our results showed 4,270 CL-associated bloodstream infections, 7,635 ventilator-associated pneumonia, and 3,005 UC-associated urinary tract infections. The combined rates of DA-HAIs were 7.28%, and 10.07 DA-HAIs per 1,000 patient days. CL-associated bloodstream infections occurred at 4.55 per 1,000 CL-days, ventilator-associated pneumonias at 11.96 per 1,000 MV-days, and UC-associated urinary tract infections at 2.91 per 1,000 UC days. In terms of resistance, Pseudomonas aeruginosa showed 50.73% resistance to imipenem, 44.99% to ceftazidime, 37.95% to ciprofloxacin, and 34.05% to amikacin. Meanwhile, Klebsiella spp had resistance rates of 48.29% to imipenem, 72.03% to ceftazidime, 61.78% to ciprofloxacin, and 40.32% to amikacin. Coagulase-negative Staphylococci and Staphylococcus aureus displayed oxacillin resistance in 81.33% and 53.83% of cases, respectively. CONCLUSIONS: The high rates of DA-HAI and bacterial resistance emphasize the ongoing need for continued efforts to control them.

17.
J Crit Care ; 80: 154500, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38128216

RESUMO

BACKGROUND: Ventilator associated pneumonia (VAP) occurring in the intensive care unit (ICU) are common, costly, and potentially lethal. METHODS: We implemented a multidimensional approach and an 8-component bundle in 374 ICUs across 35 low and middle-income countries (LMICs) from Latin-America, Asia, Eastern-Europe, and the Middle-East, to reduce VAP rates in ICUs. The VAP rate per 1000 mechanical ventilator (MV)-days was measured at baseline and during intervention at the 2nd month, 3rd month, 4-15 month, 16-27 month, and 28-39 month periods. RESULTS: 174,987 patients, during 1,201,592 patient-days, used 463,592 MV-days. VAP per 1000 MV-days rates decreased from 28.46 at baseline to 17.58 at the 2nd month (RR = 0.61; 95% CI = 0.58-0.65; P < 0.001); 13.97 at the 3rd month (RR = 0.49; 95% CI = 0.46-0.52; P < 0.001); 14.44 at the 4-15 month (RR = 0.51; 95% CI = 0.48-0.53; P < 0.001); 11.40 at the 16-27 month (RR = 0.41; 95% CI = 0.38-0.42; P < 0.001), and to 9.68 at the 28-39 month (RR = 0.34; 95% CI = 0.32-0.36; P < 0.001). The multilevel Poisson regression model showed a continuous significant decrease in incidence rate ratios, reaching 0.39 (p < 0.0001) during the 28th to 39th months after implementation of the intervention. CONCLUSIONS: This intervention resulted in a significant VAP rate reduction by 66% that was maintained throughout the 39-month period.


Assuntos
Infecção Hospitalar , Pneumonia Associada à Ventilação Mecânica , Humanos , Pneumonia Associada à Ventilação Mecânica/epidemiologia , Pneumonia Associada à Ventilação Mecânica/prevenção & controle , Controle de Infecções/métodos , Incidência , América Latina/epidemiologia , Unidades de Terapia Intensiva , Oriente Médio , Ásia , Europa Oriental/epidemiologia , Infecção Hospitalar/epidemiologia
18.
Lung India ; 41(2): 151-167, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38700413

RESUMO

ABSTRACT: Medical Thoracoscopy (MT) is commonly performed by respiratory physicians for diagnostic as well as therapeutic purposes. The aim of the study was to provide evidence-based information regarding all aspects of MT, both as a diagnostic tool and therapeutic aid for pulmonologists across India. The consensus-based guidelines were formulated based on a multistep process using a set of 31 questions. A systematic search of published randomized controlled clinical trials, open labelled studies, case reports and guidelines from electronic databases, like PubMed, EmBase and Cochrane, was performed. The modified grade system was used (1, 2, 3 or usual practice point) to classify the quality of available evidence. Then, a multitude of factors were taken into account, such as volume of evidence, applicability and practicality for implementation to the target population and then strength of recommendation was finalized. MT helps to improve diagnosis and patient management, with reduced risk of post procedure complications. Trainees should perform at least 20 medical thoracoscopy procedures. The diagnostic yield of both rigid and semirigid techniques is comparable. Sterile-graded talc is the ideal agent for chemical pleurodesis. The consensus statement will help pulmonologists to adopt best evidence-based practices during MT for diagnostic and therapeutic purposes.

19.
Am J Infect Control ; 52(5): 580-587, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38154739

RESUMO

BACKGROUND: Central line (CL)-associated bloodstream infections (CLABSIs) occurring in the intensive care unit (ICU) are common and associated with a high burden. METHODS: We implemented a multidimensional approach, incorporating an 11-element bundle, education, surveillance of CLABSI rates and clinical outcomes, monitoring compliance with bundle components, feedback of CLABSI rates and clinical outcomes, and performance feedback in 316 ICUs across 30 low- and middle-income countries. Our dependent variables were CLABSI per 1,000-CL-days and in-ICU all-cause mortality rates. These variables were measured at baseline and during the intervention, specifically during the second month, third month, 4 to 16 months, and 17 to 29 months. Comparisons were conducted using a two-sample t test. To explore the exposure-outcome relationship, we used a generalized linear mixed model with a Poisson distribution to model the number of CLABSIs. RESULTS: During 1,837,750 patient-days, 283,087 patients, used 1,218,882 CL-days. CLABSI per 1,000 CL-days rates decreased from 15.34 at the baseline period to 7.97 in the 2nd month (relative risk (RR) = 0.52; 95% confidence interval [CI] = 0.48-0.56; P < .001), 5.34 in the 3rd month (RR = 0.35; 95% CI = 0.32-0.38; P < .001), and 2.23 in the 17 to 29 months (RR = 0.15; 95% CI = 0.13-0.17; P < .001). In-ICU all-cause mortality rate decreased from 16.17% at baseline to 13.68% (RR = 0.84; P = .0013) at 17 to 29 months. CONCLUSIONS: The implemented approach was effective, and a similar intervention could be applied in other ICUs of low- and middle-income countries to reduce CLABSI and in-ICU all-cause mortality rates.

20.
Am J Infect Control ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38437883

RESUMO

BACKGROUND: Catheter-Associated Urinary Tract Infections (CAUTIs) frequently occur in the intensive care unit (ICU) and are correlated with a significant burden. METHODS: We implemented a strategy involving a 9-element bundle, education, surveillance of CAUTI rates and clinical outcomes, monitoring compliance with bundle components, feedback of CAUTI rates and performance feedback. This was executed in 299 ICUs across 32 low- and middle-income countries. The dependent variable was CAUTI per 1,000 UC days, assessed at baseline and throughout the intervention, in the second month, third month, 4 to 15 months, 16 to 27 months, and 28 to 39 months. Comparisons were made using a 2-sample t test, and the exposure-outcome relationship was explored using a generalized linear mixed model with a Poisson distribution. RESULTS: Over the course of 978,364 patient days, 150,258 patients utilized 652,053 UC-days. The rates of CAUTI per 1,000 UC days were measured. The rates decreased from 14.89 during the baseline period to 5.51 in the second month (risk ratio [RR] = 0.37; 95% confidence interval [CI] = 0.34-0.39; P < .001), 3.79 in the third month (RR = 0.25; 95% CI = 0.23-0.28; P < .001), 2.98 in the 4 to 15 months (RR = 0.21; 95% CI = 0.18-0.22; P < .001), 1.86 in the 16 to 27 months (RR = 0.12; 95% CI = 0.11-0.14; P < .001), and 1.71 in the 28 to 39 months (RR = 0.11; 95% CI = 0.09-0.13; P < .001). CONCLUSIONS: Our intervention, without substantial costs or additional staffing, achieved an 89% reduction in CAUTI incidence in ICUs across 32 countries, demonstrating feasibility in ICUs of low- and middle-income countries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA