RESUMO
Cullin-RING ubiquitin ligase 4 (CRL4) is closely correlated with the incidence and progression of ovarian cancer. DDB1- and CUL4-associated factor 13 (DCAF13), a substrate-recognition protein in the CRL4 E3 ubiquitin ligase complex, is involved in the occurrence and development of ovarian cancer. However, its precise function and the underlying molecular mechanism in this disease remain unclear. In this study, we confirmed that DCAF13 is highly expressed in human ovarian cancer and its expression is negatively correlated with the overall survival rate of patients with ovarian cancer. We then used CRISPR/Cas9 to knockout DCAF13 and found that its deletion significantly inhibited the proliferation, colony formation, and migration of human ovarian cancer cells. In addition, DCAF13 deficiency inhibited tumor proliferation in nude mice. Mechanistically, CRL4-DCAF13 targeted Fraser extracellular matrix complex subunit 1 (FRAS1) for polyubiquitination and proteasomal degradation. FRAS1 influenced the proliferation and migration of ovarian cancer cell through induction of the focal adhesion kinase (FAK) signaling pathway. These findings collectively show that DCAF13 is an important oncogene that promotes tumorigenesis in ovarian cancer cells by mediating FRAS1/FAK signaling. Our findings provide a foundation for the development of targeted therapeutics for ovarian cancer.
Assuntos
Movimento Celular , Proliferação de Células , Proteínas da Matriz Extracelular , Quinase 1 de Adesão Focal , Camundongos Nus , Neoplasias Ovarianas , Proteínas de Ligação a RNA , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Progressão da Doença , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos BALB C , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/genética , Transdução de Sinais , Ubiquitinação , Proteínas de Ligação a RNA/metabolismo , Proteínas da Matriz Extracelular/metabolismoRESUMO
T cell receptor-engineered T cells (TCR-Ts) therapy is promising for cancer immunotherapy. Most studies have focused on identifying tumor-specific T cell receptors (TCRs) through predicted tumor neoantigens. However, current algorithms for predicting tumor neoantigens are unreliable and many neoantigens are derived from non-coding regions. Thus, the technological platform for identifying tumor-specific TCRs using natural antigens expressed on tumor cells is urgently needed. In this study, tumor organoids-enriched tumor infiltrating lymphocytes (oeT) were obtained by repeatedly stimulation of autologous patient-derived organoids (PDO) in vitro. The oeT cells specifically responded to autologous tumor PDO by detecting CD137 expression and the secretion of IFN-γ using enzyme-linked immunospot assay. The measurement of oeT cell-mediated killing of three-dimensional organoids was conducted using a caspase3/7 flow cytometry assay kit. Subsequently, tumor-specific T cells were isolated based on CD137 expression and their TCRs were identified through single-cell RT-PCR analysis. The specificity cytotoxicity of TCRs were confirmed by transferring to primary peripheral blood T cells. The co-culture system proved highly effective in generating CD8+ tumor-specific oeT cells. These oeT cells effectively induced IFN-γ secretion and exhibited specificity in killing autologous tumor organoids, while not eliciting a cytotoxic response against normal organoids. The analysis conducted by TCRs revealed a significant expansion of T cells within a specific subset of TCRs. Subsequently, the TCRs were cloned and transferred to peripheral blood T cells generation engineered TCR-Ts, which adequately recognized and killed tumor cell in a patient-specific manner. The co-culture system provided an approach to generate tumor-specific TCRs from tumor-infiltrating lymphocytes of patients with colorectal cancer, and tumor-specific TCRs can potentially be used for personalized TCR-T therapy.
Assuntos
Técnicas de Cocultura , Linfócitos do Interstício Tumoral , Organoides , Receptores de Antígenos de Linfócitos T , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Organoides/imunologia , Antígenos de Neoplasias/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/patologiaRESUMO
This study aimed to investigate the effects of dietary melatonin (MT) levels on the antioxidant capacity, immunomodulatory, and transcriptional regulation of red swamp crayfish. Six experimental diets with different levels of MT (0, 22.5, 41.2, 82.7, 165.1, and 329.2 mg/kg diet) were fed to juvenile crayfish for 60 d. The transcriptome data of the control group and the group supplemented with dietary MT at 165.1 mg/kg were obtained using RNA-seq. In total, 3653 differentially expressed genes (2082 up-regulated and 1571 down-regulated) were identified. Pathways and genes related to antioxidant immune and growth performance were verified by qRT-PCR. The total hemocyte count, phagocytosis rate, and respiratory burst were significantly increased in the MT (165.1 mg/kg) group compared to the control group. Analysis of antioxidant immune-related enzymes in the hepatopancreas demonstrated that dietary MT (165.1 mg/kg) significantly increased activities of catalase, superoxide dismutase, glutathione reductase, and glutathione peroxidase and significantly decreased aspartate aminotransferase and alanine aminotransferase activity. At the transcriptional level, dietary MT up-regulated expression levels of genes associated with antioxidant immune and development, which included toll-like receptors, Crustin, C-type lectin, and so on. To conclude, MT could be used as a supplement in crayfish feed to increase immunity and antioxidant capacity and according to the broken line regression, the ideal MT concentration was the 159.02 mg/kg. Overall, this study demonstrates the role of melatonin in the antioxidant responses and immunomodulatory of Procambarus clarkii, laying the foundation for the development of melatonin as a feed additive in the aquaculture of this species.
Assuntos
Antioxidantes , Melatonina , Animais , Antioxidantes/metabolismo , Astacoidea , Melatonina/farmacologia , Melatonina/metabolismo , Transcriptoma , Imunidade Inata/genética , Dieta/veterináriaRESUMO
BACKGROUND: The traditional gynecological teaching model is not conducive to the cultivation of trainee doctors' clinical skills, thinking patterns and doctorâpatient communication ability. This study aims to explore the effect of the application of the hybrid BOPPPS (bridge-in, objective, preassessment, participant learning, postassessment, summary) teaching model in clinical internships in gynecology. METHODS: This observational study was conducted among final-year undergraduate medical trainee doctors at Jiaxing Maternity and Child Health Care Hospital from September 2020 to June 2022. Members of the control group were introduced to the traditional teaching model, while members of the experimental group were introduced to the hybrid BOPPPS teaching model. Trainee doctors' final examination scores and teaching satisfaction were compared. RESULTS: The control group consisted of 114 students who entered the university to pursue undergraduate degrees in 2017, and the experimental group consisted of 121 students who entered the university to pursue undergraduate degrees in 2018. The final examination scores attained by trainee doctors in the experimental group were higher than those attained by trainee doctors in the control group (P < 0.05). The final theoretical exam scores attained by members of the control group were significantly higher than their preassessment scores (P < 0.01). The scores differed significantly between female and male subjects before the internship (p<0.05) but not after the internship (p>0.05). In total, 93.4% of trainee doctors in the experimental group thought that the hybrid BOPPPS teaching model helped them improve their case analysis ability, and the difference in this measure between the experimental and control groups was statistically significant (P < 0.05). A total of 89.3% of trainee doctors in the experimental group supported the promotion and application of the hybrid BOPPPS model in practice in other disciplines. CONCLUSION: The hybrid BOPPPS teaching model helps improve trainee doctors' learning environment, stimulate their interest and initiative in learning, enhance their clinical practice ability and increase their satisfaction; therefore, this model is worth promoting and applying in practice in other disciplines.
Assuntos
Ginecologia , Internato e Residência , Gravidez , Criança , Feminino , Humanos , Masculino , Estudantes , Aprendizagem , Competência Clínica , EnsinoRESUMO
Evolutionarily conserved DDB1-and CUL4-associated factor 13 (DCAF13) is a recently discovered substrate receptor for the cullin RING-finger ubiquitin ligase 4 (CRL4) E3 ubiquitin ligase that regulates cell cycle progression. DCAF13 is overexpressed in many cancers, although its role in breast cancer is currently elusive. In this study we demonstrate that DCAF13 is overexpressed in human breast cancer and that its overexpression closely correlates with poor prognosis, suggesting that DCAF13 may serve as a diagnostic marker and therapeutic target. We knocked down DCAF13 in breast cancer cell lines using CRISPR/Cas9 and found that DCAF13 deletion markedly reduced breast cancer cell proliferation, clone formation, and migration both in vitro and in vivo. In addition, DCAF13 deletion promoted breast cancer cell apoptosis and senescence, and induced cell cycle arrest in the G1/S phase. Genome-wide RNAseq analysis and western blotting revealed that loss of DCAF13 resulted in both mRNA and protein accumulation of p53 apoptosis effector related to PMP22 (PERP). Knockdown of PERP partially reversed the hampered cell proliferation induced by DCAF13 knockdown. Co-immunoprecipitation assays revealed that DCAF13 and DNA damage-binding protein 1 (DDB1) directly interact with PERP. Overexpression of DDB1 significantly increased PERP polyubiquitination, suggesting that CRL4DCAF13 E3 ligase targets PERP for ubiquitination and proteasomal degradation. In conclusion, DCAF13 and the downstream effector PERP occupy key roles in breast cancer proliferation and potentially serve as prognostics and therapeutic targets.
Assuntos
Neoplasias da Mama , Fator XIII , Neoplasias da Mama/genética , Proliferação de Células/genética , Proteínas Culina/genética , Fator XIII/genética , Fator XIII/metabolismo , Feminino , Genes Supressores de Tumor , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , UbiquitinaçãoRESUMO
Endometriosis is a benign, chronic inflammatory disease that commonly occurs in reproductive-aged women. Epithelial-mesenchymal transition (EMT) of endometrial epithelial cells plays an important role in the development of endometriosis. Recepteur d'origine nantais (RON), a receptor tyrosine kinase, has been reported to promote EMT and progression in tumours. However, whether and how RON mediates the EMT and endometriosis development is not known. Here, we found that RON activation could improve the migratory and invasive capabilities, change cellular morphologies, and decrease expression of E-cadherin and increase expression of N-cadherin in endometrial epithelial cells. Inhibition or knockdown of RON expression suppressed the migration and invasion of endometrial epithelial cells. Our studies also indicated that RON played its part in endometrial epithelial cells through protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) pathways. Treatment with a RON inhibitor could decrease the number of ectopic lesions in a mouse model of endometriosis and mediate expression of EMT markers in endometriotic lesions. These data suggest that RON contributed to endometriosis development by promoting EMT of endometrial epithelial cells. Therefore, RON may be a new therapeutic target for endometriosis.
Assuntos
Suscetibilidade a Doenças , Endometriose/etiologia , Endometriose/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Receptores Proteína Tirosina Quinases/genética , Biomarcadores , Movimento Celular , Endometriose/patologia , Células Epiteliais/patologia , Feminino , Humanos , Imuno-Histoquímica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de SinaisRESUMO
BACKGROUND: Dietary interventions as a first-line treatment for patients with polycystic ovary syndrome (PCOS) have been evaluated, but the optimal diet has not been determined. Proper diet and the maintenance of adequate nutritional status are of great importance in the prevention of this disorder, and therapeutics and dietary habits play an important role in the recovery of patients with PCOS. SUMMARY: A range of dietary patterns have been shown to impact weight loss and insulin resistance (IR) and improve reproductive function, including the Mediterranean diet, the ketogenic diet, Dietary Approaches to Stop Hypertension, and other dietary patterns. Key Messages: Diets that can reduce rates of obesity and IR are beneficial to women with PCOS, the status of obesity and IR should be determined at the early stage of the disease, so as to develop individualized and sustainable dietary intervention. The long-term efficacy, safety, and health benefits of diet management in patients with PCOS need to be tested by further researches.
Assuntos
Dieta Mediterrânea , Resistência à Insulina , Síndrome do Ovário Policístico , Feminino , Humanos , Obesidade/terapia , Síndrome do Ovário Policístico/terapia , Redução de PesoRESUMO
Adenomyosis is also called internal endometriosis and affects about 20% of reproductive-aged women. It seriously reduces life quality of patients because current drug therapies face with numerous challenges. Long-term clinical application of mifepristone exhibits wonderful therapeutic effects with mild side-effects in many disorders since 1982. Since adenomyosis is a refractory disease, we investigate whether mifepristone can be applied in the treatment of adenomyosis. In this study, we investigated the direct effects of mifepristone on human primary eutopic endometrial epithelial cells and stromal cells in adenomyosis. We found that mifepristone causes cell cycle arrest through inhibiting CDK1 and CDK2 expressions and induces cell apoptosis via the mitochondria-dependent signalling pathway in endometrial epithelial cells and stromal cells of adenomyosis. Furthermore, mifepristone inhibits the migration of endometrial epithelial cells and stromal cells through decreasing CXCR4 expression and restricts the invasion of endometrial epithelial cells via suppression of epithelial-mesenchymal transition in adenomyosis. We also found that mifepristone treatment decreases the uterine volume, CA125 concentration and increases the haemoglobin concentration in serum for adenomyosis patients. Therefore, we demonstrate that mifepristone could serve as a novel therapeutic drug in the treatment of adenomyosis, and therefore, the old dog can do a new trick.
Assuntos
Adenomiose/tratamento farmacológico , Mifepristona/uso terapêutico , Adenomiose/diagnóstico por imagem , Adenomiose/patologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Endométrio/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Receptores CXCR4/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismoRESUMO
Background: Adenomyosis is a quite common gynecological disorder and above 30% of patients have typical secondary and progressive dysmenorrhea. Current treatments still have many disadvantages and thereby the novel treatment aiming to relieve dysmenorrhea still needs to be further investigated. Mifepristone is a wonderful drug because it is effective, safe and cheap in many diseases including adenomyosis. In this study, we aim to investigate if mifepristone could be used in the treatment of adenomyosis-associated dysmenorrhea. Methods: Human primary endometrial epithelial and stromal cells from adenomyosis patients were isolated and treated with mifepristone. RNA-sequencing was then performed to detect the gene changes of pain-related inflammatory mediators. Meanwhile, the effect of mifepristone on the infiltration and degranulation of mast cells were investigated in adenomyosis lesions. Additionally, the role of mifepristone on the density of nerve fibers was also studied in the ectopic endometrium. At last, to evaluate the therapeutic efficacy of mifepristone on dysmenorrhea of adenomyosis, twenty participants were included and the visual analog scale (VAS) score was assessed and compared before and after treatment with mifepristone. Results: We demonstrated that mifepristone reduced the secretion of IL-6 and TNF-α from endometrial epithelial and stromal cells, restricted the infiltration and degranulation of mast cells in eutopic and ectopic endometrium and decreased the density of nerve fibers by inhibiting the migration capacity of nerve cells in adenomyosis. Meanwhile, we found that mifepristone could significantly relieve dysmenorrhea of adenomyosis. Conclusion: The findings demonstrated that mifepristone could be applied in the treatment of dysmenorrhea for the adenomyosis patients.
Assuntos
Adenomiose/complicações , Dismenorreia/tratamento farmacológico , Dismenorreia/etiologia , Mifepristona/uso terapêutico , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Inflamação/metabolismo , Interleucina-6/metabolismo , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Background: To train highly qualified medical talent in 5-year programs and improve students' analytical and problem-solving abilities, it is necessary to change the traditional teaching method. This study introduces the combined teaching method of case-based learning (CBL) and clinical pathway and evaluates its role in practical gynecological teaching. Methods: Medical students in a 5-year program who were enrolled in the fourth year were selected as the research subjects; these students were randomized into two groups that separately received either the traditional teaching method or the combined teaching method of CBL and clinical pathway. Before the internship, a questionnaire was administered to explore students' views of internship in gynecology, and after the internship, the questionnaire was administered to assess the two teaching methods. Furthermore, theoretical and skill tests were performed both before and after the internship. Results: A total of 206 medical students in a 5-year program who were in their fourth year were enrolled in the study. Students in the experimental group performed significantly better than those in the control group. They performed significantly better in the postinternship test than in the preinternship test (P < 0.001). The questionnaire showed that more students in the experimental group thought that their learning interests, clinical skills, case analysis ability, clinical communication ability, understanding of theoretical knowledge and clinical thinking ability had improved and significantly differed between the two groups (P < 0.05). Discussion: Compared to traditional teaching methods, combined teaching method of CBL and clinical pathway can elevate students' academic performance, improve their learning enthusiasm and help promote clinical teachers' teaching quality. Additionally, this novel method is effective in facilitating the achievement of teaching objectives and improving the quality of talent training. Therefore, the combined teaching method of CBL and clinical pathway should be popularized and applied in gynecological practice.
Assuntos
Ginecologia , Aprendizagem Baseada em Problemas , Estudantes de Medicina , Ensino , Humanos , Ginecologia/educação , Aprendizagem Baseada em Problemas/métodos , Feminino , Procedimentos Clínicos , Inquéritos e Questionários , Masculino , Educação de Graduação em Medicina/métodos , Competência Clínica , Avaliação Educacional , Internato e Residência , AdultoRESUMO
Objective: This study assesses the effectiveness and safety of single-port laparoscopic myomectomy (SPLM) versus conventional laparoscopic myomectomy (CLM). Methods: We conducted a retrospective case-control study at a university tertiary hospital, involving 262 patients treated from July 2020 to December 2022. Participants were divided into two groups: 132 underwent SPLM and 130 underwent CLM. Results: The two groups were comparable in terms of age, body mass index, parity, delivery history, preoperative anemia, number of myomas, and size of the largest myoma. The SPLM group showed a significant reduction in operation time (average 93 min) and estimated blood loss (average 50 ml) compared to the CLM group (average 118.5 min and 100 ml, respectively). Subgroup analysis based on the size, location, and number of myomas further highlighted the advantages of SPLM, particularly for patients with large (diameter ≥8 cm) or multiple myomas (number ≥4). Patient satisfaction was also notably higher in the SPLM group. Conclusions: Single-port laparoscopic myomectomy offers a highly effective, safer, and patient-preferred option for the surgical management of fibroids, especially in cases of large or multiple myomas. These findings suggest that SPLM could become the preferred surgical approach for complex fibroid cases, promising less trauma and quicker recovery for patients.
RESUMO
Litopenaeus vannamei were exposed to 80-nm polystyrene nanoplastics (NPs) at different concentrations (0, 0.1, 1, 5, and 10 mg/L) for 28 days to study the effects on muscle nutritional quality. Our results showed that with increasing NPs concentrations, the survival rate, specific gain rate, and protein efficiency ratio decreased but the feed conversion ratio increased. There was no significant difference in moisture, ash, and crude lipid content in the muscle, and a general decrease in crude protein content was observed. However, the total amino acid and semi-essential amino acid contents decreased. The spacing between muscle fibers and the melting morphology of muscle increased. The hardness of muscle flesh texture increased, but springiness, cohesiveness, and chewiness decreased. Regarding antioxidant enzyme activity, the activity of catalase decreased, but the total antioxidant capacity, superoxide dismutase activity, and reduced glutathione first increased and then decreased. The expression level of the growth-related genes retinoid X receptor (RXR), chitin synthase (CHS), and calmodulin A (CaM) first increased then decreased, but calcium/calmodulin-dependent protein kinase I (CaMKI), ecdysteroid receptor (EcR), chitinase 5 (CHT5), cell division cycle 2 (Cdc2), and cyclin-dependent kinase 2 (CDK2) decreased. Our results suggest that exposure to NPs can inhibit growth by inducing oxidative stress, which leads to muscle tissue damage and changes in amino acid composition. These results will provide a theoretical reference for the risk assessment of NPs and the ecological health aquaculture of shrimp.
Assuntos
Antioxidantes , Penaeidae , Animais , Antioxidantes/metabolismo , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Microplásticos/metabolismo , Aminoácidos/metabolismo , Valor Nutritivo , Músculos/metabolismoRESUMO
The effect of hydrodynamic mixing on controlling Microcystis blooms or changing the algal community to diatom dominance has been widely studied; however, the effects of colonial Microcystis biomass on the development of the algal community are poorly known. Here, in order to study the changes in Microcystis blooms under continuous aeration mixing, an experiment was carried out in a greenhouse with factors of varying biomass of Microcystis and inorganic nitrogen and phosphorus enrichment in summer. There were three chlorophyll a (Chl-a) levels in six treatments: low Chl-a level of 68.4 µg L-1 (treatments L, L-E), medium Chl-a level of 468.7 µg L-1 (treatments M, M-E), and high Chl-a level of 924.1 µg L-1 (treatments H, H-E). Treatments L-E, M-E and H-E were enriched with the same inorganic nitrogen and phosphorus nutrients. During the experiment of 30 days, the concentration of Microcystis and Chl-a decreased, and diatom Nitzschia palea cells appeared in all the treatments, which became dominant in treatments M, M-E, H and H-E, with the highest biomass of 9.41 ± 1.96 mg L-1 Nitzschia in treatment H-E on day 30. The rank order of the biomass of Nitzschia from low to high was (L = L-E) < (M = M-E) < H < H-E (P < 0.05). In addition, Nitzschia cells were aggregates attached to Microcystis colonies in all the treatments. The results showed that the initial biomass of colonial Microcystis affected the algal shift from Microcystis dominance to Nitzschia dominance. However, the enriched inorganic nitrogen and phosphorus was beneficial for the Nitzschia increase in the high biomass treatment alone. The shift from Microcystis dominance to diatom dominance under continuous aeration mixing may be caused by low light conditions as well as the nutrients released from Microcystis decay. Moreover, the aerobic condition caused by aeration mixing maintained the colonial mucilaginous sheath to support the growth of Nitzschia cells in aggregation. This study found for the first time that Microcystis blooms could shift to diatom Nitzschia dominance in aggregates. It provided a method to control and manipulate Microcystis blooms to diatom dominance through continuous aeration mixing to proper biomass of Microcystis colonies. The shift to diatoms dominance would provide more high quality food organisms for aquaculture and be beneficial to the material cycling and energy flowing in food web dynamics.
Assuntos
Diatomáceas , Microcystis , Biomassa , Clorofila A , Fósforo/farmacologia , Nitrogênio/farmacologiaRESUMO
Silver carp (Hypophthalmichthys molitrix) can filter the carbon in the food taken up by phytoplankton and plays an important role in carbon fixation. In this study, the faeces of silver carp, the dominant fish species in Qiandao Lake, China, were collected and subjected to a closed incubation and transformation experiment for three months. The physical and chemical indices of water and sediment mixture, carbon metabolic enzyme activity, and microbial sequences were analyzed to identify the key microbial strains that affect carbon transformation as well as the main factors influencing carbon transformation. The results showed maximum CO2 and CH4 emission fluxes on day 15 of fish faeces and sediment interaction. In the faeces addition group, the contents of soluble organic carbon, soluble inorganic carbon, SO42-, and PO43- were significantly increased, while the dissolved oxygen content was significantly decreased. Furthermore, the pH, total carbon content, volatile suspended solids content, and activities of four carbon-metabolizing enzymes were significantly increased in the faeces addition group. The 16sRNA analysis of methanogenic and methane-oxidizing bacteria showed that Euryarchaea and Pseudomonas accounted for the highest proportion respectively. The most significant differences expression were found for Methylbacterium in the methanogenic bacteria and Methylobacter in the methane oxidizing bacteria. Structural variance model showed that interaction of fish faeces and sediments mainly caused changes in sulfate content, leading to variations in methanogens and methanotrophs and promotion of CH4 emission. The results of this study can provide a theoretical reference for the mechanism of carbon reduction and emission reduction of lake filter-feeding fish.
Assuntos
Carbono , Fezes , Sedimentos Geológicos , Lagos , Animais , Fezes/microbiologia , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Carbono/metabolismo , China , Carpas , Bactérias/metabolismo , Monitoramento Ambiental , Metano/metabolismoRESUMO
The widespread occurrence of nanoplastic (NP) pollution in the environment is a growing concern, and its presence poses a potential threat to cultured aquatic animals. Previously, we found that NPs can significantly affect the lipid metabolism of shrimp. However, relevant reports about the effects of increasing dietary lipid levels on NP toxicity are lacking. Therefore, we explored the effects of dietary supplementation with different lipid levels on the growth and lipid metabolism of Pacific white shrimp (Litopenaeus vannamei). We cultured L. vannamei at three dietary lipid levels (3 %, 6 %, and 9 %) and three NP concentrations (0, 1, and 3 mg/L) for 2 months. We evaluated the effects of lipid levels on growth indexes, hepatopancreas morphological structure, lipid metabolism-related enzyme activity, and gene expression of the shrimp. The results showed that as lipid intake increased, the survival rate, body weight growth rate, and hepatosomatic ratio of the shrimp increased while the feed conversion rate decreased. Additionally, the crude protein and crude lipid contents increased, whereas the moisture and ash contents did not change much. We found that the morphological structure of the hepatopancreas was seriously damaged in the 3 mg/L NPs and 3 % dietary lipid group. Finally, lipid metabolism-related enzyme activities and gene expression levels increased with increased dietary lipid levels. Together, these results suggest that increasing dietary lipid content can improve shrimp growth and alleviate lipid metabolism disorders caused by NPs. This study is the first to show that nutrition regulation can alleviate the toxicity of NPs, and it provides a theoretical basis for the green and healthy culture of L. vannamei.
Assuntos
Suplementos Nutricionais , Hepatopâncreas , Metabolismo dos Lipídeos , Penaeidae , Poliestirenos , Poluentes Químicos da Água , Animais , Penaeidae/efeitos dos fármacos , Penaeidae/crescimento & desenvolvimento , Penaeidae/fisiologia , Poluentes Químicos da Água/toxicidade , Hepatopâncreas/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Poliestirenos/toxicidade , Gorduras na Dieta , Nanopartículas/toxicidadeRESUMO
Increasing attention is being paid to the toxic physiological effects of nanoplastics (NPs) on aquatic organisms. However, few studies have systematically evaluated the regulatory mechanisms of NPs on immune response in crustaceans. In this study, a 28-day chronic exposure experiment was conducted in which shrimps were exposed to various 80-nm polystyrene NPs concentrations (0, 0.1, 1, 5 and 10 mg/L). Transcriptomic analysis was used to investigate the regulatory mechanisms of NPs in immune response of Litopenaeus vannamei. With increasing NPs concentration, the total hemocyte count (THC) content decreased, while phagocytosis rate (PR) and respiratory burst (RB) showed trends of first rising and then falling. High concentration (10 mg/L) of NPs caused the destruction of hepatopancreas tissue structure, the shedding of microvilli, the increase number of hepatocyte apoptosis and autophagy structure. With increasing NPs concentration, the lysozyme (Lys), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities first increased and then decrease, while contents of lipid peroxidation and malondialdehyde increased; the expression levels of Toll, MyD88, GPx, SOD, proPO, Lys, and ALF generally increased at first and then decreased. Transcriptional sequencing analysis showed that the pathway of differentially expressed genes in KEGG enrichment mainly included lysosome (ko04142), apoptosis (ko04210) pathways, indicating that the NPs mainly affected the immune regulatory mechanism. Further analysis by Gene Set Enrichment Analysis (GSEA) showed that the up-regulation pathways of NPs activation mainly included immune response-related pathways such as mitochondrial autophagy, DNA repair, autophagosomes signaling pathway. Our results indicated that NPs exposure induced oxidative stress, apoptosis and autophagy in shrimps. This study provides a basis for further understanding of the mechanisms of antioxidant immune regulation by NPs in shrimp and may serve as a reference for healthy ecological culture of shrimp.
Assuntos
Apoptose , Autofagia , Penaeidae , Poluentes Químicos da Água , Animais , Penaeidae/efeitos dos fármacos , Penaeidae/imunologia , Penaeidae/fisiologia , Penaeidae/genética , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Perfilação da Expressão Gênica , Transcriptoma/efeitos dos fármacos , Microplásticos/toxicidade , Imunidade Inata/efeitos dos fármacos , Nanopartículas/toxicidadeRESUMO
Background: Cluster of differentiation 38 (CD38) has been found to be highly expressed in various solid tumours, and its expression level may be associated with patient prognosis and survival. This study aimed to evaluate the prognostic value of CD38 expression for patients with epithelial ovarian cancer (EOC) and construct two computed tomography (CT)-based radiomics models for predicting CD38 expression. Methods: A total of 333 cases of EOC were enrolled from The Cancer Genome Atlas (TCGA) database for CD38-related bioinformatics and survival analysis. A total of 56 intersection cases from TCGA and The Cancer Imaging Archive (TCIA) databases were selected for radiomics feature extraction and model construction. Logistic regression (LR) and support vector machine (SVM) models were constructed and internally validated using 5-fold cross-validation to assess the performance of the models for CD38 expression levels. Results: High CD38 expression was an independent protective factor (HR = 0.540) for overall survival (OS) in EOC patients. Five radiomics features based on CT images were selected to build models for the prediction of CD38 expression. In the training and internal validation sets, for the receiver operating characteristic (ROC) curve, the LR model reached an area under the curve (AUC) of 0.739 and 0.732, while the SVM model achieved AUC values of 0.741 and 0.700, respectively. For the precision-recall (PR) curve, the LR and SVM models demonstrated an AUC of 0.760 and 0.721. The calibration curves and decision curve analysis (DCA) provided evidence supporting the fitness and net benefit of the models. Conclusions: High levels of CD38 expression can improve OS in EOC patients. CT-based radiomics models can be a new predictive tool for CD38 expression, offering possibilities for individualised survival assessment for patients with EOC.
RESUMO
A begomovirus isolated from whiteflies (Bemisia tabaci) and tomato, sweet potato in China was found to be representative of a distinct begomovirus species, for which the name tomato yellow leaf curl Chuxiong virus (TYLCCxV) is proposed. The results of genomic identification and sequence comparison showed that TYLCCxV shares the highest complete nucleotide sequence identity (88.3%) with croton yellow vein mosaic virus (CroYVMV), and may have originated from the recombination between synedrella leaf curl virus (SyLCV) and squash leaf curl Yunnan virus (SLCuYV). Agrobacterium-mediated inoculation showed that TYLCCxV is highly infectious for a range of plant species, producing upward leaf curling, leaf crumpling, chlorosis, distortion, and stunt symptoms in Solanum lycopersicum plants. The results of Southern blot indicated that TYLCCxV is capable of efficiently replicating two heterologous betasatellites. The inoculation of PVX::C4 on Nicotiana benthamiana induced upward leaf curling and stem elongation symptoms, suggesting that TYLCCxV C4 functions as a symptom determinant. TYLCCxV V2 is an important virulence factor that induces downward leaf curling symptoms, elicits systemic necrosis, and suppresses local and systemic GFP silencing in co-agroinfiltrated N. benthamiana and transgenic 16c plants. Considering the multifunctional virulence proteins V2 and C4, the possibility of TYLCCxV causing devastating epidemics on tomato in China is discussed.
Assuntos
Begomovirus , Hemípteros , Solanum lycopersicum , Animais , Interferência de RNA , Begomovirus/genética , Doenças das Plantas , ChinaRESUMO
Nanoplastics (NPs) are widely distributed environmental pollutants that can disrupt intestinal immunity of crustaceans. In this study, the effects of NPs on gut immune enzyme activities, cell morphology, apoptosis, and microbiota diversity of Litopenaeus vannamei were investigated. L. vannamei was exposed to five concentrations of NPs (0, 0.1, 1, 5, and 10 mg/L) for 28 days. The results showed that higher concentrations of NPs damaged the intestinal villi, promoted formation of autophagosomes, increased intestinal non-specific immunoenzyme activities, and significantly increased apoptosis at 10 mg/L. In response to exposure to NPs, the expression levels of ATG3, ATG4, ATG12, Caspase-3, p53, and TNF initially increased and then decreased. In addition, the concentration of NPs was negatively correlated to the expression levels of the genes of interest and intestinal enzyme activities, suggesting that exposure to NPs inhibited apoptosis and immune function. The five dominant phyla of the gut microbiota (Proteobacteria, Firmicutes, Bacteroidetes, Acidobacteria, and Actinomycetes) were similar among groups exposed to different concentrations of NPs, but the abundances tended to differ. Notably, exposure to NPs increased the abundance of pathogenic bacteria. These results confirm that exposure to NPs negatively impacted intestinal immune function of L. vannamei. These findings provide useful references for efficient breeding of L. vannamei.
Assuntos
Microbioma Gastrointestinal , Microbiota , Penaeidae , Animais , Microplásticos , Poliestirenos , Disbiose , Penaeidae/microbiologia , Autofagia , ApoptoseRESUMO
AIMS: Endometriosis is characterized by an abnormal immune microenvironment. Despite the extensive use of immune therapies, the application of immune checkpoint inhibitors in endometriosis lacks confidence due to the instability of preclinical research data. This study aims to elucidate the regulation of the immune inhibitory checkpoint VISTA and its effects on T cells from the perspective of microbiota and metabolism. MAIN METHODS: We divided endometriosis patients into high and low groups based on the expression levels of VISTA in lesion tissues. We collected peritoneal fluid samples from these two groups and performed 16 s RNA sequencing and metabolomics analysis to investigate microbial diversity and differential metabolites. Through combined analysis, we identified microbial-associated metabolites and validated their correlation with VISTA and CD8 + T cells using ELISA and immunofluorescence. In vitro experiments were conducted to confirm the regulatory relationship among these factors. KEY FINDINGS: Our findings revealed a distinct correlation between VISTA expression and the microbial colony Escherichia.Shigella. Moreover, we identified the metabolites LTD4-d5 and 2-n-Propylthiazolidine-4-carboxylic acid as being associated with both Escherichia.Shigella and VISTA expression. In vitro experiments confirmed the inhibitory effects of these metabolites on VISTA expression, while they demonstrated a positive regulation of CD8 + T cell infiltration into endometriotic lesions. SIGNIFICANCE: This study reveals the connection between microbial diversity, metabolites, and VISTA expression in the immune microenvironment of endometriosis, providing potential targets for therapeutic interventions.