Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Dev Biol ; 302(2): 661-9, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17084835

RESUMO

The Notch signaling pathway controls growth, differentiation and patterning in divergent animal phyla; in humans, defective Notch signaling has been implicated in cancer, stroke and neurodegenerative disorders. Despite its developmental and medical significance, little is known about the factors that render cells to become competent for Notch signaling. Here we show that during vulval development in the nematode Caenorhabditis elegans the HOX protein LIN-39 and its EXD/PBX-like cofactor CEH-20 are required for LIN-12/Notch-mediated lateral signaling that specifies the 2 degrees vulval cell fate. Inactivation of either lin-39 or ceh-20 resulted in the misspecification of 2 degrees vulval cells and suppressed the multivulva phenotype of lin-12(n137) gain-of-function mutant animals. Furthermore, both LIN-39 and CEH-20 are required for the expression of basal levels of the genes encoding the LIN-12/Notch receptor and one of its ligands in the vulval precursor cells, LAG-2/Delta/Serrate, rendering them competent for the subsequent lin-12/Notch induction events. Our results suggest that the transcription factors LIN-39 and CEH-20, which function at the bottom of the RTK/Ras and Wnt pathways in vulval induction, serve as major integration sites in coordinating and transmitting signals to the LIN-12/Notch cascade to regulate vulval cell fates.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Proteínas de Homeodomínio/fisiologia , Receptores Notch/fisiologia , Fatores de Transcrição/fisiologia , Transcrição Gênica , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Feminino , Proteínas de Homeodomínio/genética , Larva , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Transdução de Sinais , Fatores de Transcrição/genética , Vulva/crescimento & desenvolvimento , Vulva/fisiologia
2.
Proc Natl Acad Sci U S A ; 100(1): 171-6, 2003 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-12509511

RESUMO

Human mtDNA shows striking regional variation, traditionally attributed to genetic drift. However, it is not easy to account for the fact that only two mtDNA lineages (M and N) left Africa to colonize Eurasia and that lineages A, C, D, and G show a 5-fold enrichment from central Asia to Siberia. As an alternative to drift, natural selection might have enriched for certain mtDNA lineages as people migrated north into colder climates. To test this hypothesis we analyzed 104 complete mtDNA sequences from all global regions and lineages. African mtDNA variation did not significantly deviate from the standard neutral model, but European, Asian, and Siberian plus Native American variations did. Analysis of amino acid substitution mutations (nonsynonymous, Ka) versus neutral mutations (synonymous, Ks) (kaks) for all 13 mtDNA protein-coding genes revealed that the ATP6 gene had the highest amino acid sequence variation of any human mtDNA gene, even though ATP6 is one of the more conserved mtDNA proteins. Comparison of the kaks ratios for each mtDNA gene from the tropical, temperate, and arctic zones revealed that ATP6 was highly variable in the mtDNAs from the arctic zone, cytochrome b was particularly variable in the temperate zone, and cytochrome oxidase I was notably more variable in the tropics. Moreover, multiple amino acid changes found in ATP6, cytochrome b, and cytochrome oxidase I appeared to be functionally significant. From these analyses we conclude that selection may have played a role in shaping human regional mtDNA variation and that one of the selective influences was climate.


Assuntos
DNA Mitocondrial/genética , Variação Genética , Hominidae/genética , Seleção Genética , África , Animais , Evolução Molecular , Humanos , Mitocôndrias/genética , Dados de Sequência Molecular , Fosforilação Oxidativa , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA