Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Nano Lett ; 23(20): 9367-9374, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37807279

RESUMO

CuOx/C catalysts have been used in the selective catalytic reduction of NOx because of the exceptional low-temperature denitration (de-NOx) activity. A fundamental understanding of the reaction between CuO and C is critical for controlling the component of CuOx/C and thus optimizing the catalytic performance. In this study, a transmission electron microscope equipped with an in situ heating device was utilized to investigate the atomic-scale reaction between CuO and C. We report two reaction mechanisms relying on the volume ratio between C and CuO: (1) The reduction from CuO to Cu2O (when the ratio is < ∼31%); (2) the reduction of CuO into polycrystalline Cu (when the ratio is > ∼34%). The atomistic reduction pathway can be well interpreted by considering the diffusion of O vacancy through the first-principle calculations. The atomic-scale exploration of CuO/C offers ample prospects for the design of industrial de-NOx catalysts in the future.

2.
Nanoscale ; 15(20): 9139-9147, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37144280

RESUMO

As an emerging candidate for anisotropic two-dimensional materials, the group IV-V family (e.g. GeP, GeP2) has appealing applications in photoelectronics. However, their intrinsic point defect properties, which largely determine the device performance and optimization, are still poorly explored. In our study, through density functional theory (DFT) calculations, antisite defects were affirmed to be dominant with the lowest formation energies in 2D GePx semiconductors because of the similar atomic size and electronegativity of elemental components, which is in contrast to previous calculations and experimental speculation. These antisite defects could introduce relatively shallow states within the bandgap in bulk cases. The transition energy levels and electronic structures of defects reveal that GeP and PGe antisites act as dominant acceptors and donors, respectively. Strong interlayer coupling between anions results in a significant upshift of the valence band maximum (VBM) and shallower acceptor behaviors of GePx. Together with the dominant GeP antisite defect, the large upshift of the VBM in GeP leads to a remarkable transition of conductivity from intrinsic in the monolayer to p-type in the bulk. Such a synergistic effect in GeP2 is rather weak due to the strong inherent intralayer coupling of anions. Our research provides deep insights into the strong anion coupling effects on the electronic structures and defect properties of GeP and GeP2, which sheds light on defect engineering and electronic applications of GePx based semiconductors.

3.
Nat Commun ; 12(1): 3863, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162862

RESUMO

From the mechanical perspectives, the influence of point defects is generally considered at high temperature, especially when the creep deformation dominates. Here, we show the stress-induced reversible oxygen vacancy migration in CuO nanowires at room temperature, causing the unanticipated anelastic deformation. The anelastic strain is associated with the nucleation of oxygen-deficient CuOx phase, which gradually transforms back to CuO after stress releasing, leading to the gradual recovery of the nanowire shape. Detailed analysis reveals an oxygen deficient metastable CuOx phase that has been overlooked in the literatures. Both theoretical and experimental investigations faithfully predict the oxygen vacancy diffusion pathways in CuO. Our finding facilitates a better understanding of the complicated mechanical behaviors in materials, which could also be relevant across multiple scientific disciplines, such as high-temperature superconductivity and solid-state chemistry in Cu-O compounds, etc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA