RESUMO
BACKGROUND: Cancer stem cells (CSCs) play a vital role in the occurrence, maintenance, and recurrence of solid tumors. Although, miR-145-5p can inhibit CSCs survival, poor understanding of the underlying mechanisms hamperes further therapeutic optimization for patients. Lentivirus with remarkable transduction efficiency is the most commonly used RNA carrier in research, but has shown limited tumor-targeting capability. METHODS: We have applied liposome to decorate lentivirus surface thereby yielding liposome-lentivirus hybrid-based carriers, termed miR-145-5p-lentivirus nanoliposome (MRL145), and systematically analyzed their potential therapeutic effects on liver CSCs (LCSCs). RESULTS: MRL145 exhibited high delivery efficiency and potent anti-tumor efficacy under in vitro and in vivo. Mechanistically, the overexpressed miR-145-5p can significantly suppress the self-renewal, migration, and invasion abilities of LCSCs by targeting Collagen Type IV Alpha 3 Chain (COL4A3). Importantly, COL4A3 can promote phosphorylating GSK-3ß at ser 9 (p-GSK-3ß S9) to inactivate GSK3ß, and facilitate translocation of ß-catenin into the nucleus to activate the Wnt/ß-catenin pathway, thereby promoting self-renewal, migration, and invasion of LCSCs. Interestingly, COL4A3 could attenuate the cellular autophagy through modulating GSK3ß/Gli3/VMP1 axis to promote self-renewal, migration, and invasion of LCSCs. CONCLUSIONS: These findings provide new insights in mode of action of miR-145-5p in LCSCs therapy and indicates that liposome-virus hybrid carriers hold great promise in miRNA delivery.
Assuntos
Lentivirus , Lipossomos , MicroRNAs , Células-Tronco Neoplásicas , MicroRNAs/genética , MicroRNAs/metabolismo , Lipossomos/química , Humanos , Animais , Camundongos , Lentivirus/genética , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Camundongos Nus , Neoplasias Hepáticas/terapia , Camundongos Endogâmicos BALB C , Movimento Celular , Glicogênio Sintase Quinase 3 beta/metabolismo , beta Catenina/metabolismo , Via de Sinalização WntRESUMO
This study investigated the function of the MDR49 gene in Aedes aegypti. MDR49 mutants were constructed using CRISPR/Cas9 technology; the mutation led to increased sensitivity to ivermectin (LC50: from 1.3090 mg L-1 to 0.5904 mg L-1), and a reduction in midgut trypsin activity. These findings suggest that the P-gp encoded by MDR49 confers resistance to ivermectin and impacts the reproductive function in Ae. aegypti. RNA interference technology showed that knockdown of MDR49 gene resulted in a significant decrease in the expression of VGA1 after a blood meal, as well as a decrease in the number of eggs laid and their hatching rate. LC-MS revealed that following ivermectin treatment, the MDR493d+2s/3d+2s strain larvae exhibited significantly higher drug concentrations in the head and fat body compared to the wild type. Modeling of inward-facing P-gp and molecular docking found almost no difference in the affinity of P-gp for ivermectin before and after the mutation. However, modeling of the outward-facing conformation demonstrated that the flexible linker loop between TM5 and TM6 of P-gp undergoes changes after the mutation, resulting in a decrease in trypsin activity and an increase in sensitivity to ivermectin. These results provide useful insights into ivermectin resistance and the other roles played by the MDR49 gene.
Assuntos
Aedes , Proteínas de Insetos , Ivermectina , Animais , Aedes/efeitos dos fármacos , Aedes/genética , Aedes/metabolismo , Ivermectina/farmacologia , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Tripsina/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Fertilidade/efeitos dos fármacos , Resistência a Inseticidas/genética , Inibidores da Tripsina/metabolismo , Inibidores da Tripsina/farmacologia , Simulação de Acoplamento Molecular , Inseticidas/farmacologiaRESUMO
Ticks are important vectors of many pathogens with tremendous impact on human and animal health. Studies of semiochemical interactions and mechanisms underlying chemoreception can provide important tools in tick management. Niemann-Pick type C2 (NPC2) proteins have been proposed as one type of chemoreceptor in arthropods. Here, we cloned two NPC2 genes in the brown dog tick, Rhipicephalus linnaei, the tropical lineage previously named R. sanguineus sensu lato and characterized them functionally. R.linNPC2a and R.linNPC2b genes were found to be expressed at each developmental stage with the highest level in adult males. By using quantitative real-time PCR we revealed expression in multiple tissues, including midgut, ovary, salivary glands and legs. Ligand binding analysis revealed that R.linNPC2b bound a wide spectrum of compounds, with ß-ionone, α-amylcinnamaldehyde, 2-nitrophenol and benzaldehyde displaying the strongest binding affinity (Ki < 10 µM), whereas R.linNPC2a showed a more narrow ligand binding range, with intermediate binding affinity to α-amylcinnamaldehyde and 2-nitrophenol (Ki < 20 µM). Molecular docking indicated that the amino acid residue Phe89, Leu77 and Val131 of R.linNPC2a and Phe70, Leu132 and Phe73 of R.linNPC2b could bind multiple ligands. These residues might thus play a key role in the identification of the volatiles. Our results contribute to the understanding of olfactory mechanisms of R. linnaei and can offer new pathways towards new management strategies.
Assuntos
Rhipicephalus sanguineus , Rhipicephalus , Cães , Masculino , Animais , Feminino , Humanos , Rhipicephalus sanguineus/genética , Rhipicephalus/genética , Feromônios , Ligantes , Simulação de Acoplamento MolecularRESUMO
The northern fowl mite (NFM), Ornithonyssus sylviarum, and the poultry red mite (PRM), Dermanyssus gallinae, are the most serious pests of poultry, both of which have an expanding global prevalence. Research on NFM has been constrained by a lack of genomic and transcriptomic data. Here, we report and analyze the first global transcriptome data across all mite live stages and sexes. A total of 28,999 unigenes were assembled, of which 19,750 (68.10%) were annotated using seven functional databases. The biological function of these unigenes was classified using the GO, KOG, and KEGG databases. To gain insight into the chemosensory receptor-based system of parasitiform mites, we furthermore assessed the gene repertoire of gustatory receptors (GRs) and ionotropic receptors (IRs), both of which encode putative ligand-gated ion channel proteins. While these receptors are well characterized in insect model species, our understanding of chemosensory detection in mites and ticks is in its infancy. To address this paucity of data, we identified 9 IR/iGluRs and 2 GRs genes by analyzing transcriptome data in the NFM, while 9 GRs and 41 IR/iGluRs genes were annotated in the PRM genome. Taken together, the transcriptomic and genomic annotation of these two species provide a valuable reference for studies of parasitiform mites and also help to understand how chemosensory gene family expansion/contraction events may have been reshaped by an obligate parasitic lifestyle compared with their free-living closest relatives. Future studies should include additional species to validate this observation and functional characterization of the identified proteins as a step forward in identifying tools for controlling these poultry pests.
Assuntos
Infestações por Ácaros , Ácaros , Doenças das Aves Domésticas , Animais , Galinhas , Ácaros/genética , Aves Domésticas , TranscriptomaRESUMO
Hepatocellular carcinoma (HCC) is a major subtype of primary liver cancer with a high mortality rate. Pyroptosis and autophagy are crucial processes in the pathophysiology of HCC. Searching for efficient drugs targeting pyroptosis and autophagy with lower toxicity is useful for HCC treatment. Mallotucin D (MLD), a clerodane diterpenoid from Croton crassifolius, has not been previously reported for its anticancer effects in HCC. This study aims to evaluate the inhibitory effects of MLD in HCC and explore the underlying mechanism. We found that the cell proliferation, DNA synthesis, and colony formation of HepG2 cells and the angiogenesis of HUVECs were all greatly inhibited by MLD. MLD caused mitochondrial damage and decreased the TOM20 expression and mitochondrial membrane potential, inducing ROS overproduction. Moreover, MLD promoted the cytochrome C from mitochondria into cytoplasm, leading to cleavage of caspase-9 and caspase-3 inducing GSDMD-related pyroptosis. In addition, we revealed that MLD activated mitophagy by inhibiting the PI3K/AKT/mTOR pathway. Using the ROS-scavenging reagent NAC, the activation effects of MLD on pyroptosis- and autophagy-related pathways were all inhibited. In the HepG2 xenograft model, MLD effectively inhibited tumor growth without detectable toxicities in normal tissue. In conclusion, MLD could be developed as a candidate drug for HCC treatment by inducing mitophagy and pyroptosis via promoting mitochondrial-related ROS production.
Assuntos
Morte Celular Autofágica , Carcinoma Hepatocelular , Croton , Diterpenos Clerodânicos , Neoplasias Hepáticas , Humanos , Morte Celular Autofágica/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Proliferação de Células/efeitos dos fármacos , Croton/química , Diterpenos Clerodânicos/farmacologia , Células Hep G2/efeitos dos fármacos , Células Hep G2/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Piroptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismoRESUMO
A specific mosquito enzyme, 3-hydroxykynurenine transaminase (HKT), is involved in the processing of toxic metabolic intermediates of the tryptophan metabolic pathway. The HKT enzymatic product, xanthurenic acid, is required for Plasmodium spp. development in the mosquito vectors. Therefore, an inhibitor of HKT may not only be a mosquitocide but also a malaria-transmission blocker. In this work, we present a study investigating the evolution of HKT, which is a lineage-specific duplication of an alanine glyoxylate aminotransferases (AGT) in mosquitoes. Synteny analyses, together with the phylogenetic history of the AGT family, suggests that HKT and the mosquito AGTs are paralogous that were formed via a duplication event in their common ancestor. Furthermore, 41 amino acid sites with significant evidence of positive selection were identified, which could be responsible for biochemical and functional evolution and the stability of conformational stabilization. To get a deeper understanding of the evolution of ligands' capacity and the ligand-binding mechanism of HKT, the sequence and the 3D homology model of the common ancestor of HKT and AGT in mosquitoes, ancestral mosquito AGT (AncMosqAGT), were inferred and built. The homology model along with 3-hydroxykynurenine, kynurenine, and alanine were used in docking experiments to predict the binding capacity and ligand-binding mode of the new substrates related to toxic metabolites detoxification. Our study provides evidence for the dramatic biochemical evolution of the key detoxifying enzyme and provides potential sites that could hinder the detoxification function, which may be used in mosquito larvicide and design.
Assuntos
Culicidae , Alanina , Animais , Culicidae/metabolismo , Ligantes , Filogenia , Transaminases/metabolismoRESUMO
Tumor hypoxia is the Achilles heel of oxygen-dependent photodynamic therapy (PDT), and tremendous challenges are confronted to reverse the tumor hypoxia. In this work, an oxidative phosphorylation inhibitor of atovaquone (ATO) and a photosensitizer of chlorine e6 (Ce6)-based self-delivery nanomedicine (designated as ACSN) were prepared via π-π stacking and hydrophobic interaction for O2-economized PDT against hypoxic tumors. Specifically, carrier-free ACSN exhibited an extremely high drug loading rate and avoided the excipient-induced systemic toxicity. Moreover, ACSN not only dramatically improved the solubility and stability of ATO and Ce6 but also enhanced the cellular internalization and intratumoral permeability. Abundant investigations confirmed that ACSN effectively suppressed the oxygen consumption to reverse the tumor hypoxia by inhibiting mitochondrial respiration. Benefiting from the synergistic mechanism, an enhanced PDT effect of ACSN was observed on the inhibition of tumor growth. This self-delivery system for oxygen-economized PDT might be a potential appealing clinical strategy for tumor eradication.
Assuntos
Neoplasias Mamárias Experimentais , Nanomedicina , Nanopartículas , Fotoquimioterapia , Porfirinas , Animais , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Clorofilídeos , Feminino , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Nanopartículas/química , Nanopartículas/uso terapêutico , Porfirinas/química , Porfirinas/farmacocinética , Porfirinas/farmacologiaRESUMO
Metal complexes are widely used as anticancer drugs, while the severe side effects of traditional chemotherapy require new therapeutic modalities. Sonodynamic therapy (SDT) provides a significantly noninvasive ultrasound (US) treatment approach by activating sonosensitizers and initiating reactive oxygen species (ROS) to damage malignant tissues. In this work, three metal 4-methylphenylporphyrin (TTP) complexes (MnTTP, ZnTTP, and TiOTTP) are synthesized and encapsulated with human serum albumin (HSA) to form novel nanosonosensitizers. These nanosonosensitizers generate abundant singlet oxygen (1 O2 ) under US irradiation, and importantly show excellent US-activatable abilities with deep-tissue depths up to 11 cm. Compared to ZnTTP-HSA and TiOTTP-HSA, MnTTP-HSA exhibits the strongest ROS-activatable behavior due to the lowest highest occupied molecular orbital-lowest unoccupied molecular orbital gap energy by density functional theory. It is also effective for deep-tissue photoacoustic/magnetic resonance dual-modal imaging to trace the accumulation of nanoparticles in tumors. Moreover, MnTTP-HSA intriguingly achieves high SDT efficiency for simultaneously suppressing the growth of bilateral tumors away from ultrasound source in mice. This work develops a deep-tissue imaging-guided SDT strategy through well-defined metalloporphyrin nanocomplexes and paves a new way for highly efficient noninvasive SDT treatments of malignant tumors.
Assuntos
Metaloporfirinas/química , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/terapia , Nanomedicina Teranóstica , Terapia por Ultrassom , Animais , Humanos , Células MCF-7 , Imageamento por Ressonância Magnética , Camundongos Nus , Nanopartículas/ultraestrutura , Neoplasias/diagnóstico por imagem , Técnicas Fotoacústicas , Albumina Sérica Humana/química , Superóxidos/metabolismoRESUMO
Three new crystal structures containing [PtCl6]2−, pyridinium and benzimidazole groups have been prepared: [PtCl6]·(H-bzm)2·2(H2O) (1), [PtCl6]·(H-bipy)2·2(H2O) (2), [PtCl6]·(H-dimethyl-bipy)2·2(H2O) (3) [H-bzm: benzimidazole cation, H-bipy: 2,2'-bipyridine cation, H-dimethyl-bipy: 4,4'-bimethyl-2,2'-bipyridine cation]. All compounds have been fully characterized by elemental analyses, single-crystal X-ray analyses, IR spectra, TG analyses, and fluorescence studies. Single-crystal X-ray diffraction analysis suggests that the primary synthon contains âºNâ»H···Cl−, including ionic bonding and hydrogen bonding interactions. The dimensions are enhanced further by secondary Oâ»H ââCl and Nâ»H ââO hydrogen bonding interactions between donor and acceptor atoms located at the periphery of these synthons. Moreover, coulombic attractions between the ions play an important role in reinforcing the structures of these complexes. In addition, antitumor activity against human lung adenocarcinoma cell line (A549) and human nasopharyngeal carcinoma cell line (CNE-2) was performed. These complexes all showed inhibition to the two cell lines, while complex 3 exhibited higher efficiency than complexes 1â»2.
Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Cisplatino/análogos & derivados , Compostos Heterocíclicos/química , Compostos Inorgânicos/química , Nitrogênio/química , Compostos Orgânicos/química , Antineoplásicos/síntese química , Cátions , Cisplatino/síntese química , Cisplatino/química , Cisplatino/farmacologia , Cristalografia por Raios X , Ligação de Hidrogênio , Estrutura Molecular , Espectrofotometria Ultravioleta , TermogravimetriaRESUMO
CD4+ T helper cells, especially T helper 17 (TH17) cells, combined with immune regulatory network dysfunction, play key roles in autoimmune diseases including multiple sclerosis (MS). Betulinic acid (BA), a natural pentacyclic triterpenoid, has been reported to be involved in anti-inflammation, in particular having an inhibitory effect on proinflammatory cytokine interleukin 17 (IL-17) and interferon-γ (IFN-γ) production. In this study, we screened BA derivatives and found a BA derivative, SH479, that had a greater inhibitory effect on TH17 differentiation. Our further analysis showed that SH479 had a greater inhibitory effect on TH17 and TH1, and a more stimulatory effect on regulatory T (Treg) cells. To evaluate the effects of SH479 on autoimmune diseases in vivo, we employed the extensively used MS mouse model experimental autoimmune encephalomyelitis (EAE). Our results showed that SH479 ameliorated clinical and histologic signs of EAE in both prevention and therapeutic protocols by regulating the TH17/Treg balance. SH479 dose-dependently reduced splenic lymphocyte proinflammatory factors and increased anti-inflammatory factors. Moreover, SH479 specifically inhibited splenic lymphocyte viability from EAE mice but not normal splenic lymphocyte viability. At the molecular level, SH479 inhibited TH17 differentiation by regulating signal transducer and activator of transcription-3 (STAT3) phosphorylation, DNA binding activity, and recruitment to the Il-17a promoter in CD4+ T cells. Furthermore, SH479 promoted the STAT5 signaling pathway and inhibited the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway. Together, our data demonstrated that SH479 ameliorated EAE by regulating the TH17/Treg balance through inhibiting the STAT3 and NF-κB pathways while activating the STAT5 pathway, suggesting that SH479 is a potential novel drug candidate for autoimmune diseases including MS.
Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Triterpenos/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Encefalomielite Autoimune Experimental/patologia , Humanos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Triterpenos Pentacíclicos , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos , Baço/efeitos dos fármacos , Baço/patologia , Linfócitos T Reguladores/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Triterpenos/química , Triterpenos/farmacocinética , Triterpenos/farmacologia , Ácido BetulínicoRESUMO
The clearance of oxidative stress compounds is critical for the protection of the organism from malignancy, but how this key physiological process is regulated is not fully understood. Here, we found that the expression of GPRC5A, a well-characterized tumor suppressor in lung cancer, was elevated in colorectal cancer tissues in patients. In both cancer cell lines and a colitis-associated cancer model in mice, we found that GPRC5A deficiency reduced cell proliferation and increased cell apoptosis as well as inhibited tumorigenesis in vivo. Through RNA-Seq transcriptome analysis, we identified oxidative stress associated pathways were dysregulated. Moreover, in GPRC5A deficient cells and mouse tissues, the oxidative agents were reduced partially due to increased glutathione (GSH) level. Mechanistically, GPRC5A regulates NF-κB mediated Vanin-1 expression which is the predominant enzyme for cysteamine generation. Administration of cystamine (the disulfide form of cysteamine) in GPRC5A deficient cell lines inhibited γ-GCS activity, leading to reduction of GSH level and increase of cell growth. Taken together, our studies suggest that GPRC5a is a potential biomarker for colon cancer and promotes tumorigenesis through stimulation of Vanin-1 expression and oxidative stress in colitis associated cancer. This study revealed an unexpected oncogenic role of GPRC5A in colorectal cancer suggesting there are complicated functional and molecular mechanism differences of this gene in distinct tissues.
Assuntos
Amidoidrolases/genética , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Estresse Oxidativo , Receptores Acoplados a Proteínas G/genética , Animais , Apoptose/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/genética , Colite/complicações , Neoplasias Colorretais/complicações , Neoplasias Colorretais/metabolismo , Progressão da Doença , Proteínas Ligadas por GPI/genética , Perfilação da Expressão Gênica/métodos , Glutationa/metabolismo , Células HEK293 , Células HT29 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para CimaRESUMO
Angiogenesis is the process of generating new blood vessels based on existing ones, which is involved in many diseases including cancers, cardiovascular diseases and diabetes mellitus. Recently, great efforts have been made to explore the mechanisms of angiogenesis in various diseases and many angiogenic factors have been discovered as therapeutic targets in anti- or pro-angiogenic drug development. However, the resulted information is sparsely distributed and no systematical summarization has been made. In order to integrate these related results and facilitate the researches for the community, we conducted manual text-mining from published literature and built a database named as PubAngioGen (http://www.megabionet.org/aspd/). Our online application displays a comprehensive network for exploring the connection between angiogenesis and diseases at multilevels including protein-protein interaction, drug-target, disease-gene and signaling pathways among various cells and animal models recorded through text-mining. To enlarge the scope of the PubAngioGen application, our database also links to other common resources including STRING, DrugBank and OMIM databases, which will facilitate understanding the underlying molecular mechanisms of angiogenesis and drug development in clinical therapy.
Assuntos
Bases de Dados de Compostos Químicos , Neovascularização Patológica/metabolismo , Moduladores da Angiogênese/uso terapêutico , Animais , Doença , Internet , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Mapeamento de Interação de Proteínas , Transdução de SinaisRESUMO
Targeting liver cancer stem cells (LCSCs) is a promising strategy for hepatocellular carcinoma (HCC) therapy. Target selection and corresponding inhibitor screening are of vital importance for eliminating the stemness of LCSCs. Peptide-based agents are hopeful but have long been hindered for in vivo application. Herein, we selected a clinically significant target MUC13 and screened out a suitable peptide for preparation of an albumin-based MUC13 peptide nanomedicine, P3@HSA, which suppressed liver cancer stem cells via JNK-ERK signaling pathway-mediated autophagy inhibition. The selected target MUC13 was highly expressed in LCSCs and associated with the prognosis of liver cancer patients. Encouraged by this observation, we screened the corresponding peptide-based inhibitor P3 for further evaluation. P3 could interact with albumin through the intrinsic hydrophobic force and formed the nanomedicine P3@HSA. The prepared nanomedicine could inhibit LCSCs through JNK-ERK signaling pathway-mediated autophagy inhibition and exert potent antitumor effect both in vitro and in vivo. Together, this study provides a promising peptide-based nanomedicine for high-performance HCC treatment.
Assuntos
Autofagia , Neoplasias Hepáticas , Sistema de Sinalização das MAP Quinases , Nanomedicina , Células-Tronco Neoplásicas , Peptídeos , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Autofagia/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Animais , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Albuminas/química , Albuminas/farmacologia , Camundongos Nus , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Proliferação de Células/efeitos dos fármacosRESUMO
Objective: To analyze the antibiotic resistance profile, virulence genes, and molecular typing of Staphylococcus aureus (S. aureus) strains isolated in skin and soft tissue infections at the First Affiliated Hospital, Gannan Medical University, to better understand the molecular epidemiological characteristics of S. aureus. Methods: In 2023, 65 S. aureus strains were isolated from patients with skin and soft tissue infections. Strain identification and susceptibility tests were performed using VITEK 2 and gram-positive bacteria identification cards. DNA was extracted using a DNA extraction kit, and all genes were amplified using polymerase chain reaction. Multilocus sequence typing (MLST) was used for molecular typing. Results: In this study, of the 65 S. aureus strains were tested for their susceptibility to 16 antibiotics, the highest resistance rate to penicillin G was 95.4%. None of the staphylococcal isolates showed resistance to ceftaroline, daptomycin, linezolid, tigecycline, teicoplanin, or vancomycin. fnbA was the most prevalent virulence gene (100%) in S. aureus strains isolated in skin and soft tissue infections, followed by arcA (98.5%). Statistical analyses showed that the resistance rates of methicillin-resistant S. aureus isolates to various antibiotics were significantly higher than those of methicillin-susceptible S. aureus isolates. Fifty sequence types (STs), including 44 new ones, were identified by MLST. Conclusion: In this study, the high resistance rate to penicillin G and the high carrying rate of virulence gene fnbA and arcA of S.aureus were determine, and 44 new STs were identified, which may be associated with the geographical location of southern Jiangxi and local trends in antibiotic use. The study of the clonal lineage and evolutionary relationships of S. aureus in these regions may help in understanding the molecular epidemiology and provide the experimental basis for pathogenic bacteria prevention and treatment.
RESUMO
BACKGROUND: Podoplanin (PDPN) is a highly conserved, mucin-type protein specific to the lymphatic system. Overexpression of PDPN is associated with the progression of various solid tumors, and plays an important roles in the tumor microenvironment by regulating the immune system. However, the role of PDPN-mediated signal activation in the progression of melanoma is still unknown. METHODS: PDPN expression was first analyzed in 112 human melanoma tissue microarrays and melanoma cell lines. Functional experiments including proliferation, clone formation, migration, and metastasis were utilized to identify the suppressive effects of PDPN. The Ph.D.TM-12 Phage Display Peptide Library was used to obtain a PDPN antagonist peptide, named CY12-RP2. The immunofluorescence, SPR assay, and flow cytometry were used to identify the binding specificity of CY12-RP2 with PDPN in melanoma cells. Functional and mechanistic assays in vivo and in vitro were performed for discriminating the antitumor and immune activation effects of CY12-RP2. RESULTS: PDPN was overexpressed in melanoma tissue and cells, and inhibited melanoma cells proliferation, migration, and metastasis by blocking the EMT and Wnt/ß-catenin pathway. PDPN antagonistic peptide, CY12-RP2, could specifically bind with PDPN, suppressing melanoma various functions inducing apoptosis in both melanoma cells and 3D spheroids. CY12-RP2 also enhanced the anti-tumor capacity of PBMC, and inhibited melanoma cells growth both in xenografts and allogeneic mice model. Moreover, CY12-RP2 could inhibit melanoma lung metastasis, and abrogated the immunosuppressive effects of PDPN by increasing the proportion of CD3 + CD4 + T cells, CD3 + CD8 + T cells, CD49b + Granzyme B + NK cells, and CD11b + CD86 + M1-like macrophages and the levels of IL-1ß, TNF-α, and IFN-γ. CONCLUSIONS: This study has demonstrated the important role of PDPN in the progression of melanoma and formation of immunosuppressive environment, and provided a potential approach of treating melanoma using the novel CY12-RP2 peptide. In melanoma, PDPN is overexpressed in the cancer cells, and promotes melanoma cells growth and metastasis through activating the Wnt/ß-catenin pathway. Treatment with the PDPN antagonistic peptide CY12-RP2 could not only inhibit the melanoma growth and metastasis both in vitro and in vivo through Wnt/ß-catenin pathway blockade, but also abrogate the immunosuppressive effects of PDPN through modulating immune cells.
Assuntos
Melanoma , Animais , Camundongos , Humanos , Melanoma/patologia , beta Catenina/metabolismo , Leucócitos Mononucleares/metabolismo , Via de Sinalização Wnt , Proliferação de Células , Linhagem Celular Tumoral , Peptídeos/farmacologia , Movimento Celular , Transição Epitelial-Mesenquimal , Microambiente Tumoral , Proteínas de Membrana/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Glicoproteínas de Membrana/metabolismoRESUMO
Incontinentia pigmenti (IP), an X-chromosome dominant genodermatosis caused by mutations in the IKBKG/NEMO gene, is a rare disease affecting the skin, teeth, eyes, and central nervous system. Here, we report two pedigrees of IP and detection of two novel mutations in the IKBKG gene associated with IP via genetic analysis. In addition, different gene mutation types can present with different clinical phenotypes, and the same gene mutation type can show different clinical phenotypes. This study provides clinical cases for further study of the genotype and phenotype of IP and enriches the mutation spectrum of IKBKG gene, which provides a basis for genetic counseling and genetic diagnosis of IP in the future.
RESUMO
PURPOSE: Glioma is the most common primary intracranial tumor and exhibits rapid growth and aggressiveness. TRPM8 channel-associated factor 2 (TCAF2), located in cell junctions and the plasma membrane, plays a key role in the pathogeneses of several cancers in humans. However, the role of TCAF2 in glioma has been elusive. METHODS: A combination of bioinformatic analysis using The Cancer Genome Atlas database and biological experiments, including 5-ethynyl-2'-deoxyuridine, transwell, and immunohistochemistry assays and xenotransplantation, was performed to analyze the expression level of TCAF2 and to mechanistically explore the relationship of TCAF2 with malignancy, prognosis, and the immune microenvironment in glioma. RESULTS: TCAF2 was upregulated in glioma, and its expression level correlated with tumor grade and clinical outcome. The role of TCAF2 in promoting glioma malignancy was characterized through in vitro and in vivo experiments. Additionally, we observed that TCAF2 can modulate the metabolic pathways and immune microenvironment. CONCLUSION: TCAF2 acts as an oncogene and may serve as a therapeutic target and prognostic marker in glioma.
Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Neoplasias Encefálicas/genética , Agressão , Membrana Celular , Biologia Computacional , Microambiente Tumoral/genética , Proteínas de MembranaRESUMO
Glioma is the most common and aggressive primary brain tumor in adults with high morbidity and mortality. Rapid proliferation and diffuse migration are the main obstacles to successful glioma treatment. Xanthatin, a sesquiterpene lactone purified from Xanthium strumarium L., possesses a significant antitumor role in several malignant tumors. In this study, we report that xanthatin suppressed glioma cells proliferation and induced apoptosis in a time- and concentration-dependent manner, and was accompanied by autophagy inhibition displaying a significantly reduced LC3 punctate fluorescence and LC3II/I ratio, decreased level of Beclin 1, while increased accumulation of p62. Notably, treating glioma cells with xanthatin resulted in obvious activation of the PI3K-Akt-mTOR signaling pathway, as indicated by increased mTOR and Akt phosphorylation, decreased ULK1 phosphorylation, which is important in modulating autophagy. Furthermore, xanthatin-mediated pro-apoptosis in glioma cells was significantly reversed by autophagy inducers (rapamycin or Torin1), or PI3K-mTOR inhibitor NVP-BEZ235. Taken together, these findings indicate that anti-proliferation and pro-apoptosis effects of xanthatin in glioma are most likely by inhibiting autophagy via activation of PI3K-Akt-mTOR pathway, suggesting a potential therapeutic strategy against glioma.
Assuntos
Glioma , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , AutofagiaRESUMO
Sonodynamic therapy (SDT), a combination of low-intensity ultrasound with a sonosensitizer, has been explored as a promising alternative for cancer therapy. However, condensed extracellular matrix (ECM) resulting in poor perfusion and extreme hypoxia in solid tumor potentially compromises effective SDT. Herein, we develop a novel cleavable collagenase-assistant and O2-supplied nanosonosensitizer (FePO2@HC), which is embedded through fusing collagenase (CLG) and human serum albumin (HSA), followed by encapsulating Ferric protoporphyrin (FeP) and dioxygen. As a smart carrier, HSA is stimuli-responsive and collapsed by reduced glutathione (GSH) overexpressed in tumor, resulting to the release of the components in FePO2@HC. The released CLG acting as an artificial scissor, degrades the collagen fibers in tumor, thus, breaking tumor tissue and enhancing FePO2 accumulation in tumor inner with higher than that without CLG. Simultaneously, oxygen molecules are released from FePO2 in hypoxic environment and alleviate the tumor hypoxia. As a sonosensitizer, FeP is subsequently irradiated by ultrosound wave (US) and activates surrounding dioxygen to generate amount of singlet oxygen (1O2). Contributed from the ECM-degradation, such SDT-based nanosystem with increased sonosensitizer permeability and oxygen content highly improved the tumor inhibition efficacy without toxic effects. This study presents a new paradigm for ECM depletion-based strategy of deep-seated penetration, and will expand the nanomedicine application of metalloporphyrin sonosensitizers in SDT.
Assuntos
Metaloporfirinas , Nanopartículas , Neoplasias , Terapia por Ultrassom , Humanos , Neoplasias/terapia , Neoplasias/patologia , Oxigênio/metabolismo , Colagenases , Linhagem Celular Tumoral , Espécies Reativas de OxigênioRESUMO
Arylalkylamine N-acetyltransferase (aaNAT), considered a potential new insecticide target, catalyzes the acetylation of arylalkylamine substrates such as serotonin and dopamine and, hence, mediates diverse functions in insects. However, the origin of insect aaNATs (iaaNATs) and the evolutionary process that generates multiple aaNATs in mosquitoes remain largely unknown. Here, we have analyzed the genomes of 33 species to explore and expand our understanding of the molecular evolution of this gene family in detail. We show that aaNAT orthologs are present in Bacteria, Cephalochordata, Chondrichthyes, Cnidaria, Crustacea, Mammalia, Placozoa, and Teleoste, as well as those from a number of insects, but are absent in some species of Annelida, Echinozoa, and Mollusca as well as Arachnida. Particularly, more than 10 aaNATs were detected in the Culicinae subfamily of mosquitoes. Molecular evolutionary analysis of aaNAT/aaNAT-like genes in mosquitoes reveals that tandem duplication events led to gene expansion in the Culicinae subfamily of mosquitoes more than 190 million years ago. Further selection analysis demonstrates that mosquito aaNATs evolved under strongly positive pressures that generated functional diversity following gene duplication events. Overall, this study may provide novel insights into the molecular evolution of the aaNAT family in mosquitoes.