Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Anal Chem ; 96(6): 2534-2542, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38302490

RESUMO

Cerebrospinal fluid (CSF) biomarkers are more sensitive than the Movement Disorder Society (MDS) criteria for detecting prodromal Parkinson's disease (PD). Early detection of PD provides the best chance for successful implementation of disease-modifying treatments, making it crucial to effectively identify CSF extracted from PD patients or normal individuals. In this study, an intelligent sensor array was built by using three metal-organic frameworks (MOFs) that exhibited varying catalytic kinetics after reacting with potential protein markers. Machine learning algorithms were used to process fingerprint response patterns, allowing for qualitative and quantitative assessment of the proteins. The results were robust and capable of discriminating between PD and non-PD patients via CSF detection. The k-nearest neighbor regression algorithm was used to predict MDS scores with a minimum mean square error of 38.88. The intelligent MOF sensor array is expected to promote the detection of CSF biomarkers due to its ability to identify multiple targets and could be used in conjunction with MDS criteria and other techniques to diagnose PD more sensitively and selectively.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Biomarcadores/líquido cefalorraquidiano , Diagnóstico Precoce , Algoritmos , Aprendizado de Máquina
2.
J Pharmacol Exp Ther ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379143

RESUMO

Amitriptyline, a pleiotropic tricyclic antidepressant, possesses anti-oxidant and anti-inflammatory properties. Despite its diverse benefits, the specific effects of amitriptyline on IBD are not yet well defined. To explore this, we utilized a DSS-induced colitis model to examine the anti-inflammatory effects of amitriptyline and the underlying mechanisms by which it operates. Our research revealed that amitriptyline is effective in alleviating several pathological manifestations associated with colitis. This includes improvements in body weight retention, reductions in DAI, lessening of colon length shortening, and repair of colonic mucosal damage. Treatment with amitriptyline significantly protected mucosal injury by preserving the population of goblet cells and increasing the expression of tight junction proteins. Furthermore, we observed that amitriptyline effectively countered immune cell infiltration, specifically neutrophils and macrophages, while simultaneously lowering the levels of inflammatory cytokines such as TNF-α, IL-1ß, and IL-6. Additionally, RNA sequencing analysis pointed to the potential involvement of the TLR pathway in the anti-colitic effects induced by amitriptyline. Subsequent Western blot analysis indicated that amitriptyline significantly inhibited the TLR4-mediated NF-κB signaling pathway. To bolster our findings, in vitro studies demonstrated that amitriptyline down-regulated the TLR4/NF-κB/MAPK signaling cascades in mouse macrophages stimulated with LPS. Further molecular investigations revealed that amitriptyline was able to suppress the elevated expression of MD-2 that LPS stimulation typically induces. In summary, our findings suggest that amitriptyline effectively mitigates DSS-induced colitis in mice through the inhibition of TLR4/MD-2 pathway signaling, indicating its potential repurposing for IBD treatment. Significance Statement The potential of utilizing amitriptyline in treating IBD appears promising, leveraging its established safety and dosing profile as an antidepressant. Our observations show that amitriptyline can alleviate pathological symptoms, inflammation, and intestinal mucosal damage in mice with colitis induced by DSS. The protective effect observed appear to be linked to the inhibition of the TLR4/MD2 signaling pathway. By exploring novel applications for existing medications, we can optimize amitriptyline's efficacy and broaden its impact in both medical and commercial contexts.

3.
J Vasc Surg ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39179001

RESUMO

OBJECTIVE: Various pharmaceutical cost options have been developed by multiple companies such as GoodRx, Amazon Pharmacy, Mark Cuban Cost Plus Drugs (CPD), Health Warehouse, and local retail pharmacies) to curb the cost of prescription medications prices that patients are having to bear. Vascular surgeons provide long-term continuity of care to patients with vascular disease who often require long-term medical management. This study sought to compare the different pharmaceutical options available for the most prescribed medications by vascular surgeons to their patients and to understand which of them are the most cost-effective. METHODS: The Medicare Part D catalog and vascular surgical literature were evaluated to identify which medications are most prescribed by vascular surgeons. The average price per tablet being paid by patients was identified using the Agency for Healthcare and Research database. The prices per tablet for each of the above pharmaceutical companies were found using online catalogs or coupons. The prices were then compared using analysis of variance and t-tests. RESULTS: All four pharmaceutical cost options provide medication cost savings to patients compared with retail pharmacy costs. Analysis of variance showed that there were statistically significant differences among the different pharmaceutical cost options (F 15.44>2.36; P < .001). Mark Cuban CPD provided the most significant cost advantage over the other pharmaceutical options (P < .01). On a national scale, medications prescribed by vascular surgeons through Mark Cuban CPD could provide a 52% cost reduction to patients with vascular disease with a potential annual savings of over $3 billion dollars for the selected medications. CONCLUSIONS: CPD shows a strong potential for cost savings for patients commonly prescribed medications by vascular surgeons. As a specialty that provides long-term care and establishes long-term relationships with its patients, vascular surgeons have the unique ability to impact their overall health in a meaningful way by limiting the financial burdens associated with vascular-based medication acquisition and utilization.

4.
Cancer Control ; 31: 10732748241295347, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39425895

RESUMO

BACKGROUND: The objective of this study is to develop a predictive model for the assessment of cervical lymph node metastasis risk in papillary thyroid carcinoma (PTC). METHODS: A retrospective study was conducted on 212 patients with PTC who underwent initial surgical treatment from August 2022 to April 2023 in 2 hospitals. Data were randomly split into 7:3 training-validation sets. Logistic regression was used for feature selection and predictive model creation. Model performance was assessed using receiver operating characteristic (ROC) and calibration curves. Clinical utility was determined using decision curves. RESULTS: Among the 212 patients with PTC, 104 cases (49.1%) exhibited cervical lymph node metastasis, while 108 cases (50.9%) did not. Multivariate logistic regression analysis revealed that age (OR = 0.95), FT3 (OR = 0.41), tumor maximum diameter ≥0.9 cm (OR = 1.85), intratumoral microcalcifications (OR = 1.84), and suspicious lymph node on ultrasound (OR = 2.96) were independent risk factors for lymph node metastasis in PTC patients (P < 0.05). The constructed model for predicting the risk of cervical lymph node metastasis demonstrated a training set ROC curve area under the curve (AUC) of 0.742 (95% CI: 0.664 - 0.821), with a cut-off value of 0.615, specificity of 87.8%, and sensitivity of 51.4%. The validation set exhibited an AUC of 0.648 (95% CI: 0.501 - 0.788), with a cut-off value of 0.644, specificity of 91.2%, and sensitivity of 43.3%. Including the BRAF V600 E mutation did not improve the model's diagnostic performance significantly. Decision curve analysis indicated clinical feasibility of the model. CONCLUSION: The predictive model developed in this study effectively predicts lymph node metastasis risk in PTC patients by incorporating ultrasound features, demographic characteristics, and serum parameters. However, including the BRAF V600 E mutation does not significantly improve the model's diagnostic performance.


BackgroundThe objective of this study is to develop a predictive model for the assessment of cervical lymph node metastasis risk in papillary thyroid carcinoma.MethodsA retrospective study was conducted on 212 patients with papillary thyroid carcinoma who underwent initial surgical treatment at the First Affiliated Hospital of Fujian Medical University from August 2022 to April 2023. Data randomly split into 7:3 training-validation sets. Logistic regression used for feature selection and predictive model creation. Model performance assessed using ROC and calibration curves. Clinical utility determined using decision curves.ResultsAmong the 212 patients with PTC, 104 cases (49.1%) exhibited cervical lymph node metastasis, while 108 cases (50.9%) did not. Multivariate logistic regression analysis revealed that age (OR = 0.95), FT3 (OR = 0.41), tumor maximum diameter ≠¥ 0.9cm(OR = 1.85), intratumoral microcalcifications (OR = 1.84), and suspicious lymph node on ultrasound (OR = 2.96) were independent risk factors for LNM in PTC patients (P < 0.05). The constructed model for predicting the risk of cervical lymph node metastasis demonstrated a training set ROC curve area under the curve (AUC) of 0.742 (95% CI: 0.664 - 0.821), with a cut-off value of 0.615, specificity of 87.8%, and sensitivity of 51.4%. The validation set exhibited an AUC of 0.648 (95% CI: 0.501 - 0.788), with a cut-off value of 0.644, specificity of 91.2%, and sensitivity of 43.3%. Including BRAF V600E gene did not improve model's diagnostic performance significantly. Decision curve analysis indicated clinical feasibility of the model.ConclusionThe predictive model developed in this study effectively predicts lymph node metastasis risk in PTC patients by incorporating ultrasound features, demographic characteristics, and serum parameters.However, Including the BRAF V600E mutation does not significantly improve diagnosis performance.


Assuntos
Metástase Linfática , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Metástase Linfática/patologia , Feminino , Masculino , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/cirurgia , Câncer Papilífero da Tireoide/diagnóstico , Pessoa de Meia-Idade , Estudos Retrospectivos , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/cirurgia , Adulto , Linfonodos/patologia , Fatores de Risco , Pescoço/patologia , Curva ROC , Proteínas Proto-Oncogênicas B-raf/genética
5.
J Fluoresc ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325302

RESUMO

Oxide matrix red-emitting phosphors are deemed as excellent color converters for white light emitting diodes (WLEDs) and laser diodes (LDs). Manganese-doped MgAl2O4 powder was synthesized by a solid-state reaction method at different sintering temperatures. Microstructure shows that grain size is mainly in the range of 0.2-5 µm, and grain agglomeration occurs with increased sintering temperature. XPS analysis indicates that the doped Mn ion exhibits a valence state of + 4 within the MgAl2O4 matrix. The diffraction peak of the phosphors is shifted by the sintering temperature, which affects lattice constant. Upon excitation by 300 nm ultraviolet light, the samples emit asymmetric broadband red light within the range of 620-720 nm, attributed to Mn4+ ion's transition from 2Eg to 4A2g states. With the increasing temperature, the main emission peak shifts from 677 nm to 650 nm, ascribed to the change in energy level (2Eg) resulting from the reduction of Al2O3 phase. Crystal field theory confirmed that Mn4+ ions are within a strong crystal field environment created by MgAl2O4 matrix. By affecting particle size and crystallinity, the sintering temperature influences the fluorescence lifetime of the Mn4+ ion. Notably, these red-emitting phosphors exhibits remarkable thermal stability as their emission intensity remains approximately at 58% of initial intensity even at elevated temperature (435 K). Consequently, Mn4+: MgAl2O4 red-emitting phosphors with high thermal stability render them promising candidates for WLED applications.

6.
J Gastroenterol Hepatol ; 39(10): 2197-2207, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38923573

RESUMO

BACKGROUND AND AIM: Lipid metabolism disorder is the primary feature of numerous refractory chronic diseases. Fatty acid oxidation, an essential aerobic biological process, is closely related to the progression of NAFLD. The forkhead transcription factor FOXO1 has been reported to play an important role in lipid metabolism. However, the molecular mechanism through which FOXO1 regulates fatty acid oxidation remains unclear. METHODS: Transcriptomic analysis was performed to examine the cellular expression profile to determine the functional role of FOXO1 in HepG2 cells with palmitic acid (PA)-induced lipid accumulation. FOXO1-binding motifs at the promoter region of aldehyde dehydrogenase 1 family member L2 (ALDH1L2) were predicted via bioinformatic analysis and confirmed via luciferase reporter assay. Overexpression of ALDH1L2 was induced to recover the impaired fatty acid oxidation in FOXO1-knockout cells. RESULTS: Knockout of FOXO1 aggravated lipid deposition in hepatic cells. Transcriptomic profiling revealed that knockout of FOXO1 increased the expression of genes associated with fatty acid synthesis but decreased the expression of carnitine palmitoyltransferase1a (CPT1α) and adipose triglyceride lipase (ATGL), which contribute to fatty acid oxidation. Mechanistically, FOXO1 was identified as a transcription factor of ALDH1L2. Knockout of FOXO1 significantly decreased the protein expression of ALDH1L2 and CPT1α in vitro and in vivo. Furthermore, overexpression of ALDH1L2 restored fatty acid oxidation in FOXO1-knockout cells. CONCLUSION: The findings of this study indicate that FOXO1 modulates fatty acid oxidation by targeting ALDH1L2.


Assuntos
Ácidos Graxos , Proteína Forkhead Box O1 , Metabolismo dos Lipídeos , Oxirredução , Animais , Humanos , Masculino , Camundongos , Aldeído Oxirredutases/metabolismo , Aldeído Oxirredutases/genética , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/genética , Ácidos Graxos/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Células Hep G2 , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia
7.
BMC Nephrol ; 25(1): 58, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368317

RESUMO

Recent studies have suggested that ferroptosis participates in various renal diseases. However, its effect on focal segmental glomerulosclerosis remains unclear. This study analyzed the GSE125779 and GSE121211 datasets to identify the differentially expressed genes (DEGs) in renal tubular samples with and without FSGS. The Cytoscape was used to construct the protein-protein interaction network. Moreover, the ferroptosis-related genes (FRGs) were obtained from the ferroptosis database, while ferroptosis-related DEGs were obtained by intersection with DEGs. The target genes were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The GSE108112 dataset was used to verify the expression of target FRGs. Besides, we built the mRNA-miRNA network regarding FRGs using the NetworkAnalyst database, and circRNAs corresponding to key miRNAs were predicted in the ENCORI database. In this study, 16 ferroptosis-related DEGs were identified between FSGS and healthy subjects, while five co-expressed genes were obtained by three topological algorithms in Cytoscape. These included the most concerned Hub genes JUN, HIF1A, ALB, DUSP1 and ATF3. The KEGG enrichment analysis indicated that FRGs were associated with mitophagy, renal cell carcinoma, and metabolic pathways. Simultaneously, the co-expressed hub genes were analyzed to construct the mRNA-miRNA interaction network and important miRNAs such as hsa-mir-155-5p, hsa-mir-1-3p, and hsa-mir-124-3p were obtained. Finally, 75 drugs targeting 54 important circRNAs and FRGs were predicted. This study identified the Hub FRGs and transcriptomic molecules from FSGS in renal tubules, thus providing novel diagnostic and therapeutic targets for FSGS.


Assuntos
Ferroptose , Glomerulosclerose Segmentar e Focal , Túbulos Renais , MicroRNAs , Humanos , Ferroptose/genética , Genes vif , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/terapia , MicroRNAs/genética , RNA Circular , RNA Mensageiro
8.
BMC Public Health ; 24(1): 1524, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844867

RESUMO

BACKGROUND: Non-pharmaceutical interventions (NPIs) have been widely utilised to control the COVID-19 pandemic. However, it is unclear what the optimal strategies are for implementing NPIs in the context of coronavirus vaccines. This study aims to systematically identify, describe, and evaluate existing ecological studies on the real-world impact of NPIs in containing COVID-19 pandemic following the roll-out of coronavirus vaccines. METHODS: We conducted a comprehensive search of relevant studies from January 1, 2021, to June 4, 2023 in PubMed, Embase, Web of science and MedRxiv. Two authors independently assessed the eligibility of the studies and extracted the data. A risk of bias assessment tool, derived from a bibliometric review of ecological studies, was applied to evaluate the study design, statistical methodology, and the quality of reporting. Data were collected, synthesised and analysed using qualitative and quantitative methods. The results were presented using summary tables and figures, including information on the target countries and regions of the studies, types of NPIs, and the quality of evidence. RESULTS: The review included a total of 17 studies that examined the real-world impact of NPIs in containing the COVID-19 pandemic after the vaccine roll-out. These studies used five composite indicators that combined multiple NPIs, and examined 14 individual NPIs. The studies had an average quality assessment score of 13 (range: 10-16), indicating moderately high quality. NPIs had a larger impact than vaccination in mitigating the spread of COVID-19 during the early stage of the vaccination implementation and in the context of the Omicron variant. Testing policies, workplace closures, and restrictions on gatherings were the most effective NPIs in containing the COVID-19 pandemic, following the roll-out of vaccines. The impact of NPIs varied across different time frames, countries and regions. CONCLUSION: NPIs had a larger contribution to the control of the pandemic as compared to vaccination during the early stage of vaccine implementation and in the context of the omicron variant. The impact of NPIs in containing the COVID-19 pandemic exhibited variability in diverse contexts. Policy- and decision-makers need to focus on the impact of different NPIs in diverse contexts. Further research is needed to understand the policy mechanisms and address potential future challenges.


Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , COVID-19/epidemiologia , Vacinas contra COVID-19/administração & dosagem , Pandemias/prevenção & controle
9.
Plant Dis ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769291

RESUMO

Lithocarpus polystachyus (Wall. ex A. DC.), an economically valuable plant species belonging to the Fagaceae family, has been used as herbal tea to prevent diabetes because of the high content of flavonoids and dihydrochalcones in the leaves (Shang et al. 2022). In July 2022, the severe leaf lesion on L. polystachyus was first observed in Yongshun County, Xiangxi autonomous prefecture (28°45'34''N, 109°40'11''E), Hunan province, China. Yongshun County is characterized by hills and mountains, situated in a subtropical region with a mild and humid climate. A second outbreak in July 2023 was observed in the same area. The observed incident rates in the past two years were 87.3% and 90.6%, respectively. Once infected, almost all plant leaves will be infected, leading to a substantial reduction in the yield of L. polystachyus. The disease presented symptoms characterized by round or irregularly shaped lesions that initially manifested as brown spots. These lesions frequently merged into larger, dark-brown areas along the leaf margins before eventually wilting. To ascertain the pathogenic species responsible for this disease, fungal isolation was conducted using a tissue separation method (Xu et al. 2023). The infected leaf tissues were surface-disinfected with 75% ethanol and 0.1% HgCl then small pieces (1×1 cm), were placed onto potato dextrose agar (PDA) medium (Sigma-Aldrich, 70139) and incubated at 28°C for 6-9 days. Colonies were villiform and initially white, becoming gray after 6 days. Sterilized dissecting needles were used to pick single hyphal tips from the edge of the colonies and placed onto PDA for strain purification. After 15 days, the purified colonies grew fluffy white hyphae with abundant conidia. The conidia were cylindrical, had round ends, and ranged from 5.75 to 14.83 µm long and 1.75 to 2.38 µm wide (n=50). According to morphological and cultural characteristics, these isolates were preliminarily identified as Colletotrichum fructicola Prihast., L. Cai & K.D. Hyde (Damm et al. 2012). To further affirm the identity of the pathogen, DNA was extracted from mycelia using a DNA extraction kit (Sigma-Aldrich, G2N70). The internal transcribed spacer (ITS) region, the transcription elongation factor (TEF), and the actin (ACT) gene were then amplified from genomic DNA extracted from three isolates (Cof1, Cof2, and Cof3) using specific primers. The primers utilized were ITS1/ITS4 (White et al. 1990), EF1-728F/EF1-986R and ACT-512F/ACT-783R (Carbone and Kohn 1999) for ITS region, transcription elongation factor gene and actin gene amplification, respectively. Sequence identity indicated that these isolates were highly homologous to C. fructicola. The ITS (Genbank No. PP002156, OR880553 and OR880554), TEF (No. PP061421, PP061422 and PP061423), and ACT (No. PP061418, PP061419 and PP061420) sequences of the isolates Cof1, Cof2, and Cof3 shared 99 to 100% identity with their counterparts (No. OR083309, MF627961, and OQ427895) in C. fructicola, respectively. A neighbor-joining phylogenetic tree constructed using MEGA11 (Tamura et al. 2021) also indicated that these isolates were C. fructicola. Both morphological and molecular characteristics confirmed the identification of this pathogen as C. fructicola. Colletotrichum species are known to cause anthracnose disease in a variety of economically important crops (Sharma and Kulshrestha 2015). To further validate the ability of the isolated C. fructicola to induce the same symptoms as observed in the field, the pathogenicity assay was assessed following Koch's postulates (Gradmann, 2014). Conidial suspensions (1×105 conidia per mL) from three isolates were individually inoculated onto artificially wounded leaves of 3-year-old L. polystachyus. Negative controls were established by inoculating leaf wounds with sterile distilled water. The plants were incubated in a greenhouse at 28°C and 90% humidity with a 12-h photoperiod. The experiment was replicated three times. Necrotic lesions were observed on all pathogen-inoculated wounds within 6 days after inoculation, whereas controls showed no observable symptoms. Morphological and molecular characterization of re-isolated pathogens from infected leaves indicated that the pathogens were identical. To our knowledge, this is the first report of anthracnose of L. polystachyus caused by C. fructicola in China. Farmers in the local mountainous areas are economically reliant on L. polystachyus production, while anthracnose has caused over half of the trees to lose their commercial value, resulting in significant economic losses. Our findings hold great promise for advancing strategies in the prevention and treatment of anthracnose in L. polystachyus.

10.
Mikrochim Acta ; 191(11): 640, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39356328

RESUMO

Chiral compounds are abundantly distributed in both the natural world and biological systems. It is crucial to identify and detect chiral compounds in living systems or to separate and determine them in the natural environment. Many researchers have developed a range of chiral materials with different functionalizations to separate and detect chiral substances. Chiral metal-organic frameworks (CMOFs) have the potential to be used in enantioselective separation and detection due to their large surface areas, regulated framework topologies, particular substrate interactions, and accessible chiral sites. CMOFs contribute significantly to the development of enantiomer separation and detection in medicine, agriculture, food, environment, and other fields. This review focuses on four synthesis methods of CMOFs and their applications in chiral separation and chiral sensing in the past five years, mainly including chromatographic separation, membrane separation, optical sensing, electrochemical sensing, and other sensing methods. Finally, the challenges and potential growth direction of CMOFs in enantiomer separation and detection are discussed and prospected.

11.
Nano Lett ; 23(18): 8628-8636, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37694968

RESUMO

Magnetic resonance imaging (MRI) is an important tool in the diagnosis of many cancers. However, clinical gadolinium (Gd)-based MRI contrast agents have limitations, such as large doses and potential side effects. To address these issues, we developed a hydrogen-bonded organic framework-based MRI contrast agent (PFC-73-Mn). Due to the hydrogen-bonded interaction of water molecules and the restricted rotation of manganese ions, PFC-73-Mn exhibits high longitudinal relaxation r1 (5.03 mM-1 s-1) under a 3.0 T clinical MRI scanner. A smaller intravenous dose (8 µmol of Mn/kg) of PFC-73-Mn can provide strong contrast and accurate diagnosis in multiple kinds of cancers, including breast tumor and ultrasmall orthotopic glioma. PFC-73-Mn represents a prospective new approach in tumor imaging, especially in early-stage cancer.


Assuntos
Glioma , Manganês , Humanos , Meios de Contraste , Gadolínio , Imageamento por Ressonância Magnética/métodos
12.
Wei Sheng Yan Jiu ; 53(5): 763-789, 2024 Sep.
Artigo em Zh | MEDLINE | ID: mdl-39308108

RESUMO

OBJECTIVE: To explore the role of nuclear transcription factor E2-related factor 2(NRF2)-mediated reductive stress in arsenite induced malignant transformation in human keratinocytes. METHODS: HaCaT cells and fluorescent labeled mitochondrial glutathione HaCaT cells(Mito-Grx1-roGFP2 HaCaT) were cultured to 35 passages in medium containing 0.0 and 1.0 µmol/L NaAsO_2 to establish a model of malignant transformation of cells. Cellular and mitochondrial reduced glutathione/oxidized glutathione(GSH/GSSG) and reduced coenzyme II/oxidized coenzyme II(NADPH/NADP~+) ratios were measured in HaCaT cells. Cell doubling time, cell migration ability, soft agar clone formation ability and GSH/GSSG at different times in the 0 passage, the early stage(1st, 7th and 14th passages) and later stage(21st, 28th and 35th passages) were measured in Mito-Grx1-roGFP2 HaCaT cells. NaAsO_2 induced malignant transformation cells were transfected with NRF2 siRNA, and detected the expression level of NRF2 and the redox-related indexes and malignant transformation indexes. RESULTS: Compared with the control group, the GSH/GSSG ratio in 1.0 µmol/L NaAsO_2 treated HaCaT cells significantly decreased in the 1st and 7th generations, but significantly increased after the 21st generation, and the NADPH/NADP~+ ratio significantly increased in the 1st, 14th, 21st, 28th and 35th generations; The levels of GSH/GSSG in mitochondria significantly increased from 1st to 35th generation, and the levels of NADPH/NADP~+ in mitochondria significantly increased at 1st, 7th, 21st, 28th and 35th generation. After continuous treatment of Mito-Grx1-roGFP2 HaCaT cells with 0.0 or 1.0 µmol/L NaAsO_2 to 35 passages, the doubling time of cells treated with 1.0 µmol/L NaAsO_2 was significantly shortened, the cell migration rate was increased greatly, and more clones with larger volumes than the control cells formed. The GSH/GSSG ratio in mitochondria of Mito-Grx1-roGFP2 HaCaT cells showed a significant decrease in the 1st generation and increased from the 7th generation onwards(all P<0.05). After transfection of NaAsO_2 treated cells with NRF2 siRNA, the levels of hydrogen peroxide and superoxide increased compared with the siRNA controls. The levels of cell and mitochondrial NADPH/NADP~+ and GSH/GSSG decreased and the level of mitochondrial GSH/GSSG in Mito-Grx1-roGFP2 HaCaT cells decreased. Cell doubling time increased, cell migration rate and soft agar clone formation ability decreased(all P<0.05). The malignant phenotype was reversed. CONCLUSION: In the early stage(1st, 7th and 14th passages) of NaAsO_2 treated HaCaT cells, oxidative stress occurred with continuous high NRF2 expression. Later(21st, 28th and 35th passages), NRF2 induced reductive stress, leading to malignant transformation.


Assuntos
Transformação Celular Neoplásica , Queratinócitos , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Queratinócitos/metabolismo , Queratinócitos/efeitos dos fármacos , Transformação Celular Neoplásica/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Oxirredução , Linhagem Celular , Arsênio/toxicidade , Arsênio/efeitos adversos , Glutationa/metabolismo
13.
Kidney Int ; 103(5): 886-902, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36804379

RESUMO

Progressive fibrosis is a hallmark of chronic kidney disease, but we lack effective treatments to halt this destructive process. Micropeptides (peptides of no more than 100 amino acids) encoded by small open reading frames represent a new class of eukaryotic regulators. Here, we describe that the micropeptide regulator of ß-oxidation (MOXI) regulates kidney fibrosis. MOXI expression was found to be up-regulated in human fibrotic kidney disease, and this correlated with the degree of fibrosis and loss of kidney function. MOXI was expressed in the cytoplasm and mitochondria of cultured tubular epithelial cells and translocated to the nucleus upon Transforming Growth Factor-ß1 stimulation. Deletion of Moxi protected mice against fibrosis and inflammation in the folic acid and unilateral ureteral obstruction models. As a potential molecular therapy, treatment with an antisense MOXI oligonucleotide effectively knocked-down MOXI expression and protected against kidney fibrosis in both models. Bimolecular fluorescence complementation identified the enzyme N-acetyltransferase 14 (Nat14) and transcription factor c-Jun as MOXI binding partners. The MOXI/Nat14/c-Jun complex enhances basal and Transforming Growth Factor-ß1 induced collagen I gene promoter activity. Phosphorylation at T49 is required for MOXI nuclear localization and for complex formation with Nat14 and c-Jun. Furthermore, mice with a MoxiT49A point mutation were protected in the models of kidney fibrosis. Thus, our studies demonstrate a key role for the micropeptide MOXI in kidney fibrosis and identify a new function of MOXI in forming a transcriptional complex with Nat14 and c-Jun.


Assuntos
Nefropatias , Obstrução Ureteral , Animais , Humanos , Camundongos , Acetiltransferases/genética , Acetiltransferases/metabolismo , Fibrose , Rim/patologia , Nefropatias/patologia , Mitocôndrias/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Micropeptídeos
14.
Anal Chem ; 95(21): 8267-8276, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37191204

RESUMO

Patients with triple-negative breast cancer (TNBC) have dismal prognoses due to the lack of therapeutic targets and susceptibility to lymph node (LN) metastasis. Therefore, it is essential to develop more effective approaches to identify early TNBC tissues and LNs. In this work, a magnetic resonance imaging (MRI) contrast agent (Mn-iCOF) was constructed based on the Mn(II)-chelated ionic covalent organic framework (iCOF). Because of the porous structure and hydrophilicity, the Mn-iCOF has a high longitudinal relaxivity (r1) of 8.02 mM-1 s-1 at 3.0 T. For the tumor-bearing mice, a lower dose (0.02 mmol [Mn]/kg) of Mn-iCOF demonstrated a higher signal-to-noise ratio (SNR) value (1.8) and longer retention time (2 h) compared to a 10-fold dose of commercial Gd-DOTA (0.2 mmol [Gd]/kg). Moreover, the Mn-iCOF can provide continuous and significant MR contrast for the popliteal LNs within 24 h, allowing for accurate evaluation and dissection of LNs. These excellent MRI properties of the Mn-iCOF may open new avenues for designing more biocompatible MRI contrast agents with higher resolutions, particularly in the diagnosis of TNBC.


Assuntos
Estruturas Metalorgânicas , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Estruturas Metalorgânicas/química , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/química , Espectroscopia de Ressonância Magnética
15.
Brief Bioinform ; 22(4)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33333556

RESUMO

African swine fever virus (ASFV) poses serious threats to the pig industry. The multigene family (MGF) proteins are extensively distributed in ASFVs and are generally classified into five families, including MGF-100, MGF-110, MGF-300, MGF-360 and MGF-505. Most MGF proteins, however, have not been well characterized and classified within each family. To bridge this gap, this study first classified MGF proteins into 31 groups based on protein sequence homology and network clustering. A web server for classifying MGF proteins was established and kept available for free at http://www.computationalbiology.cn/MGF/home.html. Results showed that MGF groups of the same family were most similar to each other and had conserved sequence motifs; the genetic diversity of MGF groups varied widely, mainly due to the occurrence of indels. In addition, the MGF proteins were predicted to have large structural and functional diversity, and MGF proteins of the same MGF family tended to have similar structure, location and function. Reconstruction of the ancestral states of MGF groups along the ASFV phylogeny showed that most MGF groups experienced either the copy number variations or the gain-or-loss changes, and most of these changes happened within strains of the same genotype. It is found that the copy number decrease and the loss of MGF groups were much larger than the copy number increase and the gain of MGF groups, respectively, suggesting the ASFV tended to lose MGF proteins in the evolution. Overall, the work provides a detailed classification for MGF proteins and would facilitate further research on MGF proteins.


Assuntos
Vírus da Febre Suína Africana/genética , Variações do Número de Cópias de DNA , Evolução Molecular , Família Multigênica , Proteínas Virais/classificação , Proteínas Virais/genética , Animais , Suínos
16.
Brain Behav Immun ; 112: 125-131, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37301235

RESUMO

INTRODUCTION: Cardiovascular diseases (CVDs) and major depressive disorder (MDD) are the two most disabling diseases. Patients with CVDs comorbid depression had somatic and fatigue symptoms and were associated with chronic inflammation and omega-3 polyunsaturated fatty acid (n-3 PUFA) deficits. However, there have been limited studies on the effects of n-3 PUFAs on somatic and fatigue symptoms in patients with CVDs comorbid MDD. METHOD: Forty patients with CVDs comorbid MDD (58% males, mean age of 60 ± 9 years) were enrolled and randomised to receive either n-3 PUFAs (2 g of eicosapentaenoic acid [EPA] and 1 g of docosahexaenoic acid[DHA] per day) or placebo in a 12-week double-blind clinical trial. We assessed the somatic symptoms with Neurotoxicity Rating Scale (NRS) and fatigue symptoms with Fatigue Scale at baseline, weeks 1, 2, 4, 8 and 12, as well as blood levels of Brain-Derived Neurotrophic Factor (BDNF), inflammatory biomarkers and PUFAs, at the baseline and week 12. RESULTS: The n-3 PUFAs group had a greater reduction in Fatigue scores than the placebo group at Week 4 (p =.042), while there were no differences in the changes of NRS scores. N-3 PUFAs group also had a greater increase in EPA (p =.001) and a greater decrease in total n-6 PUFAs (p =.030). Moreover, in the subgroup analyses in the younger age group (age < 55), the n-3 PUFAs group had a greater reduction on NRS total scores at Week 12 (p =.012) and NRS Somatic scores at Week 2 (p =.010), Week 8 (p =.027), Week 12 (p =.012) than the placebo group. In addition, the pre- and post-treatment changes of EPA and total n-3 PUFAs levels were negatively associated with the changes of NRS scores at Weeks 2, 4, and 8 (all p <.05), and the changes of BDNF levels were negatively associated with NRS scores at Weeks 8 and 12 (both p <.05) in the younger age group. In the older age group (age ≥ 55), there were a lesser reduction on NRS scores at Weeks 1, 2 and 4 (all p <.05), but a greater reduction on Fatigue score at Week 4 (p =.026), compared to the placebo group. There was no significant correlation between the changes of blood BDNF, inflammation, PUFAs and NRS and Fatigue scores in general and in the older age group. CONCLUSION: Overall, n-3 PUFAs improved the fatigue symptoms in patients with CVDs comorbid MDD and the general somatic symptoms in specific subpopulation of younger age patients, and perhaps via the interplay between BDNF and EPA. Our findings provide promising rationales for future studies to investigate the treatment effects of omega-3 fatty acids on fatigue and somatic symptoms of chronic mental and medical diseases.


Assuntos
Doenças Cardiovasculares , Transtorno Depressivo Maior , Ácidos Graxos Ômega-3 , Sintomas Inexplicáveis , Masculino , Humanos , Idoso , Pessoa de Meia-Idade , Feminino , Transtorno Depressivo Maior/complicações , Transtorno Depressivo Maior/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo , Doenças Cardiovasculares/complicações , Ácidos Graxos Ômega-3/uso terapêutico , Ácido Eicosapentaenoico/uso terapêutico , Ácido Eicosapentaenoico/farmacologia , Ácidos Docosa-Hexaenoicos , Ácidos Graxos Insaturados
17.
Horm Metab Res ; 55(3): 212-221, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36599456

RESUMO

Recent studies have demonstrated the close relationship between parathyroid adenoma (PA) and thyroid follicular adenoma (FTA). However, the underlying pathogenesis remains unknown. This study focused on exploring common pathogenic genes, as well as the pathogenesis of these two diseases, through bioinformatics methods. This work obtained PA and FTA datasets from the Integrated Gene Expression Database to identify the common differentially expressed genes (DEGs) of two diseases. The functions of the genes were investigated by GO and KEGG enrichment. The program CytoHubba was used to select the hub genes, while receiver operating characteristic curves were plotted to evaluate the predictive significance of the hub genes. The DGIbd database was used to identify gene-targeted drugs. This work detected a total of 77 DEGs. Enrichment analysis demonstrated that DEGs had activities of 3',5'-cyclic AMP, and nucleotide phosphodiesterases and were associated with cell proliferation. NOS1, VWF, TGFBR2, CAV1, and MAPK1 were identified as hub genes after verification. The area under the curve of PA and FTA was>0.7, and the hub genes participated in the Relaxin Signaling Pathway, focal adhesion, and other pathways. The construction of the mRNA-miRNA interaction network yielded 11 important miRNAs, while gene-targeting drug prediction identified four targeted drugs with possible effects. This bioinformatics study demonstrated that cell proliferation and tumor suppression and the hub genes co-occurring in PA and FTA, have important effects on the occurrence and progression of two diseases, which make them potential diagnostic biomarkers and therapeutic targets.


Assuntos
MicroRNAs , Neoplasias das Paratireoides , Neoplasias da Glândula Tireoide , Humanos , Neoplasias das Paratireoides/diagnóstico , Neoplasias das Paratireoides/genética , Proliferação de Células , AMP Cíclico , Bases de Dados Factuais , Perfilação da Expressão Gênica
18.
Lupus ; 32(12): 1369-1380, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37769649

RESUMO

Immune dysregulation is not only a pathogenic mechanism in systemic lupus erythematosus (SLE) but also a potential cause of the link between SLE and cancer. The current understanding of SLE monocyte-associated biomarkers is limited, and the precise mechanism behind the link between SLE and cancer is uncertain. By using WGCNA and immune infiltration to analyze the GSE72326 dataset, we determined the most pertinent modules for monocytes and discovered eight candidate hub genes from them. The limma software was used to find genes that were differently expressed in SLE. The genes that overlapped between the two were chosen using a Venn diagram as the essential genes related to monocytes in SLE, and the essential genes were verified by several datasets. Correlation analysis and GSEA analysis were used to examine the probable immunological pathways connected to key genes. We examined the expression of hub genes in cancer and their interaction with monocytes using the GEPIA and TIMER databases to understand the significance of essential genes in tumorigenesis. In addition, we performed transcription factor identification. We discovered three biomarkers (IFI30, BLVRA, and RIN2) that are mostly involved in interferon-related signaling pathways and are associated with monocyte-mediated immune responses in SLE. The three important genes are also strongly expressed in a number of malignancies and have a relationship with monocytes. As a result, IFI30, BLVRA, and RIN2 may act as SLE-associated biomarkers of monocytes and as a bridge between SLE and tumors. We proposed that interferon-related signaling pathways might function as possible mediators of cancer risk in SLE.


Assuntos
Lúpus Eritematoso Sistêmico , Neoplasias , Humanos , Monócitos , Lúpus Eritematoso Sistêmico/complicações , Biomarcadores/metabolismo , Neoplasias/genética , Neoplasias/complicações , Interferons , Proteínas de Transporte/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo
19.
J Gastroenterol Hepatol ; 38(12): 2215-2227, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839851

RESUMO

BACKGROUND AND AIMS: Mitochondrial dysfunction plays a crucial role in the progression of non-alcoholic steatohepatitis (NASH). Mitochondrial division inhibitor 1 (Mdivi1) is a potential inhibitor of dynamin-related protein (Drp1) and mitochondrial fission. However, the therapeutic effect of Mdivi1 against NASH and its underlying molecular mechanisms remain unclear. METHODS: In this study, we established mouse models of NASH by inducing high-fat/high-cholesterol (HFHC) or methionine- and choline-deficient (MCD) diets and treated the animals with 5 mg/kg/day Mdivi1 or placebo. RESULTS: Treatment with Mdivi1 significantly alleviated diet-induced fatty liver phenotypes, including increased liver weight/body weight ratio, insulin resistance, hepatic lipid accumulation, steatohepatitis, and liver injury. Furthermore, Mdivi1 treatment suppressed HFHC or MCD diet-induced changes in the expression of genes related to lipid metabolism and inflammatory cytokines. Additionally, Mdivi1 reduced macrophage infiltration in the injured liver and promoted polarization of macrophages towards the M1 phenotype. At the molecular level, Mdivi1 attenuated mitochondrial fission by reducing Drp1 activation and expression, thereby decreasing mitochondrial reactive oxygen species accumulation and mitochondrial DNA damage. Moreover, Mdivi1-treated mice exhibited elevated levels of phosphorylated-c-Jun N-terminal kinase (p-JNK), mitochondrial fission factor (MFF), cleaved caspase 3 protein, and TUNEL-positive cell expression in the liver, suggesting that Mdivi1 might ameliorate mitochondrial dysfunction and reduce hepatocyte apoptosis by inhibiting the JNK/MFF pathway. CONCLUSION: Collectively, Mdivi1 protected against diet-induced NASH by restoring mitochondrial homeostasis and function, potentially through its inhibitory effect on the JNK/MFF pathway. Consequently, further investigation of Mdivi1 as a promising drug for NASH treatment is warranted.


Assuntos
Doenças Mitocondriais , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Citocinas/metabolismo , Mitocôndrias/metabolismo , Fatores de Transcrição/metabolismo , Colina/metabolismo , Dinaminas , Doenças Mitocondriais/metabolismo , Camundongos Endogâmicos C57BL , Metionina , Modelos Animais de Doenças
20.
J Gastroenterol Hepatol ; 38(12): 2195-2205, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37787118

RESUMO

BACKGROUND AND AIMS: Fecal microbiota transplantation (FMT) can improve the symptoms of nonalcoholic fatty liver disease (NAFLD) by restoring the gut microbiota. This study was aimed to evaluate the therapeutic effects of single-donor (SD) or multi-donor (MD) FMT in a mouse model of hepatic steatosis and explore the underlying mechanisms. METHODS: Fecal samples were collected from NAFLD patients and healthy controls with similar baseline characteristics, with gut microbiota analyzed. Mice were fed either a normal-chow diet (NCD) or a high-fat diet (HFD) for 3 weeks and then administered fecal microbiota collected from healthy SDs or MDs for 12 weeks. RESULTS: Fecal samples from NAFLD patients showed significantly lower microbial diversity than those from healthy controls. MD-FMT reduced liver fat accumulation and body weight and significantly improved serum and liver biochemical indices in HFD-fed mice. Compared to untreated HFD-fed mice, MD-FMT significantly decreased the relative expression of IL-1ß, IL-6, TNF-α, IFN-γ, and IL-1ß mRNAs in the liver. The relative protein level of intestinal barrier components, including claudin-1, occludin, and E-cadherin, as well as serum lipopolysaccharide (LPS) level in mice, were found to be improved following MD-FMT intervention. Furthermore, FMT reversed HFD-induced gut dysbiosis and increased the abundance of beneficial bacteria such as Blautia and Akkermansia. CONCLUSION: NAFLD patients and healthy controls showed distinct gut microbiota. Likewise, HFD altered gut microbiota in mice compared to NCD-fed controls. MD-FMT restored gut dysbiosis in HFD-fed mice and attenuated liver steatosis, and should be considered as an effective treatment option for NAFLD.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Doenças não Transmissíveis , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica/efeitos adversos , Transplante de Microbiota Fecal , Disbiose , Camundongos Endogâmicos C57BL , Fígado/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA