Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Immunity ; 55(3): 494-511.e11, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35263568

RESUMO

Interleukin (IL)-22 is central to immune defense at barrier sites. We examined the contributions of innate lymphoid cell (ILC) and T cell-derived IL-22 during Citrobacter rodentium (C.r) infection using mice that both report Il22 expression and allow lineage-specific deletion. ILC-derived IL-22 activated STAT3 in C.r-colonized surface intestinal epithelial cells (IECs) but only temporally restrained bacterial growth. T cell-derived IL-22 induced a more robust and extensive activation of STAT3 in IECs, including IECs lining colonic crypts, and T cell-specific deficiency of IL-22 led to pathogen invasion of the crypts and increased mortality. This reflected a requirement for T cell-derived IL-22 for the expression of a host-protective transcriptomic program that included AMPs, neutrophil-recruiting chemokines, and mucin-related molecules, and it restricted IFNγ-induced proinflammatory genes. Our findings demonstrate spatiotemporal differences in the production and action of IL-22 by ILCs and T cells during infection and reveal an indispensable role for IL-22-producing T cells in the protection of the intestinal crypts.


Assuntos
Citrobacter rodentium , Infecções por Enterobacteriaceae , Animais , Antibacterianos , Imunidade Inata , Interleucinas/metabolismo , Mucosa Intestinal , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/metabolismo , Interleucina 22
2.
Proc Natl Acad Sci U S A ; 121(14): e2308374121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38489380

RESUMO

Ultraviolet radiation (UVR) is primarily recognized for its detrimental effects such as cancerogenesis, skin aging, eye damage, and autoimmune disorders. With exception of ultraviolet B (UVB) requirement in the production of vitamin D3, the positive role of UVR in modulation of homeostasis is underappreciated. Skin exposure to UVR triggers local responses secondary to the induction of chemical, hormonal, immune, and neural signals that are defined by the chromophores and extent of UVR penetration into skin compartments. These responses are not random and are coordinated by the cutaneous neuro-immuno-endocrine system, which counteracts the action of external stressors and accommodates local homeostasis to the changing environment. The UVR induces electrical, chemical, and biological signals to be sent to the brain, endocrine and immune systems, as well as other central organs, which in concert regulate body homeostasis. To achieve its central homeostatic goal, the UVR-induced signals are precisely computed locally with transmission through nerves or humoral signals release into the circulation to activate and/or modulate coordinating central centers or organs. Such modulatory effects will be dependent on UVA and UVB wavelengths. This leads to immunosuppression, the activation of brain and endocrine coordinating centers, and the modification of different organ functions. Therefore, it is imperative to understand the underlying mechanisms of UVR electromagnetic energy penetration deep into the body, with its impact on the brain and internal organs. Photo-neuro-immuno-endocrinology can offer novel therapeutic approaches in addiction and mood disorders; autoimmune, neurodegenerative, and chronic pain-generating disorders; or pathologies involving endocrine, cardiovascular, gastrointestinal, or reproductive systems.


Assuntos
Pele , Raios Ultravioleta , Sistema Imunitário , Encéfalo , Sistemas Neurossecretores
3.
Cell Biochem Funct ; 42(1): e3910, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38269524

RESUMO

Adiponectin is an antidiabetic endogenous adipokine that plays a protective role against the unfavorable metabolic sequelae of obesity. Recent evidence suggests a sinister link between hypoadiponectinemia and development of insulin resistance/type 2 diabetes (T2D). Adiponectin's insulin-sensitizing property is mediated through the specific adiponectin receptors R1 and R2, which activate the AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR) α pathways. AdipoAI is a novel synthetic analogue of endogenous adiponectin with possibly similar pharmacological effects. Thus, there is a need of orally active small molecules that activate Adipoq subunits, and their downstream signaling, which could ameliorate obesity related type 2 diabetes. In the study we aim to investigate the effects of AdipoAI on obesity and T2D. Through in-vitro and in-vivo analyses, we investigated the antidiabetic potentials of AdipoAI and compared it with AdipoRON, another orally active adiponectin receptors agonist. Our results showed that in-vitro treatment of AdipoAI (0-5 µM) increased adiponectin receptor subunits AdipoR1/R2 with increase in AMPK and APPL1 protein expression in C2C12 myotubes. Similarly, in-vivo, oral administration of AdipoAI (25 mg/kg) observed similar effects as that of AdipoRON (50 mg/kg) with improved control of blood glucose and insulin sensitivity in diet-induced obesity (DIO) mice models. Further, AdipoAI significantly reduced epididymal fat content with decrease in inflammatory markers and increase in PPAR-α and AMPK levels and exhibited hepatoprotective effects in liver. Further, AdipoAI and AdipoRON also observed similar results in adipose tissue. Thus, our results suggest that low doses of orally active small molecule agonist of adiponectin AdipoAI can be a promising therapeutic target for obesity and T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Camundongos , Hipoglicemiantes/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Proteínas Quinases Ativadas por AMP , Adiponectina , Receptores Ativados por Proliferador de Peroxissomo , Receptores de Adiponectina , Obesidade/tratamento farmacológico
4.
Int Endod J ; 57(6): 727-744, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38436622

RESUMO

AIMS: This study aimed to investigate the anti-inflammatory and odontoblastic effects of cerium-containing mesoporous bioactive glass nanoparticles (Ce-MBGNs) on dental pulp cells as novel pulp-capping agents. METHODOLOGY: Ce-MBGNs were synthesized using a post-impregnation strategy based on the antioxidant properties of Ce ions and proposed the first use of Ce-MBGNs for pulp-capping application. The biocompatibility of Ce-MBGNs was analysed using the CCK-8 assay and apoptosis detection. Additionally, the reactive oxygen species (ROS) scavenging ability of Ce-MBGNs was measured using the 2,7-Dichlorofuorescin Diacetate (DCFH-DA) probe. The anti-inflammatory effect of Ce-MBGNs on THP-1 cells was further investigated using flow cytometry and quantitative real-time polymerase chain reaction (RT-qPCR). Moreover, the effect of Ce-MBGNs on the odontoblastic differentiation of the dental pulp cells (DPCs) was assessed by combined scratch assays, RT-qPCR, western blotting, immunocytochemistry, Alizarin Red S staining and tissue-nonspecific alkaline phosphatase staining. Analytically, the secretions of tumour necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were detected with enzyme-linked immunosorbent assay (ELISA). RESULTS: Ce-MBGNs were confirmed to effectively scavenge ROS in THP-1-derived macrophages and DPCs. Flow cytometry and RT-qPCR assays revealed that Ce-MBGNs significantly inhibited the M1 polarization of macrophages (Mφ). Furthermore, the protein levels of TNF-α and IL-1ß were downregulated in THP-1-derived macrophages after stimulation with Ce-MBGNs. With a step-forward virtue of promoting the odontoblastic differentiation of DPCs, we further confirmed that Ce-MBGNs could regulate the formation of a conductive immune microenvironment with respect to tissue repair in DPCs, which was mediated by macrophages. CONCLUSIONS: Ce-MBGNs protected cells from self-produced oxidative damage and exhibited excellent immunomodulatory and odontoblastic differentiation effects on DPCs. As a pulp-capping agent, this novel biomaterial can exert anti-inflammatory effects and promote restorative dentine regeneration in clinical treatment. We believe that this study will stimulate further correlative research on the development of advanced pulp-capping agents.


Assuntos
Anti-Inflamatórios , Cério , Polpa Dentária , Nanopartículas , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Cério/farmacologia , Humanos , Anti-Inflamatórios/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Cerâmica/farmacologia , Diferenciação Celular/efeitos dos fármacos , Vidro , Odontoblastos/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Células THP-1 , Agentes de Capeamento da Polpa Dentária e Pulpectomia/farmacologia , Interleucina-1beta/metabolismo , Apoptose/efeitos dos fármacos , Porosidade , Células Cultivadas
5.
Bioinformatics ; 38(Suppl 1): i359-i368, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35758816

RESUMO

SUMMARY: In biology, graph layout algorithms can reveal comprehensive biological contexts by visually positioning graph nodes in their relevant neighborhoods. A layout software algorithm/engine commonly takes a set of nodes and edges and produces layout coordinates of nodes according to edge constraints. However, current layout engines normally do not consider node, edge or node-set properties during layout and only curate these properties after the layout is created. Here, we propose a new layout algorithm, distance-bounded energy-field minimization algorithm (DEMA), to natively consider various biological factors, i.e., the strength of gene-to-gene association, the gene's relative contribution weight and the functional groups of genes, to enhance the interpretation of complex network graphs. In DEMA, we introduce a parameterized energy model where nodes are repelled by the network topology and attracted by a few biological factors, i.e., interaction coefficient, effect coefficient and fold change of gene expression. We generalize these factors as gene weights, protein-protein interaction weights, gene-to-gene correlations and the gene set annotations-four parameterized functional properties used in DEMA. Moreover, DEMA considers further attraction/repulsion/grouping coefficient to enable different preferences in generating network views. Applying DEMA, we performed two case studies using genetic data in autism spectrum disorder and Alzheimer's disease, respectively, for gene candidate discovery. Furthermore, we implement our algorithm as a plugin to Cytoscape, an open-source software platform for visualizing networks; hence, it is convenient. Our software and demo can be freely accessed at http://discovery.informatics.uab.edu/dema. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Transtorno do Espectro Autista , Fatores Biológicos , Humanos , Software
6.
Purinergic Signal ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38032425

RESUMO

P2X7 receptors (P2X7Rs) are membrane-bound ATP-gated ion channels that are composed of three subunits. Different subunit structures may be expressed due to alternative splicing of the P2RX7 gene, altering the receptor's function when combined with the wild-type P2X7A subunits. In this study, the application of the deep-learning method, AlphaFold2-Multimer (AF2M), for the generation of trimeric P2X7Rs was validated by comparing an AF2M-generated rat wild-type P2X7A receptor with a structure determined by cryogenic electron microscopy (cryo-EM) (Protein Data Bank Identification: 6U9V). The results suggested AF2M could firstly, accurately predict the structures of P2X7Rs and secondly, accurately identify the highest quality model through the ranking system. Subsequently, AF2M was used to generate models of heterotrimeric alternatively spliced P2X7Rs consisting of one or two wild-type P2X7A subunits in combination with one or two P2X7B, P2X7E, P2X7J, and P2X7L splice variant subunits. The top-ranking models were deemed valid based on AF2M's confidence measures, stability in molecular dynamics simulations, and consistent flexibility of the conserved regions between the models. The structure of the heterotrimeric receptors, which were missing key residues in the ATP binding sites and carboxyl terminal domains (CTDs) compared to the wild-type receptor, help to explain their observed functions. Overall, the models produced in this study (available as supplementary material) unlock the possibility of structure-based studies into the heterotrimeric P2X7Rs.

7.
RNA Biol ; 20(1): 836-846, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37953645

RESUMO

The long noncoding RNA (lncR) ANRIL in the human genome is an established genetic risk factor for atherosclerosis, periodontitis, diabetes, and cancer. However, the regulatory role of lncR-ANRIL in bone and adipose tissue metabolism remains unclear. To elucidate the function of lncRNA ANRIL in a mouse model, we investigated its ortholog, AK148321 (referred to as lncR-APDC), located on chr4 of the mouse genome, which is hypothesized to have similar biological functions to ANRIL. We initially revealed that lncR-APDC in mouse bone marrow cells (BMSCs) and lncR-ANRIL in human osteoblasts (hFOBs) are both increased during early osteogenesis. Subsequently, we examined the osteogenesis, adipogenesis, osteoclastogenesis function with lncR-APDC deletion/overexpression cell models. In vivo, we compared the phenotypic differences in bone and adipose tissue between APDC-KO and wild-type mice. Our findings demonstrated that lncR-APDC deficiency impaired osteogenesis while promoting adipogenesis and osteoclastogenesis. Conversely, the overexpression of lncR-APDC stimulated osteogenesis, but impaired adipogenesis and osteoclastogenesis. Furthermore, KDM6B was downregulated with lncR-APDC deficiency and upregulated with overexpression. Through binding-site analysis, we identified miR-99a as a potential target of lncR-APDC. The results suggest that lncR-APDC exerts its osteogenic function via miR-99a/KDM6B/Hox pathways. Additionally, osteoclasto-osteogenic imbalance was mediated by lncR-APDC through MAPK/p38 and TLR4/MyD88 activation. These findings highlight the pivotal role of lncR-APDC as a key regulator in bone and fat tissue metabolism. It shows potential therapeutic for addressing imbalances in osteogenesis, adipogenesis, and osteoclastogenesis.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Osso e Ossos/metabolismo , Osteogênese/genética , Tecido Adiposo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Histona Desmetilases com o Domínio Jumonji
8.
Clin Oral Implants Res ; 34(6): 602-617, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37092468

RESUMO

AIM: Diabetics experience severe peri-implant inflammatory bone damage. We aimed to provide powerful evidence supporting the novel adiponectin receptor agonist AdipoAI in treating diabetes-associated peri-implantitis. MATERIALS AND METHODS: Twenty-four ZDF-Leprfa/Crl rats were randomly allocated to three groups (N = 8). After feeding with a high-fat diet to establish diabetic rats, experimental peri-implantitis was induced by implanting titanium rods (1.5 mm diameter and 20 mm length) contaminated with Staphylococcus aureus into the femurs. Radiographic evaluation, microCT, histological analyses and qRT-PCR were used to detect inflammatory infiltration and bone destruction. In vitro, the inhibition by AdipoAI of osteoclastogenesis, including the number and function of osteoclasts, was investigated by TRAP staining, immunofluorescence, qRT-PCR and Western blotting. Immunofluorescence, qRT-PCR and Western blotting were also utilized to explore AdipoR1, APPL1, NF-κB and Wnt5a-Ror2 signalling molecules in this process. One-way ANOVA with Tukey's post hoc test was used to compare the data. RESULTS: AdipoAI reduced inflammation and bone destruction caused by peri-implantitis in diabetic rats, which were manifested by a reduction in F4/80-positive macrophage infiltration by 72%, the number of osteoclasts by 58% and the levels of cytokines (p < .05) in disease group. In vitro, 1 µM AdipoAI decreased the number of osteoclasts to 51%, inhibited F-actin ring formation and reduced the levels of related markers (p < .05). Mechanistically, AdipoAI activated AdipoR1/APPL1 and conversely suppressed the phosphorylation of IκB-α, nuclear translocation of P65 and the Wnt5a-Ror2 signalling pathway (p < .05). CONCLUSIONS: AdipoAI suppressed osteoclastogenesis in diabetes-associated peri-implantitis by inhibiting the NF-κB and Wnt5a-Ror2 pathways via the AdipoR1/APPL1 axis.


Assuntos
Reabsorção Óssea , Implantes Dentários , Diabetes Mellitus Experimental , Peri-Implantite , Ratos , Animais , Peri-Implantite/patologia , Osteogênese , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Osteoclastos/metabolismo , Osteoclastos/patologia , Ligante RANK , Reabsorção Óssea/patologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/farmacologia
9.
Nucleic Acids Res ; 49(D1): D589-D599, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33245774

RESUMO

PAGER-CoV (http://discovery.informatics.uab.edu/PAGER-CoV/) is a new web-based database that can help biomedical researchers interpret coronavirus-related functional genomic study results in the context of curated knowledge of host viral infection, inflammatory response, organ damage, and tissue repair. The new database consists of 11 835 PAGs (Pathways, Annotated gene-lists, or Gene signatures) from 33 public data sources. Through the web user interface, users can search by a query gene or a query term and retrieve significantly matched PAGs with all the curated information. Users can navigate from a PAG of interest to other related PAGs through either shared PAG-to-PAG co-membership relationships or PAG-to-PAG regulatory relationships, totaling 19 996 993. Users can also retrieve enriched PAGs from an input list of COVID-19 functional study result genes, customize the search data sources, and export all results for subsequent offline data analysis. In a case study, we performed a gene set enrichment analysis (GSEA) of a COVID-19 RNA-seq data set from the Gene Expression Omnibus database. Compared with the results using the standard PAGER database, PAGER-CoV allows for more sensitive matching of known immune-related gene signatures. We expect PAGER-CoV to be invaluable for biomedical researchers to find molecular biology mechanisms and tailored therapeutics to treat COVID-19 patients.


Assuntos
Algoritmos , COVID-19/prevenção & controle , Biologia Computacional/métodos , Coronavirus/genética , Bases de Dados Genéticas , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/virologia , Coronavirus/metabolismo , Curadoria de Dados/métodos , Epidemias , Redes Reguladoras de Genes , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , Anotação de Sequência Molecular/métodos , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Interface Usuário-Computador
10.
Molecules ; 28(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770990

RESUMO

Central nervous system (CNS) disorders are a therapeutic area in drug discovery where demand for new treatments greatly exceeds approved treatment options. This is complicated by the high failure rate in late-stage clinical trials, resulting in exorbitant costs associated with bringing new CNS drugs to market. Computer-aided drug design (CADD) techniques minimise the time and cost burdens associated with drug research and development by ensuring an advantageous starting point for pre-clinical and clinical assessments. The key elements of CADD are divided into ligand-based and structure-based methods. Ligand-based methods encompass techniques including pharmacophore modelling and quantitative structure activity relationships (QSARs), which use the relationship between biological activity and chemical structure to ascertain suitable lead molecules. In contrast, structure-based methods use information about the binding site architecture from an established protein structure to select suitable molecules for further investigation. In recent years, deep learning techniques have been applied in drug design and present an exciting addition to CADD workflows. Despite the difficulties associated with CNS drug discovery, advances towards new pharmaceutical treatments continue to be made, and CADD has supported these findings. This review explores various CADD techniques and discusses applications in CNS drug discovery from 2018 to November 2022.


Assuntos
Desenho Assistido por Computador , Desenho de Fármacos , Ligantes , Psicotrópicos , Preparações Farmacêuticas
11.
Molecules ; 28(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37241849

RESUMO

Encephalopathies are brain dysfunctions that lead to cognitive, sensory, and motor development impairments. Recently, the identification of several mutations within the N-methyl-D-aspartate receptor (NMDAR) have been identified as significant in the etiology of this group of conditions. However, a complete understanding of the underlying molecular mechanism and changes to the receptor due to these mutations has been elusive. We studied the molecular mechanisms by which one of the first mutations within the NMDAR GluN1 ligand binding domain, Ser688Tyr, causes encephalopathies. We performed molecular docking, randomly seeded molecular dynamics simulations, and binding free energy calculations to determine the behavior of the two major co-agonists: glycine and D-serine, in both the wild-type and S688Y receptors. We observed that the Ser688Tyr mutation leads to the instability of both ligands within the ligand binding site due to structural changes associated with the mutation. The binding free energy for both ligands was significantly more unfavorable in the mutated receptor. These results explain previously observed in vitro electrophysiological data and provide detailed aspects of ligand association and its effects on receptor activity. Our study provides valuable insight into the consequences of mutations within the NMDAR GluN1 ligand binding domain.


Assuntos
Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Simulação de Acoplamento Molecular , Ligantes , Domínios Proteicos , Sítios de Ligação , Mutação
12.
Am J Physiol Cell Physiol ; 323(6): C1757-C1776, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36317800

RESUMO

The skin, which is comprised of the epidermis, dermis, and subcutaneous tissue, is the largest organ in the human body and it plays a crucial role in the regulation of the body's homeostasis. These functions are regulated by local neuroendocrine and immune systems with a plethora of signaling molecules produced by resident and immune cells. In addition, neurotransmitters, endocrine factors, neuropeptides, and cytokines released from nerve endings play a central role in the skin's responses to stress. These molecules act on the corresponding receptors in an intra-, juxta-, para-, or autocrine fashion. The epidermis as the outer most component of skin forms a barrier directly protecting against environmental stressors. This protection is assured by an intrinsic keratinocyte differentiation program, pigmentary system, and local nervous, immune, endocrine, and microbiome elements. These constituents communicate cross-functionally among themselves and with corresponding systems in the dermis and hypodermis to secure the basic epidermal functions to maintain local (skin) and global (systemic) homeostasis. The neurohormonal mediators and cytokines used in these communications regulate physiological skin functions separately or in concert. Disturbances in the functions in these systems lead to cutaneous pathology that includes inflammatory (i.e., psoriasis, allergic, or atopic dermatitis, etc.) and keratinocytic hyperproliferative disorders (i.e., seborrheic and solar keratoses), dysfunction of adnexal structure (i.e., hair follicles, eccrine, and sebaceous glands), hypersensitivity reactions, pigmentary disorders (vitiligo, melasma, and hypo- or hyperpigmentary responses), premature aging, and malignancies (melanoma and nonmelanoma skin cancers). These cellular, molecular, and neural components preserve skin integrity and protect against skin pathologies and can act as "messengers of the skin" to the central organs, all to preserve organismal survival.


Assuntos
Neuropeptídeos , Pele , Humanos , Epiderme , Queratinócitos , Transdução de Sinais , Citocinas
13.
J Periodontal Res ; 57(2): 381-391, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34984683

RESUMO

BACKGROUND AND OBJECTIVE: Type 2 diabetes (T2D)-associated periodontitis is severe and refractory in many cases. Considered an inflammatory disease, T2D predisposes to periodontitis by increasing whole-body inflammation. One mechanism of increased inflammation is thatT2D is mediated by loss of production or function of the anti-inflammatory hormone adiponectin. In our previous report, AdipoRon, an adiponectin receptor agonist, and AdipoAI, a newly discovered, more specific agonist, attenuated T2D-associated inflammation by inhibiting osteoclastogenesis and LPS-induced endotoxemia. Autophagy plays an important role during osteoclast differentiation and function. The impact of AdipoAI on osteoclast function and autophagy involved in osteoclastogenesis is not known. Here, we compare AdipoRon and AdipoAI potency, side effects and mechanism of action in T2D-associated periodontitis. METHODS: The RAW 264.7 cell line was used for in vitro studies. We analyzed the potential cytotoxicity of AdipoAI using the CCK-8 assay. The anti-osteoclastogenic potential of AdipoAI was studied by real-time qPCR and tartrate-resistant acid phosphatase staining. The actions of AdipoAI involved in autophagy were tested by real-time qPCR, western blot and immunofluorescence staining. In the diet-induced obesity model of T2D, we investigated the impact of AdipoAI on fasting blood glucose, alveolar bone loss, and gingival inflammation in mice with experimental periodontitis. RESULTS: AdipoRon inhibited osteoclastogenesis and AdipoAI inhibited osteoclastogenesis at lower doses than AdipoRon without any cytotoxicity. In DIO mice with experimental periodontitis, AdipoAI reduced mouse body weight in 14 days, reducing fasting glucose levels, alveolar bone destruction, osteoclast number along the alveolar bone surface, and decreased the expression of pro-inflammatory factors in periodontal tissues. AdipoAI and AdipoRon also enhanced LC3A/B expression when cultured with RANKL.3-Methyladenine, a known autophagy inhibitor, decreased LC3A/B expression and reversed the inhibition of osteoclastogenesis during AdipoAI treatment. CONCLUSIONS: Our results demonstrate that AdipoAI ameliorates the severity of T2D-associated periodontitis by enhancing autophagy in osteoclasts at lower doses than AdipoRon without demonstrable side effects. Thus, AdipoAI has pharmaceutical potential for treating diabetes-associated periodontal disease.


Assuntos
Perda do Osso Alveolar , Diabetes Mellitus Tipo 2 , Periodontite , Adiponectina , Perda do Osso Alveolar/tratamento farmacológico , Perda do Osso Alveolar/metabolismo , Perda do Osso Alveolar/prevenção & controle , Animais , Autofagia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Camundongos , Osteoclastos , Periodontite/tratamento farmacológico , Periodontite/metabolismo , Ligante RANK/metabolismo , Receptores de Adiponectina/agonistas , Receptores de Adiponectina/metabolismo , Receptores de Adiponectina/uso terapêutico
14.
J Immunol ; 205(2): 346-358, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32554431

RESUMO

IL-23 promotes autoimmune disease, including Th17 CD4 T cell development and autoantibody production. In this study, we show that a deficiency of the p19 component of IL-23 in the autoimmune BXD2 (BXD2-p19-/- ) mouse leads to a shift of the follicular T helper cell program from follicular T helper (Tfh)-IL-17 to Tfh-IFN-γ. Although the germinal center (GC) size and the number of GC B cells remained the same, BXD2-p19-/- mice exhibited a lower class-switch recombination (CSR) in the GC B cells, leading to lower serum levels of IgG2b. Single-cell transcriptomics analysis of GC B cells revealed that whereas Ifngr1, Il21r, and Il4r genes exhibited a synchronized expression pattern with Cxcr5 and plasma cell program genes, Il17ra exhibited a synchronized expression pattern with Cxcr4 and GC program genes. Downregulation of Ighg2b in BXD2-p19-/- GC B cells was associated with decreased expression of CSR-related novel base excision repair genes that were otherwise predominantly expressed by Il17ra + GC B cells in BXD2 mice. Together, these results suggest that although IL-23 is dispensable for GC formation, it is essential to promote a population of Tfh-IL-17 cells. IL-23 acts indirectly on Il17ra + GC B cells to facilitate CSR-related base excision repair genes during the dark zone phase of GC B cell development.


Assuntos
Doenças Autoimunes/imunologia , Linfócitos B/imunologia , Centro Germinativo/imunologia , Imunoglobulina G/metabolismo , Interleucina-23/metabolismo , Subpopulações de Linfócitos T/imunologia , Células Th17/imunologia , Animais , Diferenciação Celular , Inibidor de Quinase Dependente de Ciclina p19/genética , Switching de Imunoglobulina , Imunoglobulina G/genética , Interferon gama/metabolismo , Interleucina-23/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
J Cell Physiol ; 236(1): 664-676, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32572964

RESUMO

Balancing the process of bone formation and resorption is important in the maintenance of healthy bone. Therefore, the discovery of novel factors that can regulate bone metabolism remains needed. Irisin is a newly identified hormone-like peptide. Recent studies have reported the involvement of irisin in many physiological and pathological conditions with bone mineral density changes, including osteopenia and osteoporotic fractures. In this study, we generated the first line of Osx-Cre:FNDC5/irisin KO mice, in which FNDC5/irisin was specifically deleted in the osteoblast lineage. Gene and protein expressions of irisin were remarkably decreased in bones but no significant differences in other tissues were observed in knockout mice. FNDC5/irisin deficient mice showed a lower bone density and significantly delayed bone development and mineralization from early-stage to adulthood. Our phenotypical analysis exhibited decreased osteoblast-related gene expression and increased osteoclast-related gene expression in bone tissues, and reduced adipose tissue browning due to bone-born irisin deletion. By harvesting and culturing MSCs from the knockout mice, we found that osteoblastogenesis was inhibited and osteoclastogenesis was increased. By using irisin stimulated wildtype primary cells as a gain-of-function model, we further revealed the effects and mechanisms of irisin on promoting osteogenesis and inhibiting osteoclastogenesis in vitro. In addition, positive effects of exercise, including bone strength enhancement and body weight loss were remarkably weakened due to irisin deficiency. Interestingly, these changes can be rescued by supplemental administration of recombinant irisin during exercise. Our study indicates that irisin plays an important role in bone metabolism and the crosstalk between bone and adipose tissue. Irisin represents a potential molecule for the prevention and treatment of bone metabolic diseases.


Assuntos
Osso e Ossos , Fibronectinas , Músculo Esquelético , Osteoblastos , Osteogênese , Animais , Osso e Ossos/metabolismo , Doenças Ósseas Metabólicas/metabolismo , Fibronectinas/deficiência , Fibronectinas/genética , Músculo Esquelético/metabolismo , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Camundongos
16.
J Bone Miner Metab ; 39(6): 962-973, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34191125

RESUMO

INTRODUCTION: Corticotomy is widely used in clinical practice to accelerate tooth movement and shorten the duration of orthodontic treatment. It is effective, but an invasive surgery is needed to induce alveolar bone osteopenia that enable rapid tooth movement. In this study, we discovered the potential of 6-shogaol as a more patient-friendly non-invasive alternative to induce transient osteopenia and accelerate tooth movement. MATERIALS AND METHODS: The effects of 6-shogaol on the bone marrow macrophages (BMM) proliferation and osteoclast differentiation, and bone resorption were determined in vitro. Sprague-Dawley rats were distributed into three groups: CON, IPinj or Localinj and euthanized at day 28. Micro-CT, histology, immunohistological, and TUNEL analysis were performed to evaluate the tooth movement acceleration effect of 6-shogaol. RESULTS: In vitro, 6-shogaol promotes osteoclast differentiation and functional demineralization of alveolar bone. RANKL-induced mRNA expression of osteoclastic-specific genes was significantly higher in the presence of 6-shogaol. A dose-dependent increase in the area of TRAP-positive cells was observed with 6-shogaol treatment. F-actin ring formation and increased bone resorption confirmed that osteoclasts treated with 6-shogaol were mature and functional. 6-shogaol stimulated JNK activation and NFATc1 expression during osteoclast differentiation. In vivo, 6-shogaol promotes alveolar bone transient osteopenia and accelerates orthodontic tooth movement. Alveolar bone mass was reduced, more osteoclasts were observed in bone resorption lacunae on the compression side, and the expression of RANKL and sclerostin were higher than the control group. In conclusion, our results suggest that 6-shogoal accelerates tooth movement by inducing osteopenia by a mechanism similar to surgically induced bone injury.


Assuntos
Reabsorção Óssea , Técnicas de Movimentação Dentária , Animais , Catecóis , Humanos , Fatores de Transcrição NFATC , Osteoclastos , Ratos , Ratos Sprague-Dawley
17.
Exp Cell Res ; 387(2): 111757, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31838062

RESUMO

Diabetic bone defects may exhibit impaired endochondral ossification (ECO) leading to delayed bone repair. AdipoRon, a receptor agonist of adiponectin polymers, can ameliorate diabetes and related complications, as well as overcome the disadvantages of the unstable structure of artificial adiponectin polymers. Here, the effects of AdipoRon on the survival and differentiation of chondrocytes in a diabetic environment were explored focusing on related mechanisms in gene and protein levels. In vivo, AdipoRon was applied to diet-induced-obesity (DIO) mice, a model of obesity and type 2 diabetes, with femoral fracture. Sequential histological evaluations and micro-CT were examined for further verification. We found that AdipoRon could ameliorate cell viability, apoptosis, and reactive oxygen species (ROS) production and promote mRNA expression of chondrogenic markers and cartilaginous matrix production of ATDC5 cells in high glucose medium via activating ERK1/2 pathway. Additionally, DIO mice with intragastric AdipoRon administration had more neocartilage and accelerated new bone formation. These data suggest that AdipoRon could stimulate bone regeneration via ECO in diabetes.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Consolidação da Fratura/efeitos dos fármacos , Fraturas Ósseas/tratamento farmacológico , Piperidinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Cartilagem/efeitos dos fármacos , Linhagem Celular , Condrogênese/efeitos dos fármacos , Diabetes Mellitus Tipo 2/complicações , Fraturas Ósseas/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Osteogênese/efeitos dos fármacos
18.
Nucleic Acids Res ; 47(W1): W578-W586, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31114876

RESUMO

BEERE (Biomedical Entity Expansion, Ranking and Explorations) is a new web-based data analysis tool to help biomedical researchers characterize any input list of genes/proteins, biomedical terms or their combinations, i.e. 'biomedical entities', in the context of existing literature. Specifically, BEERE first aims to help users examine the credibility of known entity-to-entity associative or semantic relationships supported by database or literature references from the user input of a gene/term list. Then, it will help users uncover the relative importance of each entity-a gene or a term-within the user input by computing the ranking scores of all entities. At last, it will help users hypothesize new gene functions or genotype-phenotype associations by an interactive visual interface of constructed global entity relationship network. The output from BEERE includes: a list of the original entities matched with known relationships in databases; any expanded entities that may be generated from the analysis; the ranks and ranking scores reported with statistical significance for each entity; and an interactive graphical display of the gene or term network within data provenance annotations that link to external data sources. The web server is free and open to all users with no login requirement and can be accessed at http://discovery.informatics.uab.edu/beere/.


Assuntos
Genes , Proteínas , Software , Mineração de Dados , Bases de Dados Genéticas , Internet , Mapeamento de Interação de Proteínas , PubMed
19.
BMC Med Inform Decis Mak ; 21(Suppl 3): 51, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627109

RESUMO

BACKGROUND: In this work, we aimed to demonstrate how to utilize the lab test results and other clinical information to support precision medicine research and clinical decisions on complex diseases, with the support of electronic medical record facilities. We defined "clinotypes" as clinical information that could be observed and measured objectively using biomedical instruments. From well-known 'omic' problem definitions, we defined problems using clinotype information, including stratifying patients-identifying interested sub cohorts for future studies, mining significant associations between clinotypes and specific phenotypes-diseases, and discovering potential linkages between clinotype and genomic information. We solved these problems by integrating public omic databases and applying advanced machine learning and visual analytic techniques on two-year health exam records from a large population of healthy southern Chinese individuals (size n = 91,354). When developing the solution, we carefully addressed the missing information, imbalance and non-uniformed data annotation issues. RESULTS: We organized the techniques and solutions to address the problems and issues above into CPA framework (Clinotype Prediction and Association-finding). At the data preprocessing step, we handled the missing value issue with predicted accuracy of 0.760. We curated 12,635 clinotype-gene associations. We found 147 Associations between 147 chronic diseases-phenotype and clinotypes, which improved the disease predictive performance to AUC (average) of 0.967. We mined 182 significant clinotype-clinotype associations among 69 clinotypes. CONCLUSIONS: Our results showed strong potential connectivity between the omics information and the clinical lab test information. The results further emphasized the needs to utilize and integrate the clinical information, especially the lab test results, in future PheWas and omic studies. Furthermore, it showed that the clinotype information could initiate an alternative research direction and serve as an independent field of data to support the well-known 'phenome' and 'genome' researches.


Assuntos
Registros Eletrônicos de Saúde , Genótipo , Humanos , Fenótipo , Exame Físico
20.
Am J Physiol Cell Physiol ; 319(2): C258-C267, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32510973

RESUMO

Because of the ongoing pandemic around the world, the mechanisms underlying the SARS-CoV-2-induced COVID-19 are subject to intense investigation. Based on available data for the SARS-CoV-1 virus, we suggest how CoV-2 localization of RNA transcripts in mitochondria hijacks the host cell's mitochondrial function to viral advantage. Besides viral RNA transcripts, RNA also localizes to mitochondria. SARS-CoV-2 may manipulate mitochondrial function indirectly, first by ACE2 regulation of mitochondrial function, and once it enters the host cell, open-reading frames (ORFs) such as ORF-9b can directly manipulate mitochondrial function to evade host cell immunity and facilitate virus replication and COVID-19 disease. Manipulations of host mitochondria by viral ORFs can release mitochondrial DNA (mtDNA) in the cytoplasm and activate mtDNA-induced inflammasome and suppress innate and adaptive immunity. We argue that a decline in ACE2 function in aged individuals, coupled with the age-associated decline in mitochondrial functions resulting in chronic metabolic disorders like diabetes or cancer, may make the host more vulnerable to infection and health complications to mortality. These observations suggest that distinct localization of viral RNA and proteins in mitochondria must play essential roles in SARS-CoV-2 pathogenesis. Understanding the mechanisms underlying virus communication with host mitochondria may provide critical insights into COVID-19 pathologies. An investigation into the SARS-CoV-2 hijacking of mitochondria should lead to novel approaches to prevent and treat COVID-19.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/virologia , DNA Mitocondrial/genética , Mitocôndrias/genética , Pneumonia Viral/virologia , RNA Viral/genética , Imunidade Adaptativa , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/crescimento & desenvolvimento , Betacoronavirus/imunologia , Betacoronavirus/metabolismo , COVID-19 , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/metabolismo , DNA Mitocondrial/metabolismo , Regulação Viral da Expressão Gênica , Interações entre Hospedeiro e Microrganismos , Humanos , Imunidade Inata , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Mitocôndrias/virologia , Pandemias , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/genética , Pneumonia Viral/imunologia , Pneumonia Viral/metabolismo , SARS-CoV-2 , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA