Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 735, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080567

RESUMO

BACKGROUND: The fruit ripening period is an important target trait in fruit tree crop breeding programs. Thus, citrus tree breeders seek to develop extreme early ripening cultivars that allow optimization of citrus maturation periods. In this study, we explored the regulatory network involved in fruit ripening in Citrus sinensis using the 'Newhall' navel orange variety and its early-ripening mutant, 'Gannanzao'. This research will provide a basis for further research on important signaling pathways, gene functions and variety breeding of Citrus sinensis related to fruit ripening period. RESULTS: Physiological analyses suggested that early fruit ripening in 'Gannanzao' is regulated by early accumulation of abscisic acid (ABA), persistently high levels of jasmonic acid (JA), and higher sucrose content in the pericarp. Pericarp samples from 'Gannanzao' and 'Newhall' navel oranges were sampled for RNA sequencing analysis at 180, 200, and 220 days after flowering; 1430 differentially expressed genes (DEGs) were identified. Functional enrichment analysis indicated that these DEGs were mainly enriched in the plant hormone signal transduction and sugar metabolism pathways, as well as other pathways related to fruit ripening. Important DEGs associated with fruit ripening in 'Gannanzao' included genes involved in ABA and JA metabolism and signal transduction, as well as sugar metabolism. Weighted gene co-expression network analysis showed that the deep pink module had the strongest correlations with ABA content, JA content, and early ripening. Based on gene functionality and gene expression analyses of 37 genes in this module, two candidate hub genes and two ethylene response factor 13 (ERF13) genes (Cs_ont_5g000690 and Cs_ont_5g000700) were identified as key genes regulated by ABA and JA signaling. These findings will help to clarify the mechanisms that underlie early citrus fruit ripening and will lead to the development of excellent genetic resources for further breeding of extreme early-ripening varieties. CONCLUSIONS: Through analyses of the 'Newhall' navel orange cultivar and its early-ripening mutant 'Gannanzao', we identified genes involved in ABA and JA metabolism, signal transduction, and sugar metabolism that were related to fruit ripening. Among these, two ERF13 genes were inferred to be key genes in the regulation of fruit ripening. These findings provide insights into the genetic architecture related to early fruit ripening in C. sinensis.


Assuntos
Citrus sinensis , Frutas , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Citrus sinensis/genética , Citrus sinensis/crescimento & desenvolvimento , Citrus sinensis/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Oxilipinas/metabolismo , Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/genética , Ciclopentanos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Small ; : e2401019, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38757438

RESUMO

As a sustainable energy technology, electrocatalytic energy conversion requires electrocatalysts, which greatly motivates the exploitation of high-performance electrocatalysts based on nonprecious metals. Molybdenum-based nanomaterials have demonstrated promise as electrocatalysts because of their unique physiochemical and electronic properties. Among them, atomic Mo catalysts, also called Mo-based single-atom catalysts (Mo-SACs), have the most accessible active sites and tunable microenvironments and are thrivingly explored in various electrochemical conversion reactions. A timely review of such rapidly developing topics is necessary to provide guidance for further exploration of optimized Mo-SACs toward electrochemical energy technologies. In this review, recent advances in the synthetic strategies for Mo-SACs are highlighted, focusing on the microenvironment engineering of Mo atoms. Then, the representative achievements of their applications in various electrocatalytic reactions involving the N2, H2O, and CO2 cycles are summarized by combining experimental and computational results. Finally, prospects for the future development of Mo-SACs in electrocatalysis are provided and the key challenges that require further investigation and optimization are highlighted.

3.
Small ; 20(27): e2306598, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38295133

RESUMO

Postoperative adhesion is a noteworthy clinical complication in abdominal surgery due to the existing physical barriers are unsatisfactory and inefficient in preventing its occurrence. In this work, an elaborate nanoparticle-in-microgel system (nMGel) is presented for postoperative adhesion prevention. nMGel is facilely formed by crosslinking manganese dioxide (MnO2) nanoparticles-loaded gelatin microspheres with polydopamine using a modified emulsification-chemical crosslinking method, generating a nano-micron spherical hydrogel. After drying, powdery nMGel with sprayability can perfectly cover irregular wounds and maintains robust tissue adhesiveness even in a wet environment. Additionally, nMGel possesses prominent antioxidant and free radical scavenging activity, which protects cell viability and preserves cell biological functions in an oxidative microenvironment. Furthermore, nMGel displays superior hemostatic property as demonstrated in mouse tail amputation models and liver trauma models. Importantly, nMGel can be conveniently administrated in a mouse cecal defect model to prevent adhesion between the injured cecum and the peritoneum by reducing inflammation, oxidative stress, collagen synthesis, and angiogenesis. Thus, the bioactive nMGel offers a practical and efficient approach for ameliorating postsurgical adhesion.


Assuntos
Nanopartículas , Espécies Reativas de Oxigênio , Animais , Nanopartículas/química , Aderências Teciduais/prevenção & controle , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Hemostáticos/química , Hemostáticos/farmacologia , Óxidos/química , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Adesivos/química , Adesivos/farmacologia , Humanos , Complicações Pós-Operatórias/prevenção & controle , Polímeros/química
4.
Small ; : e2404758, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140281

RESUMO

Curved surface with defined local electronic structures and regulated surface microenvironments is significant for advanced catalytic engineering. Since single-atom catalysts are highly efficient and active, they have attracted much attention in recent years. The curvature carrier has a significant effect on the electronic structure regulation of single-atom sites, which effectively promote the catalytic efficiency. Here, the effect of the curvature structure with exposed metal atoms for catalysis is comprehensively summarized. First, the substrates with curvature features are reviewed. Second, the applications of single-atom catalysts containing curvature in a variety of different electrocatalytic reactions are discussed in depth. The impact of curvature effects in catalytic reactions is further analyzed. Finally, prospects and suggestions for their application and future development are presented. This review paves the way for the construction of high curvature-containing surface carriers, which is of great significance for single-atom catalysts development.

5.
Small ; 20(24): e2309841, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38217292

RESUMO

The demand for the exploration of highly active and durable electro/photocatalysts for renewable energy conversion has experienced a significant surge in recent years. Metal-organic frameworks (MOFs), by virtue of their high porosity, large surface area, and modifiable metal centers and ligands, have gained tremendous attention and demonstrated promising prospects in electro/photocatalytic energy conversion. However, the small pore sizes and limited active sites of 3D bulk MOFs hinder their wide applications. Developing 2D MOFs with tailored thickness and large aspect ratio has emerged as an effective approach to meet these challenges, offering a high density of exposed active sites, better mechanical stability, better assembly flexibility, and shorter charge and photoexcited state transfer distances compared to 3D bulk MOFs. In this review, synthesis methods for the most up-to-date 2D MOFs are first overviewed, highlighting their respective advantages and disadvantages. Subsequently, a systematic analysis is conducted on the identification and electronic structure modulation of catalytic active sites in 2D MOFs and their applications in renewable energy conversion, including electrocatalysis and photocatalysis (electro/photocatalysis). Lastly, the current challenges and future development of 2D MOFs toward highly efficient and practical electro/photocatalysis are proposed.

6.
J Nanobiotechnology ; 22(1): 178, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38614985

RESUMO

BACKGROUND: Clearance of apoptotic cells by efferocytosis is crucial for prevention of atherosclerosis progress, and impaired efferocytosis contributes to the aggravated atherosclerosis. RESULTS: In this study, we found that diabetic ApoE-/- mice showed aggravated atherosclerosis as hyperglycemia damaged the efferocytosis capacity at least partially due to decreased expression of Mer tyrosine kinase (MerTK) on macrophages. To locally restore MerTK in the macrophages in the plaque, hybrid membrane nanovesicles (HMNVs) were thus developed. Briefly, cell membrane from MerTK overexpressing RAW264.7 cell and transferrin receptor (TfR) overexpressing HEK293T cell were mixed with DOPE polymers to produce nanovesicles designated as HMNVs. HMNVs could fuse with the recipient cell membrane and thus increased MerTK in diabetic macrophages, which in turn restored the efferocytosis capacity. Upon intravenous administration into diabetic ApoE-/- mice, superparamagnetic iron oxide nanoparticles (SMN) decorated HMNVs accumulated at the aorta site significantly under magnetic navigation, where the recipient macrophages cleared the apoptotic cells efficiently and thus decreased the inflammation. CONCLUSIONS:  Our study indicates that MerTK decrease in macrophages contributes to the aggravated atherosclerosis in diabetic ApoE-/- mice and regional restoration of MerTK in macrophages of the plaque via HMNVs could be a promising therapeutic approach.


Assuntos
Aterosclerose , Diabetes Mellitus , Humanos , Animais , Camundongos , Eferocitose , Células HEK293 , Membrana Celular , Proteínas Tirosina Quinases , Apolipoproteínas E/genética , Nanopartículas Magnéticas de Óxido de Ferro
7.
ACS Biomater Sci Eng ; 10(2): 1031-1039, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38215215

RESUMO

Surgical bleeding and cumulative oxidative stress are significant factors in the development of postoperative adhesions, which are always associated with adverse patient outcomes. However, effective strategies for adhesion prevention are currently lacking in clinical practice. In this study, we propose a solution using polydopamine-decorated manganese dioxide nanoparticles (MnO2@PDA) with rapid hemostasis and remarkable antioxidant properties to prevent postsurgical adhesion. The PDA modification provides MnO2@PDA with enhanced tissue adhesiveness and hemocompatibility with negligible hemolysis. Furthermore, MnO2@PDA exhibits impressive antioxidant and free radical scavenging properties, protecting cells from the negative effects of oxidative stress. The hemostatic activity of MnO2@PDA is evaluated in a mouse truncated tail model and a liver injury model, with results demonstrating reduced bleeding time and volume. The in vivo test on a mouse cecal abrasion model shows that MnO2@PDA exhibits excellent antiadhesion properties coupled with alleviated inflammation around the damaged tissue. Therefore, MnO2@PDA, which exhibits high biosafety, rapid hemostasis, and beneficial antioxidant capacity, displays exceptional antiadhesion performance, holding great potential for clinical applications to prevent postoperative adhesion.


Assuntos
Antioxidantes , Indóis , Nanopartículas , Polímeros , Humanos , Camundongos , Animais , Antioxidantes/farmacologia , Compostos de Manganês/farmacologia , Contenção de Riscos Biológicos , Óxidos/farmacologia , Hemostasia
8.
ACS Appl Mater Interfaces ; 16(14): 17120-17128, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38554083

RESUMO

Cell-based therapies offer tremendous potential for skin flap regeneration. However, the hostile microenvironment of the injured tissue adversely affects the longevity and paracrine effects of the implanted cells, severely reducing their therapeutic effectiveness. Here, an injectable hydrogel (nGk) with reactive oxygen species (ROS) scavenging capability, which can amplify the cell viability and functions of encapsulated mesenchymal stem cells (MSCs), is employed to promote skin flap repair. nGk is formulated by dispersing manganese dioxide nanoparticles (MnO2 NPs) in a gelatin/κ-carrageenan hydrogel, which exhibits satisfactory injectable properties and undergoes a sol-gel phase transition at around 40 °C, leading to the formation of a solid gel at physiological temperature. MnO2 NPs enhance the mechanical properties of the hydrogel and give it the ability to scavenge ROS, thus providing a cell-protective system for MSCs. Cell culture studies show that nGk can mitigate the oxidative stress, improve cell viability, and boost stem cell paracrine function to promote angiogenesis. Furthermore, MSC-loaded nGk (nGk@MSCs) can improve the survival of skin flaps by promoting angiogenesis, reducing inflammatory reactions, and attenuating necrosis, providing an effective approach for tissue regeneration. Collectively, injectable nGk has substantial potential to enhance the therapeutic benefits of MSCs, making it a valuable delivery system for cell-based therapies.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Hidrogéis/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Compostos de Manganês/farmacologia , Óxidos/farmacologia
9.
Nanomaterials (Basel) ; 14(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39057849

RESUMO

Hydrogen is now recognized as the primary alternative to fossil fuels due to its renewable, safe, high-energy density and environmentally friendly properties. Efficient hydrogen production through water splitting has laid the foundation for sustainable energy technologies. However, when hydrogen production is scaled up to industrial levels, operating at high current densities introduces unique challenges. It is necessary to design advanced electrocatalysts for hydrogen evolution reactions (HERs) under high current densities. This review will briefly introduce the challenges posed by high current densities on electrocatalysts, including catalytic activity, mass diffusion, and catalyst stability. In an attempt to address these issues, various electrocatalyst design strategies are summarized in detail. In the end, our insights into future challenges for efficient large-scale industrial hydrogen production from water splitting are presented. This review is expected to guide the rational design of efficient high-current density water electrolysis electrocatalysts and promote the research progress of sustainable energy.

10.
Nat Commun ; 15(1): 5702, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977693

RESUMO

Anion exchange membrane (AEM) water electrolysis employing non-precious metal electrocatalysts is a promising strategy for achieving sustainable hydrogen production. However, it still suffers from many challenges, including sluggish alkaline hydrogen evolution reaction (HER) kinetics, insufficient activity and limited lifetime of non-precious metal electrocatalysts for ampere-level-current-density alkaline HER. Here, we report an efficient alkaline HER strategy at industrial-level current density wherein a flexible WS2 superstructure is designed to serve as the cathode catalyst for AEM water electrolysis. The superstructure features bond-free van der Waals interaction among the low Young's modulus nanosheets to ensure excellent mechanical flexibility, as well as a stepped edge defect structure of nanosheets to realize high catalytic activity and a favorable reaction interface micro-environment. The unique flexible WS2 superstructure can effectively withstand the impact of high-density gas-liquid exchanges and facilitate mass transfer, endowing excellent long-term durability under industrial-scale current density. An AEM electrolyser containing this catalyst at the cathode exhibits a cell voltage of 1.70 V to deliver a constant catalytic current density of 1 A cm-2 over 1000 h with a negligible decay rate of 9.67 µV h-1.

11.
Phytomedicine ; 130: 155725, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38772181

RESUMO

BACKGROUND: Bidirectional communication between the gut microbiota and the brain may play an essential role in the cognitive dysfunction associated with chronic sleep deprivation(CSD). Salvia miltiorrhiza Bunge (Danshen, DS), a famous Chinese medicine and functional tea, is extensively used to protect learning and memory capacities, although the mechanism of action remains unknown. PURPOSE: The purpose of this research was to explore the efficacy and the underlying mechanism of DS in cognitive dysfunction caused by CSD. METHODS: DS chemical composition was analyzed by UPLC-QTOF-MS/MS. Forty rats were randomly assigned to five groups (n = 8): control (CON), model (MOD), low- (1.35 g/kg, DSL), high-dose (2.70 g/kg, DSH) DS group, and Melatonin(100 mg/kg, MT) group. A CSD rat model was established over 21 days. DS's effects and the underlying mechanism were explored using the open-field test(OFT), Morris water-maze(MWM), tissue staining(Hematoxylin and Eosin Staining, Nissl staining, Alcian blue-periodic acid SCHIFF staining, and Immunofluorescence), enzyme-linked immunosorbent assay, Western blot, quantitative real-time polymerase chain reaction(qPCR), and 16S rRNA sequencing. RESULTS: We demonstrated that CSD caused gut dysbiosis and cognitive dysfunction. Furthermore, 16S rRNA sequencing demonstrated that Firmicutes and Proteobacteria were more in fecal samples from model group rats, whereas Bacteroidota and Spirochaetota were less. DS therapy, on the contrary hand, greatly restored the gut microbial community, consequently alleviating cognitive impairment in rats. Further research revealed that DS administration reduced systemic inflammation via lowering intestinal inflammation and barrier disruption. Following that, DS therapy reduced Blood Brain Barrier(BBB) and neuronal damage, further decreasing neuroinflammation in the hippocampus(HP). Mechanistic studies revealed that DS therapy lowered lipopolysaccharide (LPS) levels in the HP, serum, and colon, consequently blocking the TLR4/MyD88/NF-κB signaling pathway and its downstream pro-inflammatory products(IL-1ß, IL-6, TNF-α, iNOS, and COX2) in the HP and colon. CONCLUSION: DS treatment dramatically improved spatial learning and memory impairments in rats with CSD by regulating the composition of the intestinal flora, preserving gut and brain barrier function, and reducing inflammation mediated by the LPS-TLR4 signaling pathway. Our findings provide novel insight into the mechanisms by which DS treats cognitive dysfunction caused by CSD.


Assuntos
Disfunção Cognitiva , Medicamentos de Ervas Chinesas , Ratos Sprague-Dawley , Salvia miltiorrhiza , Privação do Sono , Animais , Salvia miltiorrhiza/química , Privação do Sono/complicações , Privação do Sono/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Ratos , Microbioma Gastrointestinal/efeitos dos fármacos , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , NF-kappa B/metabolismo , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos
12.
Chem Sci ; 15(32): 13082-13089, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39148792

RESUMO

Abnormal copper ion (Cu2+) levels are considered to be one of the pathological factors of Parkinson's disease (PD), but the internal relationship between Cu2+ and PD progression remains elusive. Visualizing Cu2+ in the brain will be pivotal for comprehending the underlying pathophysiological processes of PD. In this work, a near-infrared (NIR) fluorescent probe, DDAO-Cu, capable of detecting Cu2+ with exceptional sensitivity (about 1.8 nM of detection limit) and selectivity, rapid response (<3 min), and deep tissue penetration, was designed for quantification and visualization of the Cu2+ level. It could detect not only Cu2+ in cells but also the changes in the Cu2+ level in the rotenone-induced cell and zebrafish PD models. Moreover, DDAO-Cu can cross the blood-brain barrier to image Cu2+ in the brain of PD model mice. The imaging result showed a significant increase in Cu2+ levels in brain regions of PD model mice, including the cerebral cortex, hippocampus, and striatum. Meanwhile, Cu2+ levels in the substantia nigra region were significantly reduced in PD model mice. It revealed the nuanced relationship of Cu2+ levels in different brain regions in the disease and indicated the pathological complexity of PD. Overall, DDAO-Cu represents a novel and practical tool for investigating Cu2+-related physiological and pathological processes underlying Parkinson's disease.

13.
Front Pharmacol ; 15: 1430599, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39101143

RESUMO

Sleep deprivation (SD) is commonplace in today's fast-paced society. SD is a severe public health problem globally since it may cause cognitive decline and even neurodegenerative disorders like Alzheimer's disease. Melatonin (MT) is a natural chemical secreted by the pineal gland with neuroprotective effects. The purpose of this study was to investigate the protective effect and mechanism of MT on chronic sleep deprivation-induced cognitive impairment. A 3-week modified multi-platform method was used to create the SD rat model. The Morris water maze test (MWM), Tissue staining (including Hematoxylin and Eosin (H & E) staining, Nissl staining, and immunofluorescence), Western blot, Enzyme-linked immunosorbent assay (ELISA), and Quantitative real-time polymerase chain reaction (qPCR) were used to investigate the protective effect and mechanism of MT in ameliorating cognitive impairment in SD rats. The results showed that MT (50 and 100 mg/kg) significantly improved cognitive function in rats, as evidenced by a shortening of escape latency and increased time of crossing the platform and time spent in the quadrant. Additionally, MT therapy alleviated hippocampus neurodegeneration and neuronal loss while lowering levels of pathogenic factors (LPS) and inflammatory indicators (IL-1ß, IL-6, TNF-α, iNOS, and COX2). Furthermore, MT treatment reversed the high expression of Aß42 and Iba1 as well as the low expression of ZO-1 and occludin, and inhibited the SD-induced TLR4/MyD88/NF-κB signaling pathway. In summary, MT ameliorated spatial recognition and learning memory dysfunction in SD rats by reducing neuroinflammation and increasing neuroprotection while inhibiting the TLR4/MyD88/NF-κB signaling pathway. Our study supports the use of MT as an alternate treatment for SD with cognitive impairment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA