Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Neurourol Urodyn ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979835

RESUMO

AIMS: This study aimed to determine the preventive effects of emodin on cyclophosphamide (CYP)-induced cystitis and to explore the molecular mechanism. METHODS: In vivo, mice were modeled by CYP. Before a half hour of CYP treatment, Jumonji domain-containing protein-3 (JMJD3) inhibitors (GSK-J4) and emodin were used to treat CYP model mice. Bladder samples were stained for hematoxylin-eosin and toluidine blue. Next, JMJD3 was quantified by immunofluorescence staining, RT-PCR, and Western blot. CXCR3 was quantified by Western blot and ELISA. In vitro, before stimulated by lipopolysaccharide (LPS), human bladder smooth muscle cells (hBSMCs) were transfected with pcDNA3.1-JMJD3 plasmids, shRNA-JMJD3 plasmids or pretreated with emodin. Collected cells to detect JMJD3 and CXCR3 ligands again; collected supernatant of culture for Transwell assay. Finally, as the JAK2 inhibitor, AG490 was used to pretreat LPS-induced hBSMCs. Western blot was performed to quantify proteins. RESULTS: Emodin inhibited mast cell migration and suppressed the expression of JMJD3, CXCR3, and CXCR3 ligands, not only in vivo but also in vitro. The pharmacological effects of emodin were similar to GSK-J4 or JMJD3 inhibition. In addition, emodin significantly downregulated the phosphorylation of JAK2 and STAT3, and inhibited JMJD3/CXCR3 axis transduction like AG490. CONCLUSION: Emodin has a preventive effect on cystitis by inhibiting mast cell migration through inhibition of the JAK2/STAT3/JMJD3/CXCR3 signaling pathway.

2.
Pharm Biol ; 61(1): 674-682, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37096639

RESUMO

CONTEXT: Zhibai Dihuang pill (ZD), a traditional Chinese medicine nourishes Yin and reduces internal heat, is believed to have therapeutic effects on urinary tract infections (UTIs). OBJECTIVE: To explore the effects and mechanism of modified ZD (MZD) on UTI induced by extended-spectrum ß-lactamase (ESBLs) Escherichia coli. MATERIALS AND METHODS: Thirty Sprague-Dawley rats were randomly divided into control, model (0.5 mL 1.5 × 108 CFU/mL ESBLs E. coli), MZD (20 g/kg MZD), LVFX (0.025 g/kg LVFX), and MZD + LVFX groups (20 g/kg MZD + 0.025 g/kg LVFX), n = 6. After 14 days of treatment, serum biochemical indicators, renal function indicators, bladder and renal histopathology, and urine bacterial counts in rats were determined. Additionally, the effects of MZD on ESBLs E. coli biofilm formation and related gene expression were analyzed. RESULTS: MZD significantly decreased the count of white blood cells (from 13.12 to 9.13), the proportion of neutrophils (from 43.53 to 23.18), C-reactive protein (from 13.21 to 9.71), serum creatinine (from 35.78 to 30.15), and urea nitrogen (from 12.56 to 10.15), relieved the inflammation and fibrosis of bladder and kidney tissues, and reduced the number of bacteria in urine (from 2174 to 559). In addition, MZD inhibited the formation of ESBLs E. coli biofilms (2.04-fold) and decreased the gene expressions of luxS, pfS and ompA (1.41-1.62-fold). DISCUSSION AND CONCLUSION: MZD treated ESBLs E. coli-induced UTI inhibited biofilm formation, providing a theoretical basis for the clinical application of MZD. Further study on the clinical effect of MZD may provide a novel therapy option for UTI.


Assuntos
Antibacterianos , Medicamentos de Ervas Chinesas , Infecções Urinárias , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Ratos Sprague-Dawley , Infecções Urinárias/induzido quimicamente , Infecções Urinárias/tratamento farmacológico , Escherichia coli , Infecções por Escherichia coli/tratamento farmacológico , Animais , Ratos , Feminino , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA