Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.062
Filtrar
1.
Plant J ; 117(5): 1503-1516, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38059690

RESUMO

Plant diseases, which seriously damage crop production, are in most cases caused by fungal pathogens. In this study, we found that the Raf-like MAPKKKs STY8 (SERINE/THREONINE/TYROSINE KINASE 8), STY17, and STY46 negatively regulate resistance to the fungal pathogen Botrytis cinerea through jasmonate response in Arabidopsis. Moreover, STY8/STY17/STY46 homologs negatively contribute to chitin signaling. We further identified MKK7 as the MAPKK component interacting with STY8/STY17/STY46 homologs. MKK7 positively contributes to resistance to B. cinerea and chitin signaling. Furthermore, we found that STY8/STY17/STY46 homologs negatively affect the accumulation of MKK7, in accordance with the opposite roles of MKK7 and STY8/STY17/STY46 homologs in defense against B. cinerea. These results provide new insights into the mechanisms precisely regulating plant immunity via Raf-like MAPKKKs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Botrytis/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quitina/metabolismo , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas , Resistência à Doença/genética
2.
J Virol ; 98(5): e0192523, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38624230

RESUMO

Recurrent respiratory papillomatosis (RRP) is a rare benign tumor caused mainly by the infection of the respiratory tract epithelial cells by the human papillomavirus (HPV) type 6/11. However, the specific mechanisms underlying the inhibition of the host's innate immune response by HPV remain unclear. For this purpose, we employed single-cell RNA sequencing to analyze the states of various immune cells in RRP samples post-HPV infection and utilized a cellular model of HPV infection to elucidate the mechanisms by which HPV evades the innate immune system in RRP. The results revealed distinct immune cell heterogeneity in RRP and demonstrated that HPV11 E7 can inhibit the phosphorylation of the stimulator of interferon genes protein, thereby circumventing the body's antiviral response. In vitro co-culture experiments demonstrated that stimulation of macrophages to produce interferon-beta induced the death of HPV-infected epithelial cells, also reducing HPV viral levels. In summary, our study preliminarily identifies the potential mechanisms by which HPV evades the host's antiviral immune response, as well as the latent antiviral functions exhibited by activated macrophages. This research serves as an initial exploration of antiviral immune evasion in RRP, laying a solid foundation for investigating immunotherapeutic approaches for the disease.IMPORTANCESurgical tumor reduction is the most common treatment for recurrent respiratory papillomatosis (RRP). One of the characteristics of RRP is its persistent recurrence, and multiple surgeries are usually required to control the symptoms. Recently, some adjuvant therapies have shown effectiveness, but none of them can completely clear human papillomavirus (HPV) infection, and thus, a localized antiviral immune response is significant for disease control; after all, HPV infection is limited to the epithelium. Inhibition of interferon-beta (IFN-ß) secretion by HPV11 E7 viral proteins in epithelial cells by affecting stimulator of interferon genes phosphorylation may account for the persistence of low-risk HPV replication in the RRP. Moreover, suppression of the IFN-I pathway in RRP cell types might provide clues regarding the hyporeactive function of local immune cells. However, activation of macrophage groups to produce IFN-ß can still destroy HPV-infected cells.


Assuntos
Papillomavirus Humano 11 , Proteínas E7 de Papillomavirus , Infecções por Papillomavirus , Infecções Respiratórias , Adulto , Feminino , Humanos , Masculino , Células Epiteliais/virologia , Células Epiteliais/imunologia , Papillomavirus Humano 11/genética , Papillomavirus Humano 11/imunologia , Evasão da Resposta Imune , Imunidade Inata , Interferon beta/metabolismo , Interferon beta/imunologia , Interferon beta/genética , Macrófagos/imunologia , Macrófagos/virologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas E7 de Papillomavirus/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/imunologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Infecções Respiratórias/virologia , Infecções Respiratórias/imunologia
3.
Circ Res ; 133(6): 463-480, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37555328

RESUMO

BACKGROUND: Cardiac valve disease is observed in 2.5% of the general population and 10% of the elderly people. Effective pharmacological treatments are currently not available, and patients with severe cardiac valve disease require surgery. PROX1 (prospero-related homeobox transcription factor 1) and FOXC2 (Forkhead box C2 transcription factor) are transcription factors that are required for the development of lymphatic and venous valves. We found that PROX1 and FOXC2 are expressed in a subset of valvular endothelial cells (VECs) that are located on the downstream (fibrosa) side of cardiac valves. Whether PROX1 and FOXC2 regulate cardiac valve development and disease is not known. METHODS: We used histology, electron microscopy, and echocardiography to investigate the structure and functioning of heart valves from Prox1ΔVEC mice in which Prox1 was conditionally deleted from VECs. Isolated valve endothelial cells and valve interstitial cells were used to identify the molecular mechanisms in vitro, which were tested in vivo by RNAScope, additional mouse models, and pharmacological approaches. The significance of our findings was tested by evaluation of human samples of mitral valve prolapse and aortic valve insufficiency. RESULTS: Histological analysis revealed that the aortic and mitral valves of Prox1ΔVEC mice become progressively thick and myxomatous. Echocardiography revealed that the aortic valves of Prox1ΔVEC mice are stenotic. FOXC2 was downregulated and PDGF-B (platelet-derived growth factor-B) was upregulated in the VECs of Prox1ΔVEC mice. Conditional knockdown of FOXC2 and conditional overexpression of PDGF-B in VECs recapitulated the phenotype of Prox1ΔVEC mice. PDGF-B was also increased in mice lacking FOXC2 and in human mitral valve prolapse and insufficient aortic valve samples. Pharmacological inhibition of PDGF-B signaling with imatinib partially ameliorated the valve defects of Prox1ΔVEC mice. CONCLUSIONS: PROX1 antagonizes PDGF-B signaling partially via FOXC2 to maintain the extracellular matrix composition and prevent myxomatous degeneration of cardiac valves.


Assuntos
Doenças das Valvas Cardíacas , Prolapso da Valva Mitral , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/prevenção & controle , Doenças das Valvas Cardíacas/metabolismo , Valva Mitral/metabolismo , Prolapso da Valva Mitral/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo
4.
Anal Chem ; 96(9): 3914-3924, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38387027

RESUMO

Wearable, noninvasive sensors enable the continuous monitoring of metabolites in sweat and provide clinical information related to an individual's health and disease states. Uric acid (UA) is a key indicator highly associated with gout, hyperuricaemia, hypertension, kidney disease, and Lesch-Nyhan syndrome. However, the detection of UA levels typically relies on invasive blood tests. Therefore, developing a wearable device for noninvasive monitoring of UA concentrations in sweat could facilitate real-time personalized disease prevention. Here, we introduce 1,3,6,8-pyrene tetrasulfonic acid sodium salt (PyTS) as a bifunctional molecule functionalized with Ti3C2Tx via π-π conjugation to design nonenzymatic wearable sensors for sensitive and selective detection of UA concentration in human sweat. PyTS@Ti3C2Tx provides many oxidation-reduction active groups to enhance the electrocatalytic ability of the UA oxidation reaction. The PyTS@Ti3C2Tx-based electrochemical sensor demonstrates highly sensitive detection of UA in the concentration range of 5 µM-100 µM, exhibiting a lower detection limit of 0.48 µM compared to the uricase-based sensor (0.84 µM). In volunteers, the PyTS@Ti3C2Tx-based wearable sensor is integrated with flexible microfluidic sweat sampling and wireless electronics to enable real-time monitoring of UA levels during aerobic exercise. Simultaneously, it allows for comparison of blood UA levels via a commercial UA analyzer. Herein, this study provides a promising electrocatalyst strategy for nonenzymatic electrochemical UA sensor, enabling noninvasive real-time monitoring of UA levels in human sweat and personalized disease prevention.


Assuntos
Técnicas Biossensoriais , Nitritos , Elementos de Transição , Dispositivos Eletrônicos Vestíveis , Humanos , Ácido Úrico/análise , Titânio/análise , Suor/química
5.
BMC Plant Biol ; 24(1): 332, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664645

RESUMO

BACKGROUND: Aconitum carmichaelii Debx. has been widely used as a traditional medicinal herb for a long history in China. It is highly susceptible to various dangerous diseases during the cultivation process. Downy mildew is the most serious leaf disease of A. carmichaelii, affecting plant growth and ultimately leading to a reduction in yield. To better understand the response mechanism of A. carmichaelii leaves subjected to downy mildew, the contents of endogenous plant hormones as well as transcriptome sequencing were analyzed at five different infected stages. RESULTS: The content of 3-indoleacetic acid, abscisic acid, salicylic acid and jasmonic acid has changed significantly in A. carmichaelii leaves with the development of downy mildew, and related synthetic genes such as 9-cis-epoxycarotenoid dioxygenase and phenylalanine ammonia lyase were also significant for disease responses. The transcriptomic data indicated that the differentially expressed genes were primarily associated with plant hormone signal transduction, plant-pathogen interaction, the mitogen-activated protein kinase signaling pathway in plants, and phenylpropanoid biosynthesis. Many of these genes also showed potential functions for resisting downy mildew. Through weighted gene co-expression network analysis, the hub genes and genes that have high connectivity to them were identified, which could participate in plant immune responses. CONCLUSIONS: In this study, we elucidated the response and potential genes of A. carmichaelii to downy mildew, and observed the changes of endogenous hormones content at different infection stages, so as to contribute to the further screening and identification of genes involved in the defense of downy mildew.


Assuntos
Aconitum , Doenças das Plantas , Reguladores de Crescimento de Plantas , Transcriptoma , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Aconitum/genética , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
6.
Small ; 20(8): e2304110, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37806756

RESUMO

Atherosclerosis (AS) is the primary reason behind cardiovascular diseases, leading to approximately one-third of global deaths. Developing a novel multi-model probe to detect AS is urgently required. Macrophages are the primary cells from which AS genesis occurs. Utilizing natural macrophage membranes coated on the surface of nanoparticles is an efficient delivery method to target plaque sites. Herein, Fe3 O4 -Cy7 nanoparticles (Fe3 O4 -Cy7 NPs), functionalized using an M2 macrophage membrane and a liposome extruder for Near-infrared fluorescence and Magnetic resonance imaging, are synthesized. These macrophage membrane-coated nanoparticles (Fe3 O4 @M2 NPs) enhance the recognition and uptake using active macrophages. Moreover, they inhibit uptake using inactive macrophages and human coronary artery endothelial cells. The macrophage membrane-coated nanoparticles (Fe3 O4 @M0 NPs, Fe3 O4 @M1 NPs, Fe3 O4 @M2 NPs) can target specific sites depending on the macrophage membrane type and are related to C-C chemofactor receptor type 2 protein content. Moreover, Fe3 O4 @M2 NPs demonstrate excellent biosafety in vivo after injection, showing a significantly higher Fe concentration in the blood than Fe3 O4 -Cy7 NPs. Therefore, Fe3 O4 @M2 NPs effectively retain the physicochemical properties of nanoparticles and depict reduced immunological response in blood circulation. These NPs mainly reveal enhanced targeting imaging capability for atherosclerotic plaque lesions.


Assuntos
Aterosclerose , Nanopartículas , Humanos , Células Endoteliais , Nanopartículas/química , Imageamento por Ressonância Magnética/métodos , Aterosclerose/diagnóstico por imagem
7.
J Transl Med ; 22(1): 109, 2024 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281050

RESUMO

BACKGROUND: Major depressive disorder (MDD) is a common mental illness that affects millions of people worldwide and imposes a heavy burden on individuals, families and society. Previous studies on MDD predominantly focused on neurons and employed bulk homogenates of brain tissues. This paper aims to decipher the relationship between oligodendrocyte lineage (OL) development and MDD at the single-cell resolution level. METHODS: Here, we present the use of a guided regularized random forest (GRRF) algorithm to explore single-nucleus RNA sequencing profiles (GSE144136) of the OL at four developmental stages, which contains dorsolateral prefrontal cortex of 17 healthy controls (HC) and 17 MDD cases, generated by Nagy C et al. We prioritized and ordered differentially expressed genes (DEGs) based on Nagy et al., which could predominantly discriminate cells in the four developmental stages and two adjacent developmental stages of the OL. We further screened top-ranked genes that distinguished between HC and MDD in four developmental stages. Moreover, we estimated the performance of the GRRF model via the area under the curve value. Additionally, we validated the pivotal candidate gene Malat1 in animal models. RESULTS: We found that, among the four developmental stages, the onset development of OL (OPC2) possesses the best predictive power for distinguishing HC and MDD, and long noncoding RNA MALAT1 has top-ranked importance value in candidate genes of four developmental stages. In addition, results of fluorescence in situ hybridization assay showed that Malat1 plays a critical role in the occurrence of depression. CONCLUSIONS: Our work elucidates the mechanism of MDD from the perspective of OL development at the single-cell resolution level and provides novel insight into the occurrence of depression.


Assuntos
Transtorno Depressivo Maior , RNA Longo não Codificante , Humanos , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Linhagem da Célula/genética , Hibridização in Situ Fluorescente , RNA Longo não Codificante/metabolismo , Córtex Pré-Frontal/metabolismo , Perfilação da Expressão Gênica , Expressão Gênica
8.
Toxicol Appl Pharmacol ; 485: 116916, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537874

RESUMO

This study aims to explore the impact and underlying mechanism of sulforaphane (SFN) intervention on the migration and invasion of lung adenocarcinoma induced by 7, 8-dihydroxy-9, 10-epoxy-benzo (a) pyrene (BPDE). Human lung adenocarcinoma A549 cells were exposed to varying concentrations of BPDE (0.25, 0.50, and 1.00 µM) and subsequently treated with 5 µM SFN. Cell viability was determined using CCK8 assay, while migration and invasion were assessed using Transwell assays. Lentivirus transfection was employed to establish NLRP12 overexpressing A549 cells. ELISA was utilized to quantify IL-33, CXCL12, and CXCL13 levels in the supernatant, while quantitative real-time PCR (qRT-PCR) and Western Blot were used to analyze the expression of NLRP12 and key factors associated with canonical and non-canonical NF-κB pathways. Results indicated an increase in migratory and invasive capabilities, concurrent with heightened expression of IL-33, CXCL12, CXCL13, and factors associated with both canonical and non-canonical NF-κB pathways. Moreover, mRNA and protein levels of NLRP12 were decreased in BPDE-stimulated A549 cells. Subsequent SFN intervention attenuated BPDE-induced migration and invasion of A549 cells. Lentivirus-mediated NLRP12 overexpression not only reversed the observed phenotype in BPDE-induced cells but also led to a reduction in the expression of critical factors associated with both canonical and non-canonical NF-κB pathways. Collectively, we found that SFN could inhibit BPDE-induced migration and invasion of A549 cells by upregulating NLRP12, thereby influencing both canonical and non-canonical NF-κB pathways.


Assuntos
Adenocarcinoma de Pulmão , Movimento Celular , Isotiocianatos , Neoplasias Pulmonares , Invasividade Neoplásica , Sulfóxidos , Humanos , Isotiocianatos/farmacologia , Sulfóxidos/farmacologia , Movimento Celular/efeitos dos fármacos , Células A549 , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/toxicidade , Anticarcinógenos/farmacologia , NF-kappa B/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
9.
Langmuir ; 40(18): 9761-9774, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38663878

RESUMO

Stimuli-responsive behaviors and controlled release in liposomes are pivotal in nanomedicine. To this end, we present an approach using a photoresponsive azobenzene nanocluster (AzDmpNC), prepared from azobenzene compounds through melting and aggregation. When integrated with liposomes, they form photoresponsive vesicles. The morphology and association with liposomes were investigated by using transmission electron microscopy. Liposomes loaded with calcein exhibited a 9.58% increased release after UV exposure. To gain insights into the underlying processes and elucidate the mechanisms involved. The molecular dynamic simulations based on the reactive force field and all-atom force field were employed to analyze the aggregation of isomers into nanoclusters and their impacts on phospholipid membranes, respectively. The results indicate that the nanoclusters primarily aggregate through π-π and T-stacking forces. The force density inside the cis-isomer of AzDmpNC formed after photoisomerization is lower, leading to its easier dispersion, rapid diffusion, and penetration into the membrane, disrupting the densification.


Assuntos
Compostos Azo , Lipossomos , Simulação de Dinâmica Molecular , Compostos Azo/química , Compostos Azo/efeitos da radiação , Lipossomos/química , Nanopartículas/química , Raios Ultravioleta , Fluoresceínas/química , Processos Fotoquímicos
10.
Inorg Chem ; 63(17): 7858-7868, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38634470

RESUMO

The development of polyoxometalate chemistry not only is derived from the continuous discovery of novel polyoxometalates (POMs) but also stems from the exploitation of their new functionalities. In this work, we obtained a rigid sulfur-containing heterocyclic ligand-linking aggregate [N(CH3)4]10Na6H6[Ce8(H2O)26W8(HTDA)2(TDA)2O20][SeW4O18]2[SeW9O33]4·112H2O (1) (H2TDA = 2,5-thiophenedicarboxylic acid). Its polyanionic unit consists of one [Ce4(H2O)13W4O10(HTDA)(TDA)O10]18+ cluster and two kinds of Keggin-type [SeW4O18] and [SeW9O33] segments. It is noteworthy that H2TDA ligands not only work as connectors to link two symmetrical {[Ce4(H2O)13W4(HTDA)(TDA)O10][SeW4O18][SeW9O33]2}11- units but also function as ornaments to graft to the polyanionic backbone. Furthermore, 1 and 3,4-ethylenedioxythiophene (EDOT) were deposited on the glassy carbon electrode (GCE) by the electropolymerization (EPM) method, resulting in a 1-poly(3,4-ethylenedioxythiophene) (1-PEDOT) composite film, which can provide sufficient binding sites to immobilize Au nanoparticles (Au NPs). Hereafter, the Au NPs-immobilized 1-PEDOT modified electrode (Au/1-PEDOT/GCE) was used to construct an electrochemical aptasensor to detect mucin 1, showing a low detection limit of 29.5 fM in the Tris solution. This work not only demonstrates that rigid heterocyclic ligands are beneficial for the creation of novel rare-earth-substituted selenotungstate hybrids but also provides more enlightenment for POM-based materials used for electrochemical detection of cancer markers.

11.
Inorg Chem ; 63(16): 7123-7136, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38591874

RESUMO

Advances in polyoxometalate (POM) self-assembly chemistry are always accompanied by new developments in molecular blocks. The exploration and discovery of uncommon building blocks offer great possibilities for generating unprecedented POM clusters. An intriguing SbIII-WVI-cotemplated antimonotungstate [H2N(CH3)2]11Na[SbW9O33]Er2(H2O)2Sb2[SbWVIW15O57]·22H2O (1) was synthesized, which comprises a classical trivacant Keggin [SbW9O33]9- ({SbW9}) fragment and an unclassical lacunary Dawson-like [SbWVIW15O57]15- ({SbWVIW15}) subunit. Notably, the Dawson-like {SbWVIW15} subunit is the first example of a [SbO3]3- and [WVIO6]6- mixed-heteroatom-directing POM segment. Hexacoordinated [WVIO6]6- can not only serve as the heteroatom function but its additional oxygen sites can also link to lanthanide, main-group metal, and transition-metal centers to form the innovative structure. {SbWVIW15} and {SbW9} subunits are joined by the heterometallic [Er2(H2O)2Sb2O17]22- cluster to give rise to an asymmetric sandwich-type architecture. To further realize its potential application in electrochemical sensing, a conductive 1@rGO composite was obtained by the electrochemical deposition of 1 with graphene oxide (GO). Using a 1@rGO-modified glassy carbon electrode as the working electrode, an electrochemical biosensor for detecting the antidepressant drug paroxetine (PRX) was successfully constructed. This work can provide a viable strategy for synthesizing mixed-heteroatom-directing POMs and demonstrates the application of POM-based materials for the electrochemical detection of drug molecules.

12.
J Chem Inf Model ; 64(3): 737-748, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38258981

RESUMO

Deep generative models have become crucial tools in de novo drug design. In current models for multiobjective optimization in molecular generation, the scaffold diversity is limited when multiple constraints are introduced. To enhance scaffold diversity, we herein propose a local scaffold diversity-contributed generator (LSDC), which can be utilized to generate diverse lead compounds capable of satisfying multiple constraints. Compared to the state-of-the-art methods, molecules generated by LSDC exhibit greater diversity when applied to the generation of inhibitors targeting the NOD-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3). We present 12 molecules, some of which feature previously unreported scaffolds, and demonstrate their reasonable docking binding modes. Consequently, the modification of selected scaffolds and subsequent bioactivity evaluation lead to the discovery of two potent NLRP3 inhibitors, A22 and A14, with IC50 values of 38.1 nM and 44.43 nM, respectively. And the oral bioavailability of compound A14 is very high (F is 83.09% in mice). This work contributes to the discovery of novel NLRP3 inhibitors and provides a reference for integrating AI-based generation with wet experiments.


Assuntos
Desenho de Fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/química , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
13.
J Biochem Mol Toxicol ; 38(4): e23680, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511245

RESUMO

Bronchopulmonary dysplasia (BPD) is a chronic respiratory disease in newborns, which severely influences the health of infants and lacks effective clinical treatment strategies. The pathogenesis of BPD is correlated to enhanced inflammation and activated oxidative stress (OS). The application of antioxidants and anti-inflammatory treatment could be hot spots for BPD treatment. Nesfatin-1, a peptide with a suppressive property against inflammation, was tested herein for its potential therapeutic value in BPD. Neonatal SD rats were stimulated with hyperoxia, followed by being intraperitoneally administered with 20 µg/kg/day Nesfatin-1 for 2 weeks. Decreased RAC value in lung tissues, increased wet weight/dry weight (W/D) pulmonary ratio and bronchoalveolar lavage fluid (BALF) proteins, elevated cytokine release in BALF, increased malondialdehyde (MDA) content, and declined superoxide dismutase (SOD) activity were observed in BPD rats, all of which were sharply mitigated by Nesfatin-1. Rat epithelial type II cells (AECIIs) were handled with hyperoxia, and then cultured with 1 and 10 nM Nesfatin-1. Reduced cell viability, elevated lactate dehydrogenase production, elevated cytokine secretion, elevated MDA content, and decreased SOD activity were observed in hyperoxia-handled AECIIs, all of which were markedly alleviated by Nesfatin-1. Furthermore, activated nuclear factor-κB (NF-κB) signaling observed in both BPD rats and hyperoxia-handled AECIIs were notably repressed by Nesfatin-1. Collectively, Nesfatin-1 alleviated hyperoxia-triggered BPD by repressing inflammation and OS via the NF-κB signaling pathway.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Animais , Humanos , Recém-Nascido , Ratos , Animais Recém-Nascidos , Displasia Broncopulmonar/tratamento farmacológico , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Hiperóxia/metabolismo , Inflamação/metabolismo , Pulmão/metabolismo , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Superóxido Dismutase/metabolismo
14.
Bioorg Chem ; 150: 107569, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38905886

RESUMO

Erianin, a natural compound derived from Dendrobium, has shown significant anticancer properties against a wide range of cancer cells. Despite the identification of multiple mechanisms of action for erianin, none of these mechanisms fully account for its broad-spectrum effect. In this study, we aimed to identify the cellular target and underlying mechanism responsible for the broad-spectrum antitumor effects of erianin. We found that erianin effectively inhibited tubulin polymerization in cancer cells and purified tubulin. Through competition binding assays and X-ray crystallography, it was revealed that erianin bound to the colchicine site of ß-tubulin. Importantly, the X-ray crystal structure of the tubulin-erianin complex was solved, providing clear insight into the orientation and position of erianin in the colchicine-binding site. Erianin showed activity against paclitaxel-resistant cells, evidenced by G2/M cell cycle arrest, apoptosis-related PARP and Caspase-3 cleavage, and in vivo xenograft studies. The study concluded that erianin bound reversibly to the colchicine site of ß-tubulin, inhibited tubulin polymerization, and displayed anticancer activity against paclitaxel-resistant cells, offering valuable insights for further exploration as potential anticancer agents.

15.
Cell Mol Life Sci ; 80(11): 337, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37897551

RESUMO

Hypervirulent Klebsiella pneumoniae (hvKP) is a highly lethal opportunistic pathogen that elicits more severe inflammatory responses compared to classical Klebsiella pneumoniae (cKP). In this study, we investigated the interaction between hvKP infection and the anti-inflammatory immune response gene 1 (IRG1)-itaconate axis. Firstly, we demonstrated the activation of the IRG1-itaconate axis induced by hvKP, with a dependency on SYK signaling rather than STING. Importantly, we discovered that exogenous supplementation of itaconate effectively inhibited excessive inflammation by directly inhibiting SYK kinase at the 593 site through alkylation. Furthermore, our study revealed that itaconate effectively suppressed the classical activation phenotype (M1 phenotype) and macrophage cell death induced by hvKP. In vivo experiments demonstrated that itaconate administration mitigated hvKP-induced disturbances in intestinal immunopathology and homeostasis, including the restoration of intestinal barrier integrity and alleviation of dysbiosis in the gut microbiota, ultimately preventing fatal injury. Overall, our study expands the current understanding of the IRG1-itaconate axis in hvKP infection, providing a promising foundation for the development of innovative therapeutic strategies utilizing itaconate for the treatment of hvKP infections.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Disbiose/tratamento farmacológico , Infecções por Klebsiella/tratamento farmacológico , Inflamação/tratamento farmacológico , Alquilação , Quinase Syk
16.
Matern Child Nutr ; 20(3): e13645, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38517119

RESUMO

The aim of this study was to explore gestational weight gain (GWG) trajectories and their associations with adverse pregnancy outcomes. A retrospective cohort study including 11,064 women with gestational diabetes mellitus (GDM) was conducted between 2015 and 2019 in China. The latent class trajectory model was used to identify GWG trajectories, and logistic regression was performed to examine odds ratio (OR) of pregnancy outcomes. Three trajectories of GWG were identified in these 11,604 women with GDM. Trajectory 1: 64.02% of women had sustained moderate GWG throughout pregnancy; Trajectory 2: 17.75% of women showed a high initial GWG but followed by a low GWG from the third trimester until delivery; Trajectory 3: 18.23% had low initial GWG but followed by drastic GWG from the second trimester until delivery. Compared with pregnant women with Trajectory 1, women with Trajectory 2 had a higher risk of large for gestational age (adjusted odds ratio [AOR]: 1.29, 95% confidence interval [CI]: 1.12-1.48) but at a lower risk of having hypertensive disorders of pregnancy (AOR: 0.76, 95% CI: 0.57-0.96). Women in Trajectory 3 were more likely to develop small for gestational age (AOR: 2.12, 95% CI: 1.62-2.78), low birthweight (AOR: 1.49, 95% CI: 1.07-2.08), preterm birth (AOR: 1.28, 95% CI: 1.05-1.63), caesarean section (AOR: 1.26, 95% CI: 1.112-1.42) and hypertensive disorders of pregnancy (AOR: 2.24, 95% CI: 1.82-2.76). The association of GWG trajectory with adverse pregnancy outcomes differs across prepregnancy body mass index and GWG categories. Women with a slow initial GWG but followed by drastic GWG had higher risks of adverse pregnancy outcomes. Early clinical recognition of poor GWG trajectory will contribute to early intervention in high-risk groups to minimise adverse outcomes.


Assuntos
Diabetes Gestacional , Ganho de Peso na Gestação , Resultado da Gravidez , Humanos , Gravidez , Feminino , Diabetes Gestacional/epidemiologia , Estudos Retrospectivos , Adulto , Resultado da Gravidez/epidemiologia , China/epidemiologia , Estudos de Coortes , Fatores de Risco , Trajetória do Peso do Corpo , Recém-Nascido , Índice de Massa Corporal
17.
J Gene Med ; 25(12): e3557, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37392032

RESUMO

BACKGROUND: Endometriosis, a gynecological disease that affects up to 10% of women, is a major cause of pain and infertility. Deregulation of the epigenome is accountable for the onset and progression of endometriosis, although its exact mechanism is unknown. The purpose of the current study is to examine the role of the long non-coding RNA (lncRNA) GRIK1-AS1 in the epigenetic regulation of endometrial stromal cell proliferation and the development of endometriosis. METHODS: Endometriosis datasets were screened to identify GRIKI-AS1 as dramatically declining in endometriosis. Gain or loss of function endometrial stromal cell (ESC) models were established. The anti-proliferation phenotype was investigated using in vitro and in vivo experiments. Epigenetic regulatory network analyses were conducted to suggest the intrinsic molecular mechanism. RESULTS: With bioinformatic and clinical data, we observed that GRIK1-AS1 and SFRP1 were expressed at low levels in endometriosis. Overexpressed GRIK1-AS1 inhibited ESC proliferation, while SFRP1 knockdown rescued the antiproliferative ability of GRIK1-AS1. Specifically, methylation-dependent expression inhibition of SFRP1 was revealed in ESCs. Mechanistically, GRIK1-AS1 hampers the occupancy of DNMT1 in SRFP1 promoter, leading to hypomethylation of SFRP1 and upregulated SFRP1 expression, thereby potentially suppressing Wnt signaling and its adverse proliferative effect. Therapeutically, lentivirus-mediated upregulation of GRIK1-AS1 inhibited endometriosis disease progression in vivo. CONCLUSIONS: Our study is a proof-of-concept demonstration for GRIKI-AS1-associated endometriosis pathogenesis and highlights a potential intervention target.


Assuntos
Endometriose , Epigênese Genética , Humanos , Feminino , Endometriose/genética , Endometriose/metabolismo , Endometriose/patologia , Metilação de DNA , Células Epiteliais/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia , Proliferação de Células/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética
18.
Development ; 147(23)2020 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-33060128

RESUMO

Lymphatic vasculature is an integral part of digestive, immune and circulatory systems. The homeobox transcription factor PROX1 is necessary for the development of lymphatic vessels, lymphatic valves (LVs) and lymphovenous valves (LVVs). We and others previously reported a feedback loop between PROX1 and vascular endothelial growth factor-C (VEGF-C) signaling. PROX1 promotes the expression of the VEGF-C receptor VEGFR3 in lymphatic endothelial cells (LECs). In turn, VEGF-C signaling maintains PROX1 expression in LECs. However, the mechanisms of PROX1/VEGF-C feedback loop remain poorly understood. Whether VEGF-C signaling is necessary for LV and LVV development is also unknown. Here, we report for the first time that VEGF-C signaling is necessary for valve morphogenesis. We have also discovered that the transcriptional co-activators YAP and TAZ are required to maintain PROX1 expression in LVs and LVVs in response to VEGF-C signaling. Deletion of Yap and Taz in the lymphatic vasculature of mouse embryos did not affect the formation of LVs or LVVs, but resulted in the degeneration of these structures. Our results have identified VEGF-C, YAP and TAZ as a crucial molecular pathway in valve development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , Proteínas de Homeodomínio/genética , Linfangiogênese/genética , Transativadores/genética , Proteínas Supressoras de Tumor/genética , Fator C de Crescimento do Endotélio Vascular/genética , Animais , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Vasos Linfáticos/citologia , Vasos Linfáticos/metabolismo , Camundongos , Morfogênese/genética , Transdução de Sinais/genética , Válvulas Venosas/crescimento & desenvolvimento , Válvulas Venosas/metabolismo , Proteínas de Sinalização YAP
19.
Microcirculation ; 30(2-3): e12787, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36197446

RESUMO

INTRODUCTION: Lymphatic vessels collect interstitial fluid, immune cells, and digested lipids and return these bodily fluids to blood through two pairs of lymphovenous valves (LVVs). Like other cardiovascular valves LVVs prevent the backflow of blood into the lymphatic vessels. In addition to LVVs, platelets are necessary to prevent the entry of blood into the lymphatic vessels. Platelet thrombi are observed at LVVs suggesting that LVVs and platelets function in synergy to regulate blood/lymphatic separation. OBJECTIVES: The primary objective of this work is to determine whether platelets can regulate blood/lymph separation independently of LVVs. METHODS: The transcription factor GATA2 is necessary for the development of both LVVs and hematopoietic stem cells. Using various endothelial- and hematopoietic cell expressed Cre-lines, we conditionally deleted Gata2. We hypothesized that this strategy would identify the tissue- and time-specific roles of GATA2 and reveal whether platelets and LVVs can independently regulate blood/lymph separation. RESULTS: Lymphatic vasculature-specific deletion of Gata2 results in the absence of LVVs without compromising blood/lymph separation. In contrast, deletion of GATA2 from both lymphatic vasculature and hematopoietic cells results in the absence of LVVs, reduced number of platelets and blood-filled lymphatic vasculature. CONCLUSION: GATA2 promotes blood/lymph separation through platelets. Furthermore, LVVs are the only known sites of interaction between blood and lymphatic vessels. The fact that blood is able to enter the lymphatic vessels of mice lacking LVVs and platelets indicates that under these circumstances the lymphatic and blood vessels are connected at yet to be identified sites.


Assuntos
Plaquetas , Vasos Linfáticos , Camundongos , Animais , Fator de Transcrição GATA2/genética
20.
J Virol ; 96(17): e0078222, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36005760

RESUMO

Members of the genus Hepacivirus have a broad range of hosts, with at least 14 species identified. To date, a highly pathogenic hepacivirus causing severe disease in animals has not been found. Here, by using high-throughput sequencing, a new hepacivirus was identified as the dominant and highly pathogenic virus in severe acute hepatitis outbreaks in bamboo rats (Rhizomys pruinosus), with ≈80% mortality; this virus emerged in February 2020 in two bamboo rat farms in China. Hepaciviral genome copies in bamboo rat liver were significantly higher than in other organs. Genomic sequences of hepacivirus strains from 12 sick bamboo rats were found to share 85.3 to 100% nucleotide (nt) identity and 94.9 to 100% amino acid (aa) identity and to share 79.7 to 87.8% nt and 90.4 to 97.8% aa identities with previously reported bamboo rat hepaciviruses of Vietnam and China. Sequence analysis further revealed the simultaneous circulation of genetically divergent hepacivirus variants within the two outbreaks. Phylogenetic analysis showed that hepacivirus strains from the present and previous studies formed an independent clade comprised of at least two genotypes, clearly different from all other known species, suggesting a novel species within the genus Hepacivirus. This is the first report of a non-human-infecting hepacivirus causing potentially fatal infection of bamboo rats, and the associated hepatitis in the animals potentially can be used to develop a surrogate model for the study of hepatitis C virus infection in humans and for the development of therapeutic strategies. IMPORTANCE Members of the genus Hepacivirus have a broad host range, with at least 14 species identified, but none is highly pathogenic to its host except for hepatitis C virus, which causes severe liver diseases in humans. In this study, a new liver-tropic hepacivirus species was identified by high-throughput sequencing as the pathogen associated with two outbreaks of severely acute hepatitis in hoary bamboo rats (Rhizomys pruinosus) on two farms in Hainan Province, China; this is the first reported highly pathogenic animal hepacivirus to our knowledge. Further phylogenetic analysis suggested that the hepaciviruses derived from hoary bamboo rats in either the current or previous studies represent a novel species within the genus Hepacivirus. This finding is a breakthrough that has significantly updated our understanding about the pathogenicity of animal hepaciviruses, and the hepacivirus-associated hepatitis in bamboo rats may have a use as an animal infection model to understand HCV infection and develop therapeutic strategies.


Assuntos
Hepacivirus , Hepatite C , Animais , China/epidemiologia , Surtos de Doenças , Hepacivirus/genética , Humanos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA