Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nature ; 618(7967): 992-999, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316666

RESUMO

In the ongoing debates about eukaryogenesis-the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors-members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes1. However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved2-4. Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evaluate competing evolutionary scenarios using state-of-the-art phylogenomic approaches. We find that eukaryotes are placed, with high confidence, as a well-nested clade within Asgard archaea and as a sister lineage to Hodarchaeales, a newly proposed order within Heimdallarchaeia. Using sophisticated gene tree and species tree reconciliation approaches, we show that analogous to the evolution of eukaryotic genomes, genome evolution in Asgard archaea involved significantly more gene duplication and fewer gene loss events compared with other archaea. Finally, we infer that the last common ancestor of Asgard archaea was probably a thermophilic chemolithotroph and that the lineage from which eukaryotes evolved adapted to mesophilic conditions and acquired the genetic potential to support a heterotrophic lifestyle. Our work provides key insights into the prokaryote-to-eukaryote transition and a platform for better understanding the emergence of cellular complexity in eukaryotic cells.


Assuntos
Archaea , Eucariotos , Filogenia , Archaea/classificação , Archaea/citologia , Archaea/genética , Eucariotos/classificação , Eucariotos/citologia , Eucariotos/genética , Células Eucarióticas/classificação , Células Eucarióticas/citologia , Células Procarióticas/classificação , Células Procarióticas/citologia , Conjuntos de Dados como Assunto , Duplicação Gênica , Evolução Molecular
2.
Nature ; 578(7795): 425-431, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32051592

RESUMO

Bacteriophages typically have small genomes1 and depend on their bacterial hosts for replication2. Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is-to our knowledge-the largest phage genome to be described to date. Thirty-five genomes were manually curated to completion (circular and no gaps). Expanded genetic repertoires include diverse and previously undescribed CRISPR-Cas systems, transfer RNAs (tRNAs), tRNA synthetases, tRNA-modification enzymes, translation-initiation and elongation factors, and ribosomal proteins. The CRISPR-Cas systems of phages have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phages may repurpose bacterial CRISPR-Cas systems to eliminate competing phages. We phylogenetically define the major clades of huge phages from human and other animal microbiomes, as well as from oceans, lakes, sediments, soils and the built environment. We conclude that the large gene inventories of huge phages reflect a conserved biological strategy, and that the phages are distributed across a broad bacterial host range and across Earth's ecosystems.


Assuntos
Bactérias/virologia , Bacteriófagos/classificação , Bacteriófagos/genética , Planeta Terra , Ecossistema , Genoma Viral/genética , Filogenia , Aminoacil-tRNA Sintetases/genética , Animais , Bactérias/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/metabolismo , Biodiversidade , Sistemas CRISPR-Cas/genética , Evolução Molecular , Regulação Bacteriana da Expressão Gênica , Regulação Viral da Expressão Gênica , Especificidade de Hospedeiro , Humanos , Lagos/virologia , Anotação de Sequência Molecular , Oceanos e Mares , Prófagos/genética , Biossíntese de Proteínas , RNA de Transferência/genética , Proteínas Ribossômicas/genética , Água do Mar/virologia , Microbiologia do Solo , Transcrição Gênica
3.
Genome Res ; 30(3): 315-333, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32188701

RESUMO

Genomes are an integral component of the biological information about an organism; thus, the more complete the genome, the more informative it is. Historically, bacterial and archaeal genomes were reconstructed from pure (monoclonal) cultures, and the first reported sequences were manually curated to completion. However, the bottleneck imposed by the requirement for isolates precluded genomic insights for the vast majority of microbial life. Shotgun sequencing of microbial communities, referred to initially as community genomics and subsequently as genome-resolved metagenomics, can circumvent this limitation by obtaining metagenome-assembled genomes (MAGs); but gaps, local assembly errors, chimeras, and contamination by fragments from other genomes limit the value of these genomes. Here, we discuss genome curation to improve and, in some cases, achieve complete (circularized, no gaps) MAGs (CMAGs). To date, few CMAGs have been generated, although notably some are from very complex systems such as soil and sediment. Through analysis of about 7000 published complete bacterial isolate genomes, we verify the value of cumulative GC skew in combination with other metrics to establish bacterial genome sequence accuracy. The analysis of cumulative GC skew identified potential misassemblies in some reference genomes of isolated bacteria and the repeat sequences that likely gave rise to them. We discuss methods that could be implemented in bioinformatic approaches for curation to ensure that metabolic and evolutionary analyses can be based on very high-quality genomes.


Assuntos
Genoma Bacteriano , Metagenoma , Curadoria de Dados , Genoma Arqueal , Metagenômica
4.
Appl Environ Microbiol ; 86(15)2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32414793

RESUMO

Geothermal systems emit substantial amounts of aqueous, gaseous, and methylated mercury, but little is known about microbial influences on mercury speciation. Here, we report results from genome-resolved metagenomics and mercury speciation analysis of acidic warm springs in the Ngawha Geothermal Field (<55°C, pH <4.5), Northland Region, Aotearoa New Zealand. Our aim was to identify the microorganisms genetically equipped for mercury methylation, demethylation, or Hg(II) reduction to volatile Hg(0) in these springs. Dissolved total and methylated mercury concentrations in two adjacent springs with different mercury speciation ranked among the highest reported from natural sources (250 to 16,000 ng liter-1 and 0.5 to 13.9 ng liter-1, respectively). Total solid mercury concentrations in spring sediments ranged from 1,274 to 7,000 µg g-1 In the context of such ultrahigh mercury levels, the geothermal microbiome was unexpectedly diverse and dominated by acidophilic and mesophilic sulfur- and iron-cycling bacteria, mercury- and arsenic-resistant bacteria, and thermophilic and acidophilic archaea. By integrating microbiome structure and metagenomic potential with geochemical constraints, we constructed a conceptual model for biogeochemical mercury cycling in geothermal springs. The model includes abiotic and biotic controls on mercury speciation and illustrates how geothermal mercury cycling may couple to microbial community dynamics and sulfur and iron biogeochemistry.IMPORTANCE Little is currently known about biogeochemical mercury cycling in geothermal systems. The manuscript presents a new conceptual model, supported by genome-resolved metagenomic analysis and detailed geochemical measurements. The model illustrates environmental factors that influence mercury cycling in acidic springs, including transitions between solid (mineral) and aqueous phases of mercury, as well as the interconnections among mercury, sulfur, and iron cycles. This work provides a framework for studying natural geothermal mercury emissions globally. Specifically, our findings have implications for mercury speciation in wastewaters from geothermal power plants and the potential environmental impacts of microbially and abiotically formed mercury species, particularly where they are mobilized in spring waters that mix with surface or groundwaters. Furthermore, in the context of thermophilic origins for microbial mercury volatilization, this report yields new insights into how such processes may have evolved alongside microbial mercury methylation/demethylation and the environmental constraints imposed by the geochemistry and mineralogy of geothermal systems.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Fontes Termais/microbiologia , Mercúrio/química , Metagenoma , Archaea/genética , Bactérias/genética , Mercúrio/metabolismo , Metagenômica , Nova Zelândia
5.
Microb Ecol ; 76(3): 637-647, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29549384

RESUMO

Bacterioplankton are the major driving force for biogeochemical cycles in estuarine ecosystems, but the communities that mediate these processes are largely unexplored. We sampled in the Pearl River Estuary (PRE) to examine potential differences in the taxonomic composition of resident (DNA-based) and active (RNA-based) bacterioplankton communities in free-living and particle-associated fractions. MiSeq sequencing data showed that the overall bacterial diversity in particle-associated fractions was higher than in free-living communities. Further in-depth analyses of the sequences revealed a positive correlation between resident and active bacterioplankton communities for the particle-associated fraction but not in the free-living fraction. However, a large overlapping of OTUs between free-living and particle-associated communities in PRE suggested that the two fractions may be actively exchanged. We also observed that the positive correlation between resident and active communities is more prominent among the abundant OTUs (relative abundance > 0.2%). Further, the results from the present study indicated that low-abundance bacterioplankton make an important contribution towards the metabolic activity in PRE.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Rios/microbiologia , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Estuários , Filogenia
6.
Appl Environ Microbiol ; 80(12): 3677-86, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24727268

RESUMO

Recent molecular surveys have advanced our understanding of the forces shaping the large-scale ecological distribution of microbes in Earth's extreme habitats, such as hot springs and acid mine drainage. However, few investigations have attempted dense spatial analyses of specific sites to resolve the local diversity of these extraordinary organisms and how communities are shaped by the harsh environmental conditions found there. We have applied a 16S rRNA gene-targeted 454 pyrosequencing approach to explore the phylogenetic differentiation among 90 microbial communities from a massive copper tailing impoundment generating acidic drainage and coupled these variations in community composition with geochemical parameters to reveal ecological interactions in this extreme environment. Our data showed that the overall microbial diversity estimates and relative abundances of most of the dominant lineages were significantly correlated with pH, with the simplest assemblages occurring under extremely acidic conditions and more diverse assemblages associated with neutral pHs. The consistent shifts in community composition along the pH gradient indicated that different taxa were involved in the different acidification stages of the mine tailings. Moreover, the effect of pH in shaping phylogenetic structure within specific lineages was also clearly evident, although the phylogenetic differentiations within the Alphaproteobacteria, Deltaproteobacteria, and Firmicutes were attributed to variations in ferric and ferrous iron concentrations. Application of the microbial assemblage prediction model further supported pH as the major factor driving community structure and demonstrated that several of the major lineages are readily predictable. Together, these results suggest that pH is primarily responsible for structuring whole communities in the extreme and heterogeneous mine tailings, although the diverse microbial taxa may respond differently to various environmental conditions.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Ecossistema , Águas Residuárias/microbiologia , Bactérias/classificação , Bactérias/genética , Concentração de Íons de Hidrogênio , Mineração , Dados de Sequência Molecular , Filogenia , Águas Residuárias/química
7.
Environ Sci Technol ; 48(10): 5537-45, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24730689

RESUMO

The oxidative dissolution of sulfide minerals (principally pyrite) is responsible for the majority of acid metalliferous drainage from mine sites, which represents a significant environmental problem worldwide. Understanding the complex biogeochemical processes governing natural pyrite oxidation is critical not only for solving this problem but also for understanding the industrial bioleaching of sulfide minerals. To this end, we conducted a simulated experiment of natural pyrite oxidative dissolution. Pyrosequencing analysis of the microbial community revealed a distinct succession across three stages. At the early stage, a newly proposed genus, Tumebacillus (which can use sodium thiosulfate and sulfite as the sole electron donors), dominated the microbial community. At the midstage, Alicyclobacillus (the fifth most abundant genus at the early stage) became the most dominant genus, whereas Tumebacillus was still ranked as the second most abundant. At the final stage, the microbial community was dominated by Ferroplasma (the tenth most abundant genus at the early stage). Our geochemical and mineralogical analyses indicated that exchangeable heavy metals increased as the oxidation progressed and that some secondary sulfate minerals (including jarosite and magnesiocopiapite) were formed at the final stage of the oxidation sequence. Additionally, we propose a comprehensive model of biogeochemical processes governing the oxidation of sulfide minerals.


Assuntos
Ácidos/análise , Ferro/química , Metais/análise , Mineração , Sulfetos/química , Poluentes Químicos da Água/análise , Bactérias/classificação , Bactérias/metabolismo , Biodegradação Ambiental , Minerais/análise , Modelos Teóricos , Oxirredução , Sulfetos/metabolismo
8.
Environ Microbiol ; 15(9): 2431-44, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23574280

RESUMO

In an attempt to link the microbial community composition and function in mine tailings to the generation of acid mine drainage, we simultaneously explored the geochemistry and microbiology of six tailings collected from a lead/zinc mine, i.e. primary tailings (T1), slightly acidic tailings (T2), extremely acidic tailings (T3, T4 and T5) and orange-coloured oxidized tailings (T6). Geochemical results showed that the six tailings (from T1 to T6) likely represented sequential stages of the acidification process of the mine tailings. 16S rRNA pyrosequencing revealed a contrasting microbial composition between the six tailings: Proteobacteria-related sequences dominated T1-T3 with relative abundance ranging from 56 to 93%, whereas Ferroplasma-related sequences dominated T4-T6 with relative abundance ranging from 28 to 58%. Furthermore, metagenomic analysis of the microbial communities of T2 and T6 indicated that the genes encoding key enzymes for microbial carbon fixation, nitrogen fixation and sulfur oxidation in T2 were largely from Thiobacillus and Acidithiobacillus, Methylococcus capsulatus, and Thiobacillus denitrificans respectively; while those in T6 were mostly identified in Acidithiobacillus and Leptospirillum, Acidithiobacillus and Leptospirillum, and Acidithiobacillus respectively. The microbial communities in T2 and T6 harboured more genes suggesting diverse metabolic capacities for sulfur oxidation/heavy metal detoxification and tolerating low pH respectively.


Assuntos
Ácidos/química , Bactérias/classificação , Bactérias/genética , Biodiversidade , Mineração , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Poluentes Ambientais/toxicidade , Genes Bacterianos/genética , Chumbo/química , Chumbo/metabolismo , RNA Ribossômico 16S/genética , Zinco/química , Zinco/metabolismo
9.
Nat Commun ; 14(1): 2006, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37037821

RESUMO

The acidification of water in mining areas is a global environmental issue primarily catalyzed by sulfur-oxidizing bacteria (SOB). Little is known about microbial sulfur cycling in circumneutral pH mine tailing impoundment waters. Here we investigate biological sulfur oxidation over four years in a mine tailings impoundment water cap, integrating aqueous sulfur geochemistry, genome-resolved metagenomics and metatranscriptomics. The microbial community is consistently dominated by neutrophilic, chemolithoautotrophic SOB (relative abundances of ~76% in 2015, ~55% in 2016/2017 and ~60% in 2018). Results reveal two SOB strategies alternately dominate across the four years, influencing acid generation and sulfur speciation. Under oxic conditions, novel Halothiobacillus drive lower pH conditions (as low as 4.3) and lower [S2O32-] via the complete Sox pathway coupled to O2. Under anoxic conditions, Thiobacillus spp. dominate in activity, via the incomplete Sox and rDSR pathways coupled to NO3-, resulting in higher [S2O32-] and no net significant acidity generation. This study provides genomic evidence explaining acidity generation and thiosulfate accumulation patterns in a circumneutral mine tailing impoundment and has significant environmental applications in preventing the discharge of sulfur compounds that can impact downstream environments. These insights illuminate opportunities for in situ biotreatment of reduced sulfur compounds and prediction of acidification events using gene-based monitoring and in situ RNA detection.


Assuntos
Bactérias , Tiossulfatos , Tiossulfatos/metabolismo , Oxirredução , Bactérias/genética , Bactérias/metabolismo , Enxofre/metabolismo , Compostos de Enxofre/metabolismo , Água/metabolismo
10.
bioRxiv ; 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37609353

RESUMO

RNA-guided endonucleases form the crux of diverse biological processes and technologies, including adaptive immunity, transposition, and genome editing. Some of these enzymes are components of insertion sequences (IS) in the IS200/IS605 and IS607 transposon families. Both IS families encode a TnpA transposase and TnpB nuclease, an RNA-guided enzyme ancestral to CRISPR-Cas12. In eukaryotes and their viruses, TnpB homologs occur as two distinct types, Fanzor1 and Fanzor2. We analyzed the evolutionary relationships between prokaryotic TnpBs and eukaryotic Fanzors, revealing that a clade of IS607 TnpBs with unusual active site arrangement found primarily in Cyanobacteriota likely gave rise to both types of Fanzors. The wide-spread nature of Fanzors imply that the properties of this particular group of IS607 TnpBs were particularly suited to adaptation and evolution in eukaryotes and their viruses. Experimental characterization of a prokaryotic IS607 TnpB and virally encoded Fanzor1s uncovered features that may have fostered coevolution between TnpBs/Fanzors and their cognate transposases. Our results provide insight into the evolutionary origins of a ubiquitous family of RNA-guided proteins that shows remarkable conservation across domains of life.

11.
mSystems ; 7(2): e0022322, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35353011

RESUMO

Microbial communities in lakes can profoundly impact biogeochemical processes through their individual activities and collective interactions. However, the complexity of these communities poses challenges, particularly for studying rare organisms such as Candidate Phyla Radiation bacteria (CPR) and enigmatic entities such as aster-like nanoparticles (ALNs). Here, a reactor was inoculated with water from Lake Fargette, France, and maintained under dark conditions at 4°C for 31 months and enriched for ALNs, diverse Planctomycetes, and CPR bacteria. We reconstructed draft genomes and predicted metabolic traits for 12 diverse Planctomycetes and 9 CPR bacteria, some of which are likely representatives of undescribed families or genera. One CPR genome representing the little-studied lineage "Candidatus Peribacter" was curated to completion (1.239 Mbp) and unexpectedly encodes the full gluconeogenesis pathway. Metatranscriptomic data indicate that some planctomycetes and CPR bacteria were active under the culture conditions, accounting for ∼30% and ∼1% of RNA reads mapping to the genome set, respectively. We also reconstructed genomes and obtained transmission electron microscope images for numerous viruses, including one with a >300-kbp genome and several predicted to infect Planctomycetes. Together, our analyses suggest that freshwater Planctomycetes are central players in a subsystem that includes ALNs, symbiotic CPR bacteria, and viruses. IMPORTANCE Laboratory incubations of natural microbial communities can aid in the study of member organisms and their networks of interaction. This is particularly important for understudied lineages for which key elements of basic biology are still emerging. Using genomics and microscopy, we found that members of the bacterial lineage Planctomycetes may be central players in a subset of a freshwater lake microbiome that includes other bacteria, archaea, viruses, and mysterious entities, called aster-like nanoparticles (ALNs), whose origin is unknown. Our results help constrain the possible origins of ALNs and provide insight into possible interactions within a complex lake ecosystem.


Assuntos
Microbiota , Planctomicetos , Humanos , Lagos/microbiologia , Metagenômica , Filogenia , Bactérias , Genômica , Água/metabolismo
12.
ISME Commun ; 2(1): 31, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37938675

RESUMO

The ribosomal protein S21 (bS21) gene has been detected in diverse viruses with a large range of genome sizes, yet its in situ expression and potential significance have not been investigated. Here, we report five closely related clades of bacteriophages (phages) represented by 47 genomes (8 curated to completion and up to 331 kbp in length) that encode a bS21 gene. The bS21 gene is on the reverse strand within a conserved region that encodes the large terminase, major capsid protein, prohead protease, portal vertex proteins, and some hypothetical proteins. Based on CRISPR spacer targeting, the predominance of bacterial taxonomic affiliations of phage genes with those from Bacteroidetes, and the high sequence similarity of the phage bS21 genes and those from Bacteroidetes classes of Flavobacteriia, Cytophagia and Saprospiria, these phages are predicted to infect diverse Bacteroidetes species that inhabit a range of depths in freshwater lakes. Thus, bS21 phages have the potential to impact microbial community composition and carbon turnover in lake ecosystems. The transcriptionally active bS21-encoding phages were likely in the late stage of replication when collected, as core structural genes and bS21 were highly expressed. Thus, our analyses suggest that the phage bS21, which is involved in translation initiation, substitutes into the Bacteroidetes ribosomes and selects preferentially for phage transcripts during the late-stage replication when large-scale phage protein production is required for assembly of phage particles.

13.
STAR Protoc ; 3(1): 101029, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35059650

RESUMO

Lak megaphages are prevalent across diverse gut microbiomes and may potentially impact animal and human health through lysis of Prevotella. Given their large genome size (up to 660 kbp), Lak megaphages are difficult to culture, and their identification relies on molecular techniques. Here, we present optimized protocols for identifying Lak phages in various microbiome samples, including procedures for DNA extraction, followed by detection and quantification of genes encoding Lak structural proteins using diagnostic endpoint and SYBR green-based quantitative PCR, respectively. For complete details on the use and execution of this protocol, please refer to Crisci et al., (2021).


Assuntos
Bacteriófagos , Microbioma Gastrointestinal , Microbiota , Animais , Bacteriófagos/genética , Microbiota/genética , Prevotella/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos
14.
Microorganisms ; 10(3)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35336086

RESUMO

Here, we examine the geobiological response to a whole-lake alum (aluminum sulfate) treatment (2016) of Base Mine Lake (BML), the first pilot-scale pit lake established in the Alberta oil sands region. The rationale for trialing this management amendment was based on its successful use to reduce internal phosphorus loading to eutrophying lakes. Modest increases in water cap epilimnetic oxygen concentrations, associated with increased Secchi depths and chlorophyll-a concentrations, were co-incident with anoxic waters immediately above the fluid fine tailings (FFT) layer post alum. Decreased water cap nitrate and detectable sulfide concentrations, as well as increased hypolimnetic phospholipid fatty acid abundances, signaled greater anaerobic heterotrophic activity. Shifts in microbial community to groups associated with greater organic carbon degradation (i.e., SAR11-LD12 subclade) and the SRB group Desulfuromonodales emerged post alum and the loss of specialist groups associated with carbon-limited, ammonia-rich restricted niches (i.e., MBAE14) also occurred. Alum treatment resulted in additional oxygen consumption associated with increased autochthonous carbon production, watercap anoxia and sulfide generation, which further exacerbate oxygen consumption associated with on-going FFT mobilized reductants. The results illustrate the importance of understanding the broader biogeochemical implications of adaptive management interventions to avoid unanticipated outcomes that pose greater risks and improve tailings reclamation for oil sands operations and, more broadly, the global mining sector.

15.
Nat Commun ; 12(1): 2404, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893309

RESUMO

Geothermal environments, such as hot springs and hydrothermal vents, are hotspots for carbon cycling and contain many poorly described microbial taxa. Here, we reconstructed 15 archaeal metagenome-assembled genomes (MAGs) from terrestrial hot spring sediments in China and deep-sea hydrothermal vent sediments in Guaymas Basin, Gulf of California. Phylogenetic analyses of these MAGs indicate that they form a distinct group within the TACK superphylum, and thus we propose their classification as a new phylum, 'Brockarchaeota', named after Thomas Brock for his seminal research in hot springs. Based on the MAG sequence information, we infer that some Brockarchaeota are uniquely capable of mediating non-methanogenic anaerobic methylotrophy, via the tetrahydrofolate methyl branch of the Wood-Ljungdahl pathway and reductive glycine pathway. The hydrothermal vent genotypes appear to be obligate fermenters of plant-derived polysaccharides that rely mostly on substrate-level phosphorylation, as they seem to lack most respiratory complexes. In contrast, hot spring lineages have alternate pathways to increase their ATP yield, including anaerobic methylotrophy of methanol and trimethylamine, and potentially use geothermally derived mercury, arsenic, or hydrogen. Their broad distribution and their apparent anaerobic metabolic versatility indicate that Brockarchaeota may occupy previously overlooked roles in anaerobic carbon cycling.


Assuntos
Archaea/genética , Ciclo do Carbono/genética , Genoma Arqueal/genética , Metagenoma/genética , Filogenia , Archaea/classificação , Archaea/metabolismo , Carbono/metabolismo , China , Geografia , Sedimentos Geológicos/microbiologia , Fontes Termais/microbiologia , Fontes Hidrotermais/microbiologia , Metano/metabolismo , RNA Ribossômico 16S/genética , Especificidade da Espécie
16.
iScience ; 24(8): 102875, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34386733

RESUMO

Lak phages with alternatively coded ∼540 kbp genomes were recently reported to replicate in Prevotella in microbiomes of humans that consume a non-Western diet, baboons, and pigs. Here, we explore Lak phage diversity and broader distribution using diagnostic polymerase chain reaction and genome-resolved metagenomics. Lak phages were detected in 13 animal types, including reptiles, and are particularly prevalent in pigs. Tracking Lak through the pig gastrointestinal tract revealed significant enrichment in the hindgut compared to the foregut. We reconstructed 34 new Lak genomes, including six curated complete genomes, all of which are alternatively coded. An anomalously large (∼660 kbp) complete genome reconstructed for the most deeply branched Lak from a horse microbiome is also alternatively coded. From the Lak genomes, we identified proteins associated with specific animal species; notably, most have no functional predictions. The presence of closely related Lak phages in diverse animals indicates facile distribution coupled to host-specific adaptation.

17.
Nat Microbiol ; 5(12): 1504-1515, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32839536

RESUMO

There is growing evidence that phages with unusually large genomes are common across various microbiomes, but little is known about their genetic inventories or potential ecosystem impacts. In the present study, we reconstructed large phage genomes from freshwater lakes known to contain bacteria that oxidize methane. Of manually curated genomes, 22 (18 are complete), ranging from 159 kilobase (kb) to 527 kb in length, were found to encode the pmoC gene, an enzymatically critical subunit of the particulate methane monooxygenase, the predominant methane oxidation catalyst in nature. The phage-associated PmoC sequences show high similarity to (>90%), and affiliate phylogenetically with, those of coexisting bacterial methanotrophs, including members of Methyloparacoccus, Methylocystis and Methylobacter spp. In addition, pmoC-phage abundance patterns correlate with those of the coexisting bacterial methanotrophs, supporting host-phage relationships. Future work is needed to determine whether phage-associated PmoC has similar functions to additional copies of PmoC encoded in bacterial genomes, thus contributing to growth on methane. Transcriptomics data from Lake Rotsee (Switzerland) showed that some phage-associated pmoC genes were highly expressed in situ and, of interest, that the most rapidly growing methanotroph was infected by three pmoC-phages. Thus, augmentation of bacterial methane oxidation by pmoC-phages during infection could modulate the efflux of this potent greenhouse gas into the environment.


Assuntos
Bacteriófagos/metabolismo , Lagos/virologia , Metano/metabolismo , Methylococcaceae/metabolismo , Methylococcaceae/virologia , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Genoma Viral , Lagos/química , Lagos/microbiologia , Methylococcaceae/classificação , Methylococcaceae/genética , Microbiota , Oxirredução , Filogenia
18.
ISME J ; 14(12): 2907-2922, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32681159

RESUMO

Currently described members of Elusimicrobia, a relatively recently defined phylum, are animal-associated and rely on fermentation. However, free-living Elusimicrobia have been detected in sediments, soils and groundwater, raising questions regarding their metabolic capacities and evolutionary relationship to animal-associated species. Here, we analyzed 94 draft-quality, non-redundant genomes, including 30 newly reconstructed genomes, from diverse animal-associated and natural environments. Genomes group into 12 clades, 10 of which previously lacked reference genomes. Groundwater-associated Elusimicrobia are predicted to be capable of heterotrophic or autotrophic lifestyles, reliant on oxygen or nitrate/nitrite-dependent respiration, or a variety of organic compounds and Rhodobacter nitrogen fixation (Rnf) complex-dependent acetogenesis with hydrogen and carbon dioxide as the substrates. Genomes from two clades of groundwater-associated Elusimicrobia often encode a new group of nitrogenase paralogs that co-occur with an extensive suite of radical S-Adenosylmethionine (SAM) proteins. We identified similar genomic loci in genomes of bacteria from the Gracilibacteria phylum and the Myxococcales order and predict that the gene clusters reduce a tetrapyrrole, possibly to form a novel cofactor. The animal-associated Elusimicrobia clades nest phylogenetically within two free-living-associated clades. Thus, we propose an evolutionary trajectory in which some Elusimicrobia adapted to animal-associated lifestyles from free-living species via genome reduction.


Assuntos
Microbioma Gastrointestinal , Água Subterrânea , Animais , Bactérias , Nitrogenase/genética , Filogenia
19.
Genome Biol ; 21(1): 292, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33323122

RESUMO

INTRODUCTION: Microbial residents of the human oral cavity have long been a major focus of microbiology due to their influence on host health and intriguing patterns of site specificity amidst the lack of dispersal limitation. However, the determinants of niche partitioning in this habitat are yet to be fully understood, especially among taxa that belong to recently discovered branches of microbial life. RESULTS: Here, we assemble metagenomes from tongue and dental plaque samples from multiple individuals and reconstruct 790 non-redundant genomes, 43 of which resolve to TM7, a member of the Candidate Phyla Radiation, forming six monophyletic clades that distinctly associate with either plaque or tongue. Both pangenomic and phylogenomic analyses group tongue-specific clades with other host-associated TM7 genomes. In contrast, plaque-specific TM7 group with environmental TM7 genomes. Besides offering deeper insights into the ecology, evolution, and mobilome of cryptic members of the oral microbiome, our study reveals an intriguing resemblance between dental plaque and non-host environments indicated by the TM7 evolution, suggesting that plaque may have served as a stepping stone for environmental microbes to adapt to host environments for some clades of microbes. Additionally, we report that prophages are widespread among oral-associated TM7, while absent from environmental TM7, suggesting that prophages may have played a role in adaptation of TM7 to the host environment. CONCLUSIONS: Our data illuminate niche partitioning of enigmatic members of the oral cavity, including TM7, SR1, and GN02, and provide genomes for poorly characterized yet prevalent members of this biome, such as uncultivated Flavobacteriaceae.


Assuntos
Marcadores Genéticos , Metagenoma , Microbiota/genética , Boca/microbiologia , Adaptação Fisiológica , Adulto , Bactérias/genética , Feminino , Genoma Bacteriano , Humanos , Sequências Repetitivas Dispersas , Masculino , Metagenômica , Pessoa de Meia-Idade , Filogenia , RNA Ribossômico 16S
20.
Front Microbiol ; 10: 928, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31130929

RESUMO

The Candidate Phyla Radiation (CPR) comprises a huge group of bacteria that have small genomes that rarely encode CRISPR-Cas systems for phage defense. Consequently, questions remain about their mechanisms of phage resistance and the nature of phage that infect them. The compact CRISPR-CasY system (Cas12d) with potential value in genome editing was first discovered in these organisms. Relatively few CasY sequences have been reported to date, and little is known about the function and activity of these systems in the natural environment. Here, we conducted a genome-resolved metagenomic investigation of hot spring microbiomes and recovered CRISPR systems mostly from Roizmanbacteria that involve CasY proteins that are divergent from published sequences. Within population diversity in the spacer set indicates current in situ diversification of most of the loci. In addition to CasY, some Roizmanbacteria genomes also encode large type I-B and/or III-A systems that, based on spacer targeting, are used in phage defense. CRISPR targeting identified three phage represented by complete genomes and a prophage, which are the first reported for bacteria of the Microgenomates superphylum. Interestingly, one phage encodes a Cas4-like protein, a scenario that has been suggested to drive acquisition of self-targeting spacers. Consistent with this, the Roizmanbacteria population that it infects has a CRISPR locus that includes self-targeting spacers and a fragmented CasY gene (fCasY). Despite gene fragmentation, the PAM sequence is the same as that of other CasY reported in this study. Fragmentation of CasY may avoid the lethality of self-targeting spacers. However, the spacers may still have some biological role, possibly in genome regulation. The findings expand our understanding of CasY diversity, and more broadly, CRISPR-Cas systems and phage of CPR bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA