Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Mol Cell ; 84(4): 675-686.e4, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295801

RESUMO

The Argonaute nuclease from the thermophilic archaeon Pyrococcus furiosus (PfAgo) contributes to host defense and represents a promising biotechnology tool. Here, we report the structure of a PfAgo-guide DNA-target DNA ternary complex at the cleavage-compatible state. The ternary complex is predominantly dimerized, and the dimerization is solely mediated by PfAgo at PIWI-MID, PIWI-PIWI, and PAZ-N interfaces. Additionally, PfAgo accommodates a short 14-bp guide-target DNA duplex with a wedge-type N domain and specifically recognizes 5'-phosphorylated guide DNA. In contrast, the PfAgo-guide DNA binary complex is monomeric, and the engagement of target DNA with 14-bp complementarity induces sufficient dimerization and activation of PfAgo, accompanied by movement of PAZ and N domains. A closely related Argonaute from Thermococcus thioreducens adopts a similar dimerization configuration with an additional zinc finger formed at the dimerization interface. Dimerization of both Argonautes stabilizes the catalytic loops, highlighting the important role of Argonaute dimerization in the activation and target cleavage.


Assuntos
Pyrococcus furiosus , Pyrococcus furiosus/genética , Dimerização , DNA/genética , Proteínas Argonautas/metabolismo , Domínios Proteicos
2.
Nucleic Acids Res ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709873

RESUMO

Small ubiquitin-like modifiers (SUMOs) are tiny but important protein regulators involved in orchestrating a broad spectrum of biological processes, either by covalently modifying protein substrates or by noncovalently interacting with other proteins. Here, we report an updated server, GPS-SUMO 2.0, for the prediction of SUMOylation sites and SUMO-interacting motifs (SIMs). For predictor training, we adopted three machine learning algorithms, penalized logistic regression (PLR), a deep neural network (DNN), and a transformer, and used 52 404 nonredundant SUMOylation sites in 8262 proteins and 163 SIMs in 102 proteins. To further increase the accuracy of predicting SUMOylation sites, a pretraining model was first constructed using 145 545 protein lysine modification sites, followed by transfer learning to fine-tune the model. GPS-SUMO 2.0 exhibited greater accuracy in predicting SUMOylation sites than did other existing tools. For users, one or multiple protein sequences or identifiers can be input, and the prediction results are shown in a tabular list. In addition to the basic statistics, we integrated knowledge from 35 public resources to annotate SUMOylation sites or SIMs. The GPS-SUMO 2.0 server is freely available at https://sumo.biocuckoo.cn/. We believe that GPS-SUMO 2.0 can serve as a useful tool for further analysis of SUMOylation and SUMO interactions.

3.
Proc Natl Acad Sci U S A ; 120(52): e2304900120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109529

RESUMO

Diacylglycerol lipase-beta (DAGLß) serves as a principal 2-arachidonoylglycerol (2-AG) biosynthetic enzyme regulating endocannabinoid and eicosanoid metabolism in immune cells including macrophages and dendritic cells. Genetic or pharmacological inactivation of DAGLß ameliorates inflammation and hyper-nociception in preclinical models of pathogenic pain. These beneficial effects have been assigned principally to reductions in downstream proinflammatory lipid signaling, leaving alternative mechanisms of regulation largely underexplored. Here, we apply quantitative chemical- and phospho-proteomics to find that disruption of DAGLß in primary macrophages leads to LKB1-AMPK signaling activation, resulting in reprogramming of the phosphoproteome and bioenergetics. Notably, AMPK inhibition reversed the antinociceptive effects of DAGLß blockade, thereby directly supporting DAGLß-AMPK crosstalk in vivo. Our findings uncover signaling between endocannabinoid biosynthetic enzymes and ancient energy-sensing kinases to mediate cell biological and pain responses.


Assuntos
Endocanabinoides , Glicerídeos , Humanos , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Lipase Lipoproteica/metabolismo , Ácidos Araquidônicos/metabolismo , Dor
4.
Mol Ther ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582962

RESUMO

Cellular senescence associates with pathological aging and tissue dysfunctions. Studies utilizing mouse models for cell lineage tracings have emphasized the importance of senescence heterogeneity in different organs and cell types. Here, we constructed a p21- (Akaluc - tdTomato - Diphtheria Toxin Receptor [DTR]) (ATD) mouse model to specifically study the undefined mechanism for p21-expressing senescent cells in the aged and liver injury animals. The successful expressions of these genes enabled in vitro flow cytometric sorting, in vivo tracing, and elimination of p21-expressing senescent cells. During the natural aging process, p21-expressing cells were found in various tissues of p21-ATD mice. Eliminating p21-expressing cells in the aged p21-ATD mice recovered their multiple biological functions. p21-ATD/Fah-/- mice, bred from p21-ATD mice and fumarylacetoacetate hydrolase (Fah)-/- mice of liver injury, showed that the majority of their senescent hepatocytes were the phenotype of p21+ rather than p16+. Furthermore, eliminating the p21-expressing hepatocytes significantly promoted the engraftment of grafted hepatocytes and facilitated liver repopulation, resulting in significant recovery from liver injury. Our p21-ATD mouse model serves as an optimal model for studying the pattern and function of p21-expressing senescent cells under the physical and pathological conditions during aging.

5.
Nucleic Acids Res ; 51(D1): D39-D45, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36268869

RESUMO

Transcription factors (TFs) are proteins that interact with specific DNA sequences to regulate gene expression and play crucial roles in all kinds of biological processes. To keep up with new data and provide a more comprehensive resource for TF research, we updated the Animal Transcription Factor Database (AnimalTFDB) to version 4.0 (http://bioinfo.life.hust.edu.cn/AnimalTFDB4/) with up-to-date data and functions. We refined the TF family rules and prediction pipeline to predict TFs in genome-wide protein sequences from Ensembl. As a result, we predicted 274 633 TF genes and 150 726 transcription cofactor genes in AnimalTFDB 4.0 in 183 animal genomes, which are 86 more species than AnimalTFDB 3.0. Besides double data volume, we also added the following new annotations and functions to the database: (i) variations (including mutations) on TF genes in various human cancers and other diseases; (ii) predicted post-translational modification sites (including phosphorylation, acetylation, methylation and ubiquitination sites) on TFs in 8 species; (iii) TF regulation in autophagy; (iv) comprehensive TF expression annotation for 38 species; (v) exact and batch search functions allow users to search AnimalTFDB flexibly. AnimalTFDB 4.0 is a useful resource for studying TF and transcription regulation, which contains comprehensive annotation and classification of TFs and transcription cofactors.


Assuntos
Bases de Dados Genéticas , Regulação da Expressão Gênica , Fatores de Transcrição , Animais , Humanos , Bases de Dados de Proteínas , Anotação de Sequência Molecular , Fatores de Transcrição/metabolismo
6.
Nucleic Acids Res ; 51(W1): W243-W250, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37158278

RESUMO

Protein phosphorylation, catalyzed by protein kinases (PKs), is one of the most important post-translational modifications (PTMs), and involved in regulating almost all of biological processes. Here, we report an updated server, Group-based Prediction System (GPS) 6.0, for prediction of PK-specific phosphorylation sites (p-sites) in eukaryotes. First, we pre-trained a general model using penalized logistic regression (PLR), deep neural network (DNN), and Light Gradient Boosting Machine (LightGMB) on 490 762 non-redundant p-sites in 71 407 proteins. Then, transfer learning was conducted to obtain 577 PK-specific predictors at the group, family and single PK levels, using a well-curated data set of 30 043 known site-specific kinase-substrate relations in 7041 proteins. Together with the evolutionary information, GPS 6.0 could hierarchically predict PK-specific p-sites for 44046 PKs in 185 species. Besides the basic statistics, we also offered the knowledge from 22 public resources to annotate the prediction results, including the experimental evidence, physical interactions, sequence logos, and p-sites in sequences and 3D structures. The GPS 6.0 server is freely available at https://gps.biocuckoo.cn. We believe that GPS 6.0 could be a highly useful service for further analysis of phosphorylation.


Assuntos
Biologia Computacional , Proteínas , Software , Fosforilação , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteínas/metabolismo , Biologia Computacional/instrumentação , Biologia Computacional/métodos , Internet
7.
Proc Natl Acad Sci U S A ; 119(23): e2118566119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35648826

RESUMO

Recent work indicates that killing of bacteria by diverse antimicrobial classes can involve reactive oxygen species (ROS), as if a common, self-destructive response to antibiotics occurs. However, the ROS-bacterial death theory has been challenged. To better understand stress-mediated bacterial death, we enriched spontaneous antideath mutants of Escherichia coli that survive treatment by diverse bactericidal agents that include antibiotics, disinfectants, and environmental stressors, without a priori consideration of ROS. The mutants retained bacteriostatic susceptibility, thereby ruling out resistance. Surprisingly, pan-tolerance arose from carbohydrate metabolism deficiencies in ptsI (phosphotransferase) and cyaA (adenyl cyclase); these genes displayed the activity of upstream regulators of a widely shared, stress-mediated death pathway. The antideath effect was reversed by genetic complementation, exogenous cAMP, or a Crp variant that bypasses cAMP binding for activation. Downstream events comprised a metabolic shift from the TCA cycle to glycolysis and to the pentose phosphate pathway, suppression of stress-mediated ATP surges, and reduced accumulation of ROS. These observations reveal how upstream signals from diverse stress-mediated lesions stimulate shared, late-stage, ROS-mediated events. Cultures of these stable, pan-tolerant mutants grew normally and were therefore distinct from tolerance derived from growth defects described previously. Pan-tolerance raises the potential for unrestricted disinfectant use to contribute to antibiotic tolerance and resistance. It also weakens host defenses, because three agents (hypochlorite, hydrogen peroxide, and low pH) affected by pan-tolerance are used by the immune system to fight infections. Understanding and manipulating the PtsI-CyaA-Crp­mediated death process can help better control pathogens and maintain beneficial microbiota during antimicrobial treatment.


Assuntos
Anti-Infecciosos , Colicinas , Proteína Receptora de AMP Cíclico , Proteínas de Escherichia coli , Escherichia coli , Proteínas de Transporte de Monossacarídeos , Estresse Oxidativo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato , Anti-Infecciosos/farmacologia , Colicinas/metabolismo , AMP Cíclico/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Tolerância a Medicamentos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/fisiologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35037020

RESUMO

As an important post-translational modification, lysine ubiquitination participates in numerous biological processes and is involved in human diseases, whereas the site specificity of ubiquitination is mainly decided by ubiquitin-protein ligases (E3s). Although numerous ubiquitination predictors have been developed, computational prediction of E3-specific ubiquitination sites is still a great challenge. Here, we carefully reviewed the existing tools for the prediction of general ubiquitination sites. Also, we developed a tool named GPS-Uber for the prediction of general and E3-specific ubiquitination sites. From the literature, we manually collected 1311 experimentally identified site-specific E3-substrate relations, which were classified into different clusters based on corresponding E3s at different levels. To predict general ubiquitination sites, we integrated 10 types of sequence and structure features, as well as three types of algorithms including penalized logistic regression, deep neural network and convolutional neural network. Compared with other existing tools, the general model in GPS-Uber exhibited a highly competitive accuracy, with an area under curve values of 0.7649. Then, transfer learning was adopted for each E3 cluster to construct E3-specific models, and in total 112 individual E3-specific predictors were implemented. Using GPS-Uber, we conducted a systematic prediction of human cancer-associated ubiquitination events, which could be helpful for further experimental consideration. GPS-Uber will be regularly updated, and its online service is free for academic research at http://gpsuber.biocuckoo.cn/.


Assuntos
Lisina , Ubiquitina-Proteína Ligases , Algoritmos , Humanos , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
9.
Environ Res ; 241: 117588, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37926231

RESUMO

In this study, ZIF-8 nanoparticles were synthesized using a simple method at room temperature. The ZIF-8 nanoparticles were then characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), BET (Brunauer-Emmett-Teller) specific surface area, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and zeta potential. Subsequent batch adsorption experiments evaluated the adsorption performance of ZIF-8 on tetracycline, examining key pa-rameters like reaction time, pH, temperature, and adsorbent dosage. The results revealed a removal rate for TC of up to 90.59%. The adsorption data aligned with the Sips model, showcasing a maximum adsorption capacity of 359.61 mg/g at 303K. Further, the adsorption kinetics adhered to the pseudo-second-order kinetic model with an equilibrium adsorption capacity of 90 mg/g at 303K. The considerable specific surface area of ZIF-8, standing at 1674.169 m2/g, likely enhances the adsorption efficacy. Analysis using XRD and FTIR confirmed the adsorption of TC on the ma-terial's surface. Overall, the predominant driving forces behind the adsorption process were identified as electrostatic interactions and π-π stacking interactions.


Assuntos
Poluentes Químicos da Água , Adsorção , Poluentes Químicos da Água/análise , Tetraciclina , Antibacterianos/química , Termodinâmica , Água , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Concentração de Íons de Hidrogênio
10.
Food Microbiol ; 120: 104482, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431313

RESUMO

Hafnia paralvei, a Gram-negative foodborne pathogen, is found ubiquitously in various aquatic animals and seafoods, which can form biofilm as a dominant virulence factor that contributes to its pathogenesis. However, the biofilm formation mechanism of H. paralvei and its effect on food spoilage has not been fully characterized. Here we show that biofilm formation, is regulated by c-di-GMP which mediated by bcsB, can increase the spoilage ability of H. paralvei. We found that GTP was added exogenously to enhance the synthesis of c-di-GMP, which further promoted biofilm formation. The gene dgcC, one of 11 genes encoding GGDEF domain-containing proteins in H. paralvei, was significantly upregulated with GTP as substrate. The upregulation of dgcC contributes to a significant increase of c-di-GMP and the formation of biofilm. In addition, the overexpression of dgcC induced upregulation of bcsB, a reported effector protein encoding gene, which was further demonstrated that overexpression of bcsB can encourage the synthesis of bacterial cellulose and biofilm formation. The effect of biofilm formation induced by c-di-GMP on spoilage of Yellow River carp (Cyprinus carpio) was evaluated by sensory evaluation, the total viable count, and the total volatile basic nitrogen, which showed that biofilm formation can significantly increase the spoilage ability of H. paralvei on C. carpio. Our findings provide the regulation of c-di-GMP on expression of bcsB, that can contribute to biofilm formation and spoilage ability of H. paralvei, which is favor to understanding the pathogenesis of Hafnia paralvei and its role in food spoilage.


Assuntos
Proteínas de Bactérias , Carpas , GMP Cíclico/análogos & derivados , Hafnia , Animais , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Expressão Gênica , Alimentos Marinhos , Biofilmes , Guanosina Trifosfato
11.
Chem Soc Rev ; 52(4): 1215-1272, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36601686

RESUMO

Together with the development of two-dimensional (2D) materials, transition metal dichalcogenides (TMDs) have become one of the most popular series of model materials for fundamental sciences and practical applications. Due to the ever-growing requirements of customization and multi-function, dozens of modulated structures have been introduced in TMDs. In this review, we present a systematic and comprehensive overview of the structure modulation of TMDs, including point, linear and out-of-plane structures, following and updating the conventional classification for silicon and related bulk semiconductors. In particular, we focus on the structural characteristics of modulated TMD structures and analyse the corresponding root causes. We also summarize the recent progress in modulating methods, mechanisms, properties and applications based on modulated TMD structures. Finally, we demonstrate challenges and prospects in the structure modulation of TMDs and forecast potential directions about what and how breakthroughs can be achieved.

12.
Death Stud ; : 1-8, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833272

RESUMO

The coronavirus disease 2019 (COVID-19) has led to various negative consequences including fear. The Fear of COVID-19 Scale (FCV-19S) has been widely used in diverse cultures, but no study has ever investigated its longitudinal measurement invariance and predictive validity. Therefore, we examined its longitudinal measurement invariance and predictive validity over 10 months. A sample of Chinese undergraduates (N = 682; first wave 842; 682 second wave) completed the FCV-19S as well as measures assessing depression, anxiety, and stress. Exploratory and confirmatory factor analyses were conducted along with measurement invariance testing. The results showed that the bifactor model fitted well, and significantly predicted stress and anxiety, but not depression. The FCV-19S demonstrated partial measurement invariance (i.e. configural and metric invariances) across time. These findings suggest that the Chinese version of FCV-19S is a reliable tool and could be used in evaluating the severity of fear of COVID-19 among Chinese young adults.

13.
J Am Chem Soc ; 145(14): 8130-8140, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37001012

RESUMO

Type I photosensitization provides an effective solution to the problem of unsatisfactory photodynamic therapeutic (PDT) effects caused by the tumor hypoxia. The challenge in the development of Type I mode is to boost the photosensitizer's own electron transfer capacity. Herein, we found that the use of bovine serum albumin (BSA) to encapsulate a thermally activated delayed fluorescence (TADF) photosensitizer PS can significantly promote the Type I PDT process to generate a mass of superoxide anions (O2•-). This Type I photosensitization opened a new strategy by employing BSA as "electron reservoir" and TADF photosensitizer as "electron pump". We integrated these roles of BSA and PS in one system by preparing nanophotosensitizer PS@BSA. The Type I PDT performance was demonstrated with tumor cells under hypoxic conditions. Furthermore, PS@BSA took full advantage of the tumor-targeting role of BSA and achieved efficient PDT for tumor-bearing mice in the in vivo experiments. This work provides an effective route to improve the PDT efficiency of hypoxic tumors.


Assuntos
Neoplasias , Fotoquimioterapia , Animais , Camundongos , Fármacos Fotossensibilizantes/uso terapêutico , Soroalbumina Bovina , Fluorescência , Elétrons , Neoplasias/tratamento farmacológico , Hipóxia/tratamento farmacológico
14.
J Am Chem Soc ; 145(20): 11056-11066, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37159397

RESUMO

Stress granules (SGs) and processing-bodies (PBs, P-bodies) are ubiquitous and widely studied ribonucleoprotein (RNP) granules involved in cellular stress response, viral infection, and the tumor microenvironment. While proteomic and transcriptomic investigations of SGs and PBs have provided insights into molecular composition, chemical tools to probe and modulate RNP granules remain lacking. Herein, we combine an immunofluorescence (IF)-based phenotypic screen with chemoproteomics to identify sulfonyl-triazoles (SuTEx) capable of preventing or inducing SG and PB formation through liganding of tyrosine (Tyr) and lysine (Lys) sites in stressed cells. Liganded sites were enriched for RNA-binding and protein-protein interaction (PPI) domains, including several sites found in RNP granule-forming proteins. Among these, we functionally validate G3BP1 Y40, located in the NTF2 dimerization domain, as a ligandable site that can disrupt arsenite-induced SG formation in cells. In summary, we present a chemical strategy for the systematic discovery of condensate-modulating covalent small molecules.


Assuntos
Grânulos Citoplasmáticos , DNA Helicases , DNA Helicases/química , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteômica , RNA Helicases/química
15.
Clin Chem ; 69(4): 363-373, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36807661

RESUMO

BACKGROUND: Isothermal amplification is considered to be one of the most promising tools for point-of-care testing molecular diagnosis. However, its clinical application is severely hindered by nonspecific amplification. Thus, it is important to investigate the exact mechanism of nonspecific amplification and develop a high-specific isothermal amplification assay. METHODS: Four sets of primer pairs were incubated with Bst DNA polymerase to produce nonspecific amplification. Gel electrophoresis, DNA sequencing, and sequence function analysis were used to investigate the mechanism of nonspecific product generation, which was discovered to be nonspecific tailing and replication slippage mediated tandem repeats generation (NT&RS). Using this knowledge, a novel isothermal amplification technology, bridging primer assisted slippage isothermal amplification (BASIS), was developed. RESULTS: During NT&RS, the Bst DNA polymerase triggers nonspecific tailing on the 3'-ends of DNAs, thereby producing sticky-end DNAs over time. The hybridization and extension between these sticky DNAs generate repetitive DNAs, which can trigger self-extension via replication slippage, thereby leading to nonspecific tandem repeats (TRs) generation and nonspecific amplification. Based on the NT&RS, we developed the BASIS assay. The BASIS is carried out by using a well-designed bridging primer, which can form hybrids with primer-based amplicons, thereby generating specific repetitive DNA and triggering specific amplification. The BASIS can detect 10 copies of target DNA, resist interfering DNA disruption, and provide genotyping ability, thereby offering 100% accuracy for type 16 human papillomavirus detection. CONCLUSION: We discovered the mechanism for Bst-mediated nonspecific TRs generation and developed a novel isothermal amplification assay (BASIS), which can detect nucleic acids with high sensitivity and specificity.


Assuntos
DNA , Técnicas de Amplificação de Ácido Nucleico , Humanos , Primers do DNA/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade , Sequências de Repetição em Tandem
16.
Microb Pathog ; 184: 106362, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37741305

RESUMO

BACKGROUND: Previous studies have shown that sepsis is implicated in a reduction in the number and function of CD4+ T cells. TCF7 and LEF-1 facilitate early T cell development and lineage selection of CD4+ T cells. However, the function and mechanism of TCF7 and LEF-1 in sepsis are uncharacterized. This study intended to delineate effect of TCF7 and LEF-1 on sepsis and the impact on proliferation of CD4+ T cells in sepsis. METHODS: A mouse sepsis model was constructed by cecal ligation and puncture (CLP) method. Expression of TCF7 and LEF-1 in sepsis was investigated using bioinformatics analysis and molecular experiments. We then constructed TCF7 and LEF-1 overexpression cell lines to investigate their effects on proliferation, apoptosis, effector activation, and immunosuppressive molecules of CD4+ T cells in sepsis. RESULTS: TCF7 and LEF-1 were downregulated in sepsis. As the duration of sepsis induction increased, the levels of TCF7 and LEF-1 gradually decreased, as did the number of CD4+ T cells. Cell experiments showed that overexpression of TCF7 and LEF-1 enhanced proliferation and effector activation of CD4+ T cells, reduced apoptosis, decreased PD-1 and LAG3 expression, and promoted immune response in sepsis. CONCLUSION: In conclusion, this study confirmed that downregulation of TCF7 and LEF-1 expression in sepsis inhibited proliferation of CD4+ T cells, leading to immune suppression. This finding suggested that TCF7 and LEF-1 were potential biological targets for sepsis and indicated that immunotherapy aimed at improving CD4+ T cell proliferation may be a new strategy for immune therapy in sepsis patients.


Assuntos
Sepse , Linfócitos T , Animais , Humanos , Camundongos , Linfócitos T CD4-Positivos , Proliferação de Células , Regulação para Baixo , Camundongos Endogâmicos C57BL , Sepse/metabolismo , Fator 1 de Transcrição de Linfócitos T/genética , Fator 1 de Transcrição de Linfócitos T/metabolismo
17.
Pharmacol Res ; 187: 106584, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462326

RESUMO

Prostate cancer (PCa) is associated with a high incidence and metastasis rate globally, resulting in an unsatisfactory prognosis and a huge economic burden due to the current deficient of therapeutic strategies. As the most abundant component of Cortex Mori, Sanggenon C (SC) is well known to possess bioactivities in tumors, but its mechanism is poorly understood. Consequently, we attempted to investigate whether SC could modulate circular RNA(s) levels and hence anti-PCa development. We found that SC dramatically promoted cell apoptosis and induced G0/G1 phase arrest in PCa cell lines via the circHMGCS1-miR-205-5p-ErBB3 axis. In brief, circHMGCS1 is highly expressed in PCa and is positively correlated with the degree of malignancy. Over-expression of circHMGCS1 is not only associated with the proliferation of PCa cells but also blocks SC-induced pro-apoptotic effects. As a verified sponge of circHMGCS1, miR-205-5p is down-regulated in PCa tumors, which negatively regulates PCa cell proliferation by modulating ErBB3 expression. After miR-205-5p mimics or inhibitors were used to transfect PCa cells, the effects of circHMGCS1 OE and SC on PCa cells were completely diminished. Similar to miR-205-5p inhibitors, siErBB3 could oppose SC-triggered pro-apoptotic effects on PCa cells. All these results were confirmed in vivo. Together, SC exerts its anti-tumor effects on PCa by inhibiting circHMGCS1 expression and results in the latter losing the ability to sponge miR-205-5p. Subsequently, unfettered miR-205-5p could mostly down-regulate ErBB3 expression by binding to the 5'UTR of ErBB3 mRNA, which eventually resulted in PCa cell cycle arrest and pro-apoptosis.


Assuntos
MicroRNAs , Neoplasias da Próstata , Masculino , Humanos , Movimento Celular , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo
18.
Arch Virol ; 168(7): 189, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37351692

RESUMO

Isolation and analysis of double-stranded RNA (dsRNA) from the phytopathogenic fungus Setosphaeria turcica f. sp. zeae revealed the presence of a new double-stranded RNA (dsRNA) virus, tentatively named "Setosphaeria turcica polymycovirus 2" (StPmV2). The genome of StPmV2 consists of five segments (dsRNA1-5), ranging in size from 965 bp to 2462 bp. Each dsRNA contains one open reading frame (ORF) flanked by 5' and 3' untranslated regions (UTRs) with conserved terminal sequences. The putative protein encoded by dsRNA1 shows 64.52% amino acid sequence identity to the RNA-dependent RNA polymerase (RdRp) of the most closely related virus, Cladosporium cladosporioides virus 1, which belongs to the family Polymycoviridae. dsRNAs 2-4 encode the putative coat protein, methyltransferase (MTR), and proline-alanine-serine-rich protein (PASrp), respectively, and dsRNA5 encodes a protein of unknown function. Phylogenetic analysis based on the RdRp protein indicated that StPmV2 clustered with members of the family Polymycoviridae and is therefore a new mycovirus belonging to the genus Polymycovirus in the family Polymycoviridae. In addition, three other distinct isolates of StPmV2 were identified: one isolated from S. turcica f. sp. zeae and two from S. turcica f. sp. sorghi. To our knowledge, this is the first report of a polymycovirus infecting both S. turcica f. sp. zeae and S. turcica f. sp. sorghi.


Assuntos
Micovírus , Vírus de RNA , RNA Viral , RNA de Cadeia Dupla/genética , Filogenia , Genoma Viral , Vírus de RNA/genética , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/química , Fases de Leitura Aberta
19.
J Assist Reprod Genet ; 40(7): 1597-1610, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37300650

RESUMO

PURPOSE: Dysregulated behaviors of trophoblast cells leading to defective placentation are considered the main cause of preeclampsia (PE). Abnormal miRNA expression profiles have been observed in PE placental tissue, indicating the significant role of miRNAs in PE development. This study aimed to investigate the expression of miR-101-5p in PE placental tissue and its biological functions. METHODS: The expression of miR-101-5p in placental tissue was detected by quantitative real-time PCR (qRT-PCR). The localization of miR-101-5p in term placental tissue and decidual tissue was determined by the fluorescence in situ hybridization (FISH)-immunofluorescence (IF) double labeling assay. The effect of miR-101-5p on the migration, invasion, proliferation, and apoptosis of the HTR8/SVneo trophoblast cells was investigated. Online databases combined with transcriptomics were used to identify potential target genes and related pathways of miR-101-5p. Finally, the interaction between miR-101-5p and the target gene was verified by qRT-PCT, WB, dual-luciferase reporter assay, and rescue experiments. RESULTS: The study found that miR-101-5p was upregulated in PE placental tissue compared to normal controls and was mainly located in various trophoblast cell subtypes in placental and decidual tissues. Overexpression of miR-101-5p impaired the migration and invasion of HTR8/SVneo cells. DUSP6 was identified as a potential downstream target of miR-101-5p. The expression of miR-101-5p was negatively correlated with DUSP6 expression in HTR8/SVneo cells, and miR-101-5p directly bound to the 3' UTR region of DUSP6. DUSP6 upregulation rescued the migratory and invasive abilities of HTR8/SVneo cells in the presence of miR-101-5p overexpression. Additionally, miR-101-5p downregulated DUSP6, resulting in enhanced ERK1/2 phosphorylation. CONCLUSION: This study revealed that miR-101-5p inhibits the migration and invasion of HTR8/SVneo cells by regulating the DUSP6-ERK1/2 axis, providing a new molecular mechanism for the pathogenesis of PE.


Assuntos
MicroRNAs , Pré-Eclâmpsia , Humanos , Gravidez , Feminino , Placenta/metabolismo , Trofoblastos/metabolismo , Pré-Eclâmpsia/patologia , Hibridização in Situ Fluorescente , Sistema de Sinalização das MAP Quinases/genética , Linhagem Celular , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Fosfatase 6 de Especificidade Dupla/genética , Fosfatase 6 de Especificidade Dupla/metabolismo
20.
Int J Mol Sci ; 24(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36614229

RESUMO

Primary congenital hypothyroidism (CH) is a common neonatal endocrine disorder characterized by elevated concentrations of thyroid stimulating hormone (TSH) and low concentrations of free thyroxine (FT4). PAX8 and NKX2-1 are important transcription factors involved in thyroid development. In this study, we detected three novel variants in PAX8 (c.149A > C and c.329G > A) and NKX2-1 (c.706A > G) by whole exome sequencing (WES) in three unrelated CH patients with variable phenotypes. The results of Western blot and immunofluorescence analysis showed that the three variants had no effect on protein expression and subcellular localization. However, the results of the electrophoretic mobility shift assay (EMSA) and dual-luciferase reporter assay suggested that the three variants in PAX8 and NKX2-1 both affected their DNA-binding ability and reduced their transactivation capacity. Moreover, a dominant-negative effect in K236E−NKX2-1 was identified by dual-luciferase reporter assay. To sum up, our findings extend our knowledge of the current mutation spectrum of PAX8 and NKX2-1 and provide important information for diagnosing, treating, and preventing CH in these families.


Assuntos
Hipotireoidismo Congênito , Humanos , Hipotireoidismo Congênito/genética , Fatores de Transcrição Box Pareados/genética , Fator de Transcrição PAX8/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA