Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(12): e1011027, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36469533

RESUMO

Pseudomonas aeruginosa, a major inhabitant of numerous environmental reservoirs, is a momentous opportunistic human pathogen associated with severe infections even death in the patients suffering from immune deficiencies or metabolic diseases. Type III secretion system (T3SS) employed by P. aeruginosa to inject effector proteins into host cells is one of the pivotal virulence factors pertaining to acute infections caused by this pathogen. Previous studies showed that P. aeruginosa T3SS is regulated by various environmental cues such as calcium concentration and the host signal spermidine. However, how T3SS is regulated and expressed particularly under the ever-changing environmental conditions remains largely elusive. In this study, we reported that a tRNA modification enzyme PA3980, designated as MiaB, positively regulated T3SS gene expression in P. aeruginosa and was essential for the induced cytotoxicity of human lung epithelial cells. Further genetic assays revealed that MiaB promoted T3SS gene expression by repressing the LadS-Gac/Rsm signaling pathway and through the T3SS master regulator ExsA. Interestingly, ladS, gacA, rsmY and rsmZ in the LadS-Gac/Rsm signaling pathway seemed potential targets under the independent regulation of MiaB. Moreover, expression of MiaB was found to be induced by the cAMP-dependent global regulator Vfr as well as the spermidine transporter-dependent signaling pathway and thereafter functioned to mediate their regulation on the T3SS gene expression. Together, these results revealed a novel regulatory mechanism for MiaB, with which it integrates different environmental cues to modulate T3SS gene expression in this important bacterial pathogen.


Assuntos
Pseudomonas aeruginosa , Sistemas de Secreção Tipo III , Humanos , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Pseudomonas aeruginosa/metabolismo , Regulação Bacteriana da Expressão Gênica , Sinais (Psicologia) , Espermidina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA de Transferência/metabolismo
2.
J Biol Chem ; 297(2): 100920, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34181948

RESUMO

The Pseudomonas putida F1 genome contains five genes annotated as encoding 3-ketoacyl-acyl carrier protein (ACP) synthases. Four are annotated as encoding FabF (3-ketoacyl-ACP synthase II) proteins, and the fifth is annotated as encoding a FabB (3-ketoacyl-ACP synthase I) protein. Expression of one of the FabF proteins, FabF2, is cryptic in the native host and becomes physiologically important only when the repressor controlling fabF2 transcription is inactivated. When derepressed, FabF2 can functionally replace FabB, and when expressed from a foreign promoter, had weak FabF activity. Complementation of Escherichia coli fabB and fabF mutant strains with high expression showed that P. putida fabF1 restored E. coli fabF function, whereas fabB restored E. coli fabB function and fabF2 restored the functions of both E. coli fabF and fabB. The P. putida ΔfabF1 deletion strain was almost entirely defective in synthesis of cis-vaccenic acid, whereas the ΔfabB strain is an unsaturated fatty acid (UFA) auxotroph that accumulated high levels of spontaneous suppressors in the absence of UFA supplementation. This was due to increased expression of fabF2 that bypasses loss of fabB because of the inactivation of the regulator, Pput_2425, encoded in the same operon as fabF2. Spontaneous suppressor accumulation was decreased by high levels of UFA supplementation, whereas competition by the P. putida ß-oxidation pathway gave increased accumulation. The ΔfabB ΔfabF2 strain is a stable UFA auxotroph indicating that suppressor accumulation requires FabF2 function. However, at low concentrations of UFA supplementation, the ΔfabF2 ΔPput_2425 double-mutant strain still accumulated suppressors at low UFA concentrations.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Ácidos Graxos Insaturados/biossíntese , Pseudomonas putida/metabolismo , Teste de Complementação Genética
3.
Microbiol Spectr ; 10(3): e0064422, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35435755

RESUMO

Pseudomonas aeruginosa is a vital opportunistic human bacterial pathogen that causes acute and chronic infections. In this study, we set to determine whether the endogenous spermidine biosynthesis plays a role in regulation of type III secretion system (T3SS). The results showed that deletion of speA and speC, which encode putrescine biosynthesis, did not seem to affect cellular spermidine level and the T3SS gene expression. In contrast, mutation of speD and speE encoding spermidine biosynthesis led to significantly decreased spermidine production and expression of T3SS genes. We also showed that endogenous spermidine could auto-induce the transcriptional expression of speE and its full functionality required the transporter SpuDEFGH. Cytotoxicity analysis showed that mutants ΔspeE and ΔspuE were substantially attenuated in virulence compared with their wild-type strain PAO1. Our data imply a possibility that spermidine biosynthesis in P. aeruginosa may not use putrescine as a substrate, and that spermidine signaling pathway may interact with other two T3SS regulatory mechanisms in certain degree, i.e., cAMP-Vfr and GacS/GacA signaling systems. Taken together, these results specify the role of endogenous spermidine in regulation of T3SS in P. aeruginosa and provide useful clues for design and development antimicrobial therapies. IMPORTANCE Type III secretion system (T3SS) is one of the pivotal virulence factors of Pseudomonas aeruginosa responsible for evading phagocytosis, and secreting and translocating effectors into host cells. Previous studies underline the complicated and elaborate regulatory mechanisms of T3SS for the accurate, fast, and malicious pathogenicity of P. aeruginosa. Among these regulatory mechanisms, our previous study indicated that the spermidine from the host was vital to the host-pathogen interaction. However, the role of endogenous spermidine synthesized by P. aeruginosa on the regulation of T3SS expression is largely unknown. Here we reveal the role and regulatory network of endogenous spermidine synthesis in regulation of T3SS and bacterial virulence, showing that the spermidine is an important interspecies signal for modulating the virulence of P. aeruginosa through regulating T3SS expression.


Assuntos
Pseudomonas aeruginosa , Espermidina , Sistemas de Secreção Tipo III , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Putrescina/metabolismo , Espermidina/metabolismo , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA