Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.996
Filtrar
1.
Mol Cell ; 82(1): 13-14, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34995507

RESUMO

de Almeida et al. (2021) developed a temporally controlled CRISPR-Cas9 screen to identify mechanisms controlling MYC levels and discovered that intact proteasomes are imported into the nucleus by AKIRIN2 binding to proteasomes at one end and a nuclear import receptor at the other.


Assuntos
Núcleo Celular , Suicídio , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo
2.
Immunity ; 53(1): 204-216.e10, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32553276

RESUMO

Psoriasis is a chronic inflammatory disease whose etiology is multifactorial. The contributions of cellular metabolism to psoriasis are unclear. Here, we report that interleukin-17 (IL-17) downregulated Protein Phosphatase 6 (PP6) in psoriatic keratinocytes, causing phosphorylation and activation of the transcription factor C/EBP-ß and subsequent generation of arginase-1. Mice lacking Pp6 in keratinocytes were predisposed to psoriasis-like skin inflammation. Accumulation of arginase-1 in Pp6-deficient keratinocytes drove polyamine production from the urea cycle. Polyamines protected self-RNA released by psoriatic keratinocytes from degradation and facilitated the endocytosis of self-RNA by myeloid dendritic cells to promote toll-like receptor-7 (TLR7)-dependent RNA sensing and IL-6 production. An arginase inhibitor improved skin inflammation in murine and non-human primate models of psoriasis. Our findings suggest that urea cycle hyperreactivity and excessive polyamine generation in psoriatic keratinocytes promote self-RNA sensation and PP6 deregulation in keratinocytes is a pivotal event that amplifies the inflammatory circuits in psoriasis.


Assuntos
Células Dendríticas/imunologia , Queratinócitos/metabolismo , Fosfoproteínas Fosfatases/deficiência , Poliaminas/metabolismo , Psoríase/patologia , RNA/imunologia , Células 3T3 , Animais , Arginase/antagonistas & inibidores , Arginase/metabolismo , Arginina/metabolismo , Autoantígenos/imunologia , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Células HEK293 , Células HaCaT , Humanos , Interleucina-17/metabolismo , Macaca fascicularis , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fosfoproteínas Fosfatases/genética , Fosforilação , Pele/patologia , Receptor 7 Toll-Like/imunologia
3.
EMBO J ; 43(10): 1990-2014, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605226

RESUMO

Prenatal lethality associated with mouse knockout of Mettl16, a recently identified RNA N6-methyladenosine (m6A) methyltransferase, has hampered characterization of the essential role of METTL16-mediated RNA m6A modification in early embryonic development. Here, using cross-species single-cell RNA sequencing analysis, we found that during early embryonic development, METTL16 is more highly expressed in vertebrate hematopoietic stem and progenitor cells (HSPCs) than other methyltransferases. In Mettl16-deficient zebrafish, proliferation capacity of embryonic HSPCs is compromised due to G1/S cell cycle arrest, an effect whose rescue requires Mettl16 with intact methyltransferase activity. We further identify the cell-cycle transcription factor mybl2b as a directly regulated by Mettl16-mediated m6A modification. Mettl16 deficiency resulted in the destabilization of mybl2b mRNA, likely due to lost binding by the m6A reader Igf2bp1 in vivo. Moreover, we found that the METTL16-m6A-MYBL2-IGF2BP1 axis controlling G1/S progression is conserved in humans. Collectively, our findings elucidate the critical function of METTL16-mediated m6A modification in HSPC cell cycle progression during early embryonic development.


Assuntos
Células-Tronco Hematopoéticas , Metiltransferases , Metilação de RNA , Proteínas de Ligação a RNA , Fatores de Transcrição , Peixe-Zebra , Animais , Humanos , Camundongos , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proliferação de Células , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Metiltransferases/metabolismo , Metiltransferases/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Metilação de RNA/genética
4.
EMBO J ; 43(10): 1919-1946, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360993

RESUMO

Most cellular ubiquitin signaling is initiated by UBA1, which activates and transfers ubiquitin to tens of E2 enzymes. Clonally acquired UBA1 missense mutations cause an inflammatory-hematologic overlap disease called VEXAS (vacuoles, E1, X-linked, autoinflammatory, somatic) syndrome. Despite extensive clinical investigation into this lethal disease, little is known about the underlying molecular mechanisms. Here, by dissecting VEXAS-causing UBA1 mutations, we discovered that p.Met41 mutations alter cytoplasmic isoform expression, whereas other mutations reduce catalytic activity of nuclear and cytoplasmic isoforms by diverse mechanisms, including aberrant oxyester formation. Strikingly, non-p.Met41 mutations most prominently affect transthioesterification, revealing ubiquitin transfer to cytoplasmic E2 enzymes as a shared property of pathogenesis amongst different VEXAS syndrome genotypes. A similar E2 charging bottleneck exists in some lung cancer-associated UBA1 mutations, but not in spinal muscular atrophy-causing UBA1 mutations, which instead, render UBA1 thermolabile. Collectively, our results highlight the precision of conformational changes required for faithful ubiquitin transfer, define distinct and shared mechanisms of UBA1 inactivation in diverse diseases, and suggest that specific E1-E2 modules control different aspects of tissue differentiation and maintenance.


Assuntos
Enzimas Ativadoras de Ubiquitina , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/genética , Humanos , Mutação de Sentido Incorreto , Ubiquitina/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo
5.
Immunity ; 47(2): 363-373.e5, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28801234

RESUMO

Inhibition of cytosolic DNA sensing represents a strategy that tumor cells use for immune evasion, but the underlying mechanisms are unclear. Here we have shown that CD47-signal regulatory protein α (SIRPα) axis dictates the fate of ingested DNA in DCs for immune evasion. Although macrophages were more potent in uptaking tumor DNA, increase of DNA sensing by blocking the interaction of SIRPα with CD47 preferentially occurred in dendritic cells (DCs) but not in macrophages. Mechanistically, CD47 blockade enabled the activation of NADPH oxidase NOX2 in DCs, which in turn inhibited phagosomal acidification and reduced the degradation of tumor mitochondrial DNA (mtDNA) in DCs. mtDNA was recognized by cyclic-GMP-AMP synthase (cGAS) in the DC cytosol, contributing to type I interferon (IFN) production and antitumor adaptive immunity. Thus, our findings have demonstrated how tumor cells inhibit innate sensing in DCs and suggested that the CD47-SIRPα axis is critical for DC-driven antitumor immunity.


Assuntos
Antígenos de Diferenciação/metabolismo , Neoplasias do Colo/imunologia , DNA Mitocondrial/imunologia , Células Dendríticas/imunologia , Proteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Animais , Anticorpos Bloqueadores/uso terapêutico , Antígeno CD47/imunologia , Antígeno CD47/metabolismo , Células Cultivadas , Neoplasias do Colo/genética , Neoplasias do Colo/terapia , Apresentação Cruzada , Modelos Animais de Doenças , Humanos , Interferon Tipo I/metabolismo , Macrófagos/imunologia , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Nucleotidiltransferases/metabolismo , Transdução de Sinais , Evasão Tumoral
6.
Nature ; 578(7793): E10, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31937918

RESUMO

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Mol Cell ; 69(3): 480-492.e7, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29395065

RESUMO

Fatty acid oxidation (FAO) is crucial for cells to overcome metabolic stress by providing ATP and NADPH. However, the mechanism by which FAO is regulated in tumors remains elusive. Here we show that Nur77 is required for the metabolic adaptation of melanoma cells by protecting FAO. Glucose deprivation activates ERK2 to phosphorylate and induce Nur77 translocation to the mitochondria, where Nur77 binds to TPß, a rate-limiting enzyme in FAO. Although TPß activity is normally inhibited by oxidation under glucose deprivation, the Nur77-TPß association results in Nur77 self-sacrifice to protect TPß from oxidation. FAO is therefore able to maintain NADPH and ATP levels and prevent ROS increase and cell death. The Nur77-TPß interaction further promotes melanoma metastasis by facilitating circulating melanoma cell survival. This study demonstrates a novel regulatory function of Nur77 with linkage of the FAO-NADPH-ROS pathway during metabolic stress, suggesting Nur77 as a potential therapeutic target in melanoma.


Assuntos
Melanoma/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Animais , Sobrevivência Celular/fisiologia , Ácidos Graxos/metabolismo , Glucose/metabolismo , Células HEK293 , Humanos , Metabolismo dos Lipídeos , Melanoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/metabolismo , Subunidade beta da Proteína Mitocondrial Trifuncional/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
8.
J Biol Chem ; 300(3): 105779, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395305

RESUMO

The newly discovered zoonotic coronavirus swine acute diarrhea syndrome coronavirus (SADS-CoV) causes acute diarrhea, vomiting, dehydration, and high mortality rates in newborn piglets. Although SADS-CoV uses different strategies to evade the host's innate immune system, the specific mechanism(s) by which it blocks the interferon (IFN) response remains unidentified. In this study, the potential of SADS-CoV nonstructural proteins (nsp) to inhibit the IFN response was detected. The results determined that nsp1 was a potent antagonist of IFN response. SADS-CoV nsp1 efficiently inhibited signal transducer and activator of transcription 1 (STAT1) phosphorylation by inducing Janus kinase 1 (JAK1) degradation. Subsequent research revealed that nsp1 induced JAK1 polyubiquitination through K11 and K48 linkages, leading to JAK1 degradation via the ubiquitin-proteasome pathway. Furthermore, SADS-CoV nsp1 induced CREB-binding protein degradation to inhibit IFN-stimulated gene production and STAT1 acetylation, thereby inhibiting STAT1 dephosphorylation and blocking STAT1 transport out of the nucleus to receive antiviral signaling. In summary, the results revealed the novel mechanisms by which SADS-CoV nsp1 blocks the JAK-STAT signaling pathway via the ubiquitin-proteasome pathway. This study yielded valuable findings on the specific mechanism of coronavirus nsp1 in inhibiting the JAK-STAT signaling pathway and the strategies of SADS-CoV in evading the host's innate immune system.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Complexo de Endopeptidases do Proteassoma , Doenças dos Suínos , Proteínas não Estruturais Virais , Animais , Acetilação , Alphacoronavirus/fisiologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Suínos , Ubiquitinas/metabolismo , Doenças dos Suínos/metabolismo , Doenças dos Suínos/virologia , Células HEK293 , Células Vero , Humanos , Chlorocebus aethiops , Proteínas não Estruturais Virais/metabolismo
9.
J Biol Chem ; 300(3): 105772, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382674

RESUMO

Pre-mRNA splicing is a precise regulated process and is crucial for system development and homeostasis maintenance. Mutations in spliceosomal components have been found in various hematopoietic malignancies (HMs) and have been considered as oncogenic derivers of HMs. However, the role of spliceosomal components in normal and malignant hematopoiesis remains largely unknown. Pre-mRNA processing factor 31 (PRPF31) is a constitutive spliceosomal component, which mutations are associated with autosomal dominant retinitis pigmentosa. PRPF31 was found to be mutated in several HMs, but the function of PRPF31 in normal hematopoiesis has not been explored. In our previous study, we generated a prpf31 knockout (KO) zebrafish line and reported that Prpf31 regulates the survival and differentiation of retinal progenitor cells by modulating the alternative splicing of genes involved in mitosis and DNA repair. In this study, by using the prpf31 KO zebrafish line, we discovered that prpf31 KO zebrafish exhibited severe defects in hematopoietic stem and progenitor cell (HSPC) expansion and its sequentially differentiated lineages. Immunofluorescence results showed that Prpf31-deficient HSPCs underwent malformed mitosis and M phase arrest during HSPC expansion. Transcriptome analysis and experimental validations revealed that Prpf31 deficiency extensively perturbed the alternative splicing of mitosis-related genes. Collectively, our findings elucidate a previously undescribed role for Prpf31 in HSPC expansion, through regulating the alternative splicing of mitosis-related genes.


Assuntos
Fatores de Processamento de RNA , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Desenvolvimento Embrionário , Mutação , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/metabolismo , Células-Tronco/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
10.
Plant J ; 119(2): 814-827, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38739690

RESUMO

Several dwarf and semi-dwarf genes have been identified in barley. However, only a limited number have been effectively utilized in breeding programs to cultivate lodging resistant varieties. This is due to the common association of dwarf and semi-dwarf traits with negative effects on malt quality. In this study, we employed gene editing to generate three new haplotypes of sdw1/denso candidate gene gibberellin (GA) 20-oxidase2 (GA20ox2). These haplotypes induced a dwarfing phenotype and enhancing yield potential, and promoting seed dormancy, thereby reducing pre-harvest sprouting. Moreover, ß-amylase activity in the grains of the mutant lines was significantly increased, which is beneficial for malt quality. The haplotype analysis revealed significant genetic divergence of this gene during barley domestication and selection. A novel allele (sdw1.ZU9), containing a 96-bp fragment in the promoter region of HvGA20ox2, was discovered and primarily observed in East Asian and Russian barley varieties. The 96-bp fragment was associated with lower gene expression, leading to lower plant height but higher germination rate. In conclusion, HvGA20ox2 can be potentially used to develop semi-dwarf barley cultivars with high yield and improved malt quality.

11.
EMBO J ; 40(2): e105699, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33347626

RESUMO

Pathogen type 3 secretion systems (T3SS) manipulate host cell pathways by directly delivering effector proteins into host cells. In Vibrio parahaemolyticus, the leading cause of bacterial seafood-borne diarrheal disease, we showed that a T3SS effector, VgpA, localizes to the host cell nucleolus where it binds Epstein-Barr virus nuclear antigen 1-binding protein 2 (EBP2). An amino acid substitution in VgpA (VgpAL10A ) did not alter its translocation to the nucleus but abolished the effector's capacity to interact with EBP2. VgpA-EBP2 interaction led to the re-localization of c-Myc to the nucleolus and increased cellular rRNA expression and proliferation of cultured cells. The VgpA-EBP2 interaction elevated EBP2's affinity for c-Myc and prolonged the oncoprotein's half-life. Studies in infant rabbits demonstrated that VgpA is translocated into intestinal epithelial cells, where it interacts with EBP2 and leads to nucleolar re-localization of c-Myc. Moreover, the in vivo VgpA-EBP2 interaction during infection led to proliferation of intestinal cells and heightened V. parahaemolyticus' colonization and virulence. These observations suggest that direct effector stimulation of a c-Myc controlled host cell growth program can contribute to pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Nucléolo Celular/metabolismo , Proliferação de Células/fisiologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Vibrio parahaemolyticus/metabolismo , Virulência/fisiologia , Animais , Células CACO-2 , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Infecções por Vírus Epstein-Barr/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Herpesvirus Humano 4/patogenicidade , Humanos , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Coelhos , Vibrioses/metabolismo
12.
Lancet ; 403(10439): 1855-1865, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604212

RESUMO

BACKGROUND: Intravascular ultrasound-guided percutaneous coronary intervention has been shown to result in superior clinical outcomes compared with angiography-guided percutaneous coronary intervention. However, insufficient data are available concerning the advantages of intravascular ultrasound guidance for patients with an acute coronary syndrome. This trial aimed to investigate whether the use of intravascular ultrasound guidance, as compared with angiography guidance, improves the outcomes of percutaneous coronary intervention with contemporary drug-eluting stents in patients presenting with an acute coronary syndrome. METHODS: In this two-stage, multicentre, randomised trial, patients aged 18 years or older and presenting with an acute coronary syndrome at 58 centres in China, Italy, Pakistan, and the UK were randomly assigned to intravascular ultrasound-guided percutaneous coronary intervention or angiography-guided percutaneous coronary intervention. Patients, follow-up health-care providers, and assessors were masked to random assignment; however, staff in the catheterisation laboratory were not. The primary endpoint was target vessel failure, a composite of cardiac death, target vessel myocardial infarction, or clinically driven target vessel revascularisation at 1 year after randomisation. This trial is registered at ClinicalTrials.gov, NCT03971500, and is completed. FINDINGS: Between Aug 20, 2019 and Oct 27, 2022, 3505 patients with an acute coronary syndrome were randomly assigned to intravascular ultrasound-guided percutaneous coronary intervention (n=1753) or angiography-guided percutaneous coronary intervention (n=1752). 1-year follow-up was completed in 3504 (>99·9%) patients. The primary endpoint occurred in 70 patients in the intravascular ultrasound group and 128 patients in the angiography group (Kaplan-Meier rate 4·0% vs 7·3%; hazard ratio 0·55 [95% CI 0·41-0·74]; p=0·0001), driven by reductions in target vessel myocardial infarction or target vessel revascularisation. There were no significant differences in all-cause death or stent thrombosis between groups. Safety endpoints were also similar in the two groups. INTERPRETATION: In patients with an acute coronary syndrome, intravascular ultrasound-guided implantation of contemporary drug-eluting stents resulted in a lower 1-year rate of the composite outcome of cardiac death, target vessel myocardial infarction, or clinically driven revascularisation compared with angiography guidance alone. FUNDING: The Chinese Society of Cardiology, the National Natural Scientific Foundation of China, and Jiangsu Provincial & Nanjing Municipal Clinical Trial Project. TRANSLATION: For the Mandarin translation of the abstract see Supplementary Materials section.


Assuntos
Síndrome Coronariana Aguda , Angiografia Coronária , Stents Farmacológicos , Intervenção Coronária Percutânea , Ultrassonografia de Intervenção , Humanos , Síndrome Coronariana Aguda/terapia , Síndrome Coronariana Aguda/diagnóstico por imagem , Síndrome Coronariana Aguda/cirurgia , Intervenção Coronária Percutânea/métodos , Ultrassonografia de Intervenção/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Angiografia Coronária/métodos , Idoso , Resultado do Tratamento , China
13.
J Virol ; 98(2): e0195423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289102

RESUMO

During the life cycle of mosquito-borne flaviviruses, substantial subgenomic flaviviral RNA (sfRNA) is produced via incomplete degradation of viral genomic RNA by host XRN1. Zika virus (ZIKV) sfRNA has been detected in mosquito and mammalian somatic cells. Human neural progenitor cells (hNPCs) in the developing brain are the major target cells of ZIKV, and antiviral RNA interference (RNAi) plays a critical role in hNPCs. However, whether ZIKV sfRNA was produced in ZIKV-infected hNPCs as well as its function remains not known. In this study, we demonstrate that abundant sfRNA was produced in ZIKV-infected hNPCs. RNA pulldown and mass spectrum assays showed ZIKV sfRNA interacted with host proteins RHA and PACT, both of which are RNA-induced silencing complex (RISC) components. Functionally, ZIKV sfRNA can antagonize RNAi by outcompeting small interfering RNAs (siRNAs) in binding to RHA and PACT. Furthermore, the 3' stem loop (3'SL) of sfRNA was responsible for RISC components binding and RNAi inhibition, and 3'SL can enhance the replication of a viral suppressor of RNAi (VSR)-deficient virus in a RHA- and PACT-dependent manner. More importantly, the ability of binding to RISC components is conversed among multiple flaviviral 3'SLs. Together, our results identified flavivirus 3'SL as a potent VSR in RNA format, highlighting the complexity in virus-host interaction during flavivirus infection.IMPORTANCEZika virus (ZIKV) infection mainly targets human neural progenitor cells (hNPCs) and induces cell death and dysregulated cell-cycle progression, leading to microcephaly and other central nervous system abnormalities. RNA interference (RNAi) plays critical roles during ZIKV infections in hNPCs, and ZIKV has evolved to encode specific viral proteins to antagonize RNAi. Herein, we first show that abundant sfRNA was produced in ZIKV-infected hNPCs in a similar pattern to that in other cells. Importantly, ZIKV sfRNA acts as a potent viral suppressor of RNAi (VSR) by competing with siRNAs for binding RISC components, RHA and PACT. The 3'SL of sfRNA is responsible for binding RISC components, which is a conserved feature among mosquito-borne flaviviruses. As most known VSRs are viral proteins, our findings highlight the importance of viral non-coding RNAs during the antagonism of host RNAi-based antiviral innate immunity.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Humanos , Mamíferos/genética , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Viral/genética , RNA Viral/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , RNA Subgenômico , Proteínas Virais/metabolismo , Replicação Viral , Zika virus/fisiologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
14.
FASEB J ; 38(1): e23397, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38149908

RESUMO

Toxoplasma gondii relies heavily on the de novo pyrimidine biosynthesis pathway for fueling the high uridine-5'-monophosphate (UMP) demand during parasite growth. The third step of de novo pyrimidine biosynthesis is catalyzed by dihydroorotase (DHO), a metalloenzyme that catalyzes the reversible condensation of carbamoyl aspartate to dihydroorotate. Here, functional analyses of TgDHO reveal that tachyzoites lacking DHO are impaired in overall growth due to decreased levels of UMP, and the noticeably growth restriction could be partially rescued after supplementation with uracil or high concentrations of L-dihydroorotate in vitro. When pyrimidine salvage pathway is disrupted, both DHOH35A and DHOD284E mutant strains proliferated much slower than DHO-expressing parasites, suggesting an essential role of both TgDHO His35 and Asp284 residues in parasite growth. Additionally, DHO deletion causes the limitation of bradyzoite growth under the condition of uracil supplementation or uracil deprivation. During the infection in mice, the DHO-deficient parasites are avirulent, despite the generation of smaller tissue cysts. The results reveal that TgDHO contributes to parasite growth both in vitro and in vivo. The significantly differences between TgDHO and mammalian DHO reflect that DHO can be exploited to produce specific inhibitors targeting apicomplexan parasites. Moreover, potential DHO inhibitors exert beneficial effects on enzymatic activity of TgDHO and T. gondii growth in vitro. In conclusion, these data highlight the important role of TgDHO in parasite growth and reveal that it is a promising anti-parasitic target for future control of toxoplasmosis.


Assuntos
Parasitos , Toxoplasma , Animais , Camundongos , Di-Hidro-Orotase , Pirimidinas/farmacologia , Uracila , Uridina Monofosfato , Mamíferos
15.
Arterioscler Thromb Vasc Biol ; 44(1): 156-176, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37942612

RESUMO

BACKGROUND: Senescence is a series of degenerative changes in the structure and physiological function of an organism. Whether JPX (just proximal to XIST)-a newly identified age-related noncoding RNA by us-is associated with atherosclerosis is still unknown. Our study was to investigate the role of JPX and provide insights into potential therapies targeting atherosclerosis. METHODS: We analyzed clinical data from multiple tissues including meniscus tissue, leukemia cells, and peripheral blood monocytes to identify age-related noncoding RNAs in senescent vascular smooth muscle cells (VSMCs). The molecular mechanism of JPX was investigated by capture hybridization analysis of RNA targets and chromatin immunoprecipitation. IGVTools and real-time quantitative polymerase chain reaction were used to evaluate the JPX expression during phenotype regulation in age-related disease models. The therapeutic potential of JPX was evaluated after establishing an atherosclerosis model in smooth muscle-specific Jpx knockout mice. RESULTS: JPX expression was upregulated in activated ras allele (H-rasV12)-induced senescent VSMCs and atherosclerotic arteries. JPX knockdown substantially reduced the elevation of senescence-associated secretory phenotype (SASP) genes in senescent VSMCs. Cytoplasmic DNA leaked from mitochondria via mitochondrial permeability transition pore formed by VDAC1 (voltage-dependent anion channel 1) oligomer activates the STING (stimulator of interferon gene) pathway. JPX could act as an enhancer for the SASP genes and functions as a scaffold molecule through interacting with phosphorylated p65/RelA and BRD4 (bromodomain-containing protein 4) in chromatin remodeling complex, promoting the transcription of SASP genes via epigenetic regulation. Smooth muscle knockout of Jpx in ApoeKO mice resulted in a decrease in plaque area, a reduction in SASP gene expression, and a decrease in senescence compared with controls. CONCLUSIONS: As an enhancer RNA, JPX can integrate p65 and BRD4 to form a chromatin remodeling complex, activating SASP gene transcription and promoting cellular senescence. These findings suggest that JPX is a potential therapeutic target for the treatment of age-related atherosclerosis.


Assuntos
Aterosclerose , RNA Longo não Codificante , Camundongos , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Músculo Liso Vascular/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cromatina , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Epigênese Genética , Aterosclerose/genética , Aterosclerose/metabolismo , Senescência Celular/genética , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo
16.
Cell ; 141(2): 315-30, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20403326

RESUMO

RIG-I detects invading viral RNA and activates the transcription factors NF-kappaB and IRF3 through the mitochondrial protein MAVS. Here we show that RNA bearing 5'-triphosphate strongly activates the RIG-I-IRF3 signaling cascade in a reconstituted system composed of RIG-I, mitochondria, and cytosol. Activation of RIG-I requires not only RNA but also polyubiquitin chains linked through lysine 63 (K63) of ubiquitin. RIG-I binds specifically to K63-polyubiquitin chains through its tandem CARD domains in a manner that depends on RNA and ATP. Mutations in the CARD domains that abrogate ubiquitin binding also impair RIG-I activation. Remarkably, unanchored K63-ubiquitin chains, which are not conjugated to any target protein, potently activate RIG-I. These ubiquitin chains function as an endogenous ligand of RIG-I in human cells. Our results delineate the mechanism of RIG-I activation, identify CARD domains as a ubiquitin sensor, and demonstrate that unanchored K63-polyubiquitin chains are signaling molecules in antiviral innate immunity.


Assuntos
RNA Helicases DEAD-box/metabolismo , Imunidade Inata , RNA Viral/imunologia , Transdução de Sinais , Enzimas de Conjugação de Ubiquitina/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Proteína DEAD-box 58 , RNA Helicases DEAD-box/imunologia , Humanos , Quinase I-kappa B/metabolismo , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 3 de Interferon/metabolismo , Polifosfatos/metabolismo , Poliubiquitina/metabolismo , RNA de Cadeia Dupla/imunologia , Receptores Imunológicos , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/metabolismo
17.
Exp Cell Res ; : 114194, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127440

RESUMO

OBJECTIVE: The purpose of this study was to investigate the role and possible mechanism of lncRNA XIST in renal fibrosis and to provide potential endogenous targets for renal fibrosis in obstructive nephropathy (ON). METHODS: The study included 50 cases of ON with renal fibrosis (samples taken from patients undergoing nephrectomy due to ON) and 50 cases of normal renal tissue (samples taken from patients undergoing total or partial nephrectomy due to accidental injury, congenital malformations, and benign tumors). Treatment of human proximal renal tubular epithelium (HK-2) cells with TGF-ß1 simulated renal fibrosis in vitro. Cell viability and proliferation were measured by CCK-8 and EdU, and cell migration was measured by transwell. XIST, miR-124-3p, ITGB1, and epithelial-mesenchymal transition (EMT)-related proteins (E-cadherin, α-SMA, and fibronectin) were detected by PCR and immunoblot. The targeting relationship between miR-124-3p and XIST or ITGB1 was verified by starBase and dual luciferase reporter gene experiments. In addition, The left ureter was ligated in mice as a model of unilateral ureteral obstruction (UUO), and the renal histopathology was observed by HE staining and Masson staining. RESULTS: ON patients with renal fibrosis had elevated XIST and ITGB1 levels and reduced miR-124-3p levels. The administration of TGF-ß1 exhibited a dose-dependent promotion of HK-2 cell viability, proliferation, migration, and EMT. Conversely, depleting XIST or enhancing miR-124-3p hindered HK-2 cell viability, proliferation, migration, and EMT in TGF-ß1-damaged HK-2 cells HK-2 cells. XIST functioned as a miR-124-3p sponge. Additionally, miR-124-3p negatively regulated ITGB1 expression. Elevating ITGB1 weakened the impact of XIST depletion on TGF-ß1-damaged HK-2 cells. Down-regulating XIST improved renal fibrosis in UUO mice. CONCLUSION: XIST promotes renal fibrosis in ON by elevating miR-124-3p and reducing ITGB1 expressions.

18.
Nature ; 575(7781): 164-168, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31695212

RESUMO

Shape-morphing systems, which can perform complex tasks through morphological transformations, are of great interest for future applications in minimally invasive medicine1,2, soft robotics3-6, active metamaterials7 and smart surfaces8. With current fabrication methods, shape-morphing configurations have been embedded into structural design by, for example, spatial distribution of heterogeneous materials9-14, which cannot be altered once fabricated. The systems are therefore restricted to a single type of transformation that is predetermined by their geometry. Here we develop a strategy to encode multiple shape-morphing instructions into a micromachine by programming the magnetic configurations of arrays of single-domain nanomagnets on connected panels. This programming is achieved by applying a specific sequence of magnetic fields to nanomagnets with suitably tailored switching fields, and results in specific shape transformations of the customized micromachines under an applied magnetic field. Using this concept, we have built an assembly of modular units that can be programmed to morph into letters of the alphabet, and we have constructed a microscale 'bird' capable of complex behaviours, including 'flapping', 'hovering', 'turning' and 'side-slipping'. This establishes a route for the creation of future intelligent microsystems that are reconfigurable and reprogrammable in situ, and that can therefore adapt to complex situations.

19.
Nature ; 565(7737): 101-105, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30568299

RESUMO

A defining feature of adaptive immunity is the development of long-lived memory T cells to curtail infection. Recent studies have identified a unique stem-like T-cell subset amongst exhausted CD8-positive T cells in chronic infection1-3, but it remains unclear whether CD4-positive T-cell subsets with similar features exist in chronic inflammatory conditions. Amongst helper T cells, TH17 cells have prominent roles in autoimmunity and tissue inflammation and are characterized by inherent plasticity4-7, although how such plasticity is regulated is poorly understood. Here we demonstrate that TH17 cells in a mouse model of autoimmune disease are functionally and metabolically heterogeneous; they contain a subset with stemness-associated features but lower anabolic metabolism, and a reciprocal subset with higher metabolic activity that supports transdifferentiation into TH1-like cells. These two TH17-cell subsets are defined by selective expression of the transcription factors TCF-1 and T-bet, and by discrete levels of CD27 expression. We also identify signalling via the kinase complex mTORC1 as a central regulator of TH17-cell fate decisions by coordinating metabolic and transcriptional programmes. TH17 cells with disrupted mTORC1 signalling or anabolic metabolism fail to induce autoimmune neuroinflammation or to develop into TH1-like cells, but instead upregulate TCF-1 expression and acquire stemness-associated features. Single-cell RNA sequencing and experimental validation reveal heterogeneity in fate-mapped TH17 cells, and a developmental arrest in the TH1 transdifferentiation trajectory upon loss of mTORC1 activity or metabolic perturbation. Our results establish that the dichotomy of stemness and effector function underlies the heterogeneous TH17 responses and autoimmune pathogenesis, and point to previously unappreciated metabolic control of plasticity in helper T cells.


Assuntos
Transdiferenciação Celular , Células-Tronco/citologia , Células-Tronco/metabolismo , Células Th17/citologia , Células Th17/metabolismo , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/patologia , Modelos Animais de Doenças , Feminino , Memória Imunológica/imunologia , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Proteína Regulatória Associada a mTOR/deficiência , Proteína Regulatória Associada a mTOR/genética , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Células-Tronco/imunologia , Fator 1 de Transcrição de Linfócitos T/biossíntese , Fator 1 de Transcrição de Linfócitos T/metabolismo , Proteínas com Domínio T/biossíntese , Proteínas com Domínio T/metabolismo , Células Th17/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
20.
Proc Natl Acad Sci U S A ; 119(31): e2202884119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35878036

RESUMO

Traditional sulfide metallurgy produces harmful sulfur dioxide and is energy intensive. To this end, we develop an anode electrolysis approach in molten salt by which sulfide is electrochemically split into sulfur gas at a graphite inert anode while releasing metal ions that diffuse toward and are deposited at the cathode. The anodic splitting dictates the "sulfide-to-metal ion and sulfur gas" conversion that makes the reaction recur continuously. Using this approach, Cu2S is converted to sulfur gas and Cu in molten LiCl-KCl at 500 °C with a current efficiency of 99% and energy consumption of 0.420 kWh/kg-Cu (only considering the electricity for electrolysis). Besides Cu2S, the anode electrolysis can extract Cu from Cu matte that is an intermediate product from the traditional sulfide smelting process. More broadly, Fe, Ni, Pb, and Sb are extracted from FeS, CuFeS2, NiS, PbS, and Sb2S3, providing a general electrochemical method for sulfide metallurgy.


Assuntos
Eletrólise , Sulfetos , Eletrodos , Eletrólise/métodos , Grafite , Metais/síntese química , Sulfetos/química , Enxofre/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA