Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Int J Biometeorol ; 67(9): 1409-1421, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37479847

RESUMO

Evaluating the interactions between cold requirements for leaf coloration and environmental cues is crucial for understanding the mechanisms of leaf senescence and accurately predicting autumn phenology. Based on remote sensing-derived and ground-observed leaf coloration dates for deciduous broadleaf forests during 1981-2014, we determined location-specific cold requirements for autumn leaf coloration and assessed their spatiotemporal changes. Then, we revealed the major environmental cues of cold requirements and their spatial differentiation. Results show that cold requirements have nonsignificant trends during the past decades at 57.9% of pixels. The interannual variation of cold requirements was mainly influenced by growing-season accumulated temperature (GDDgs) at 35.8% of pixels and accumulated growing season index (AGSI) at 23.2% of pixels, but less affected by leaf unfolding and low precipitation index (LPI). The increase in GDDgs or AGSI may decrease cold requirements, and vice versa. The spatial differentiations of the effects of GDDgs and AGSI depend highly on local summer temperature among climatic classifications with similar humidity conditions. Specifically, the effects of GDDgs on cold requirements concentrated in humid regions with warmer summers, while that of AGSI mainly occurred in humid and winter dry regions with cooler summers. Higher summer temperatures would strengthen the effects of GDDgs and reduce the effects of AGSI on cold requirements. These findings deepen the understanding of the influences of environmental factors on leaf senescence progress and suggest that the shifts of factors affecting cold requirements under global warming may enlarge the uncertainty in predicting autumn leaf coloration dates.


Assuntos
Sinais (Psicologia) , Árvores , Florestas , Estações do Ano , Temperatura , Folhas de Planta , Mudança Climática
2.
Infection ; 50(3): 739-746, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35013942

RESUMO

PURPOSE: We aimed to explore the association between urinary tract infection (UTI) in adults and serum 25-hydroxyvitamin D (25OHD), which was used to access vitamin D status. METHODS: Serum levels of 25OHD were retrospectively analyzed in 234 subjects (190 females and 44 males): 120 UTI patients (females = 103) and 114 age- and sex-matched healthy controls (females = 87). Serum 25OHD concentrations were categorized as follows: (1) < 20 ng/mL, 20 to < 30 ng/mL, and ≥ 30 ng/mL; (2) < 20 ng/mL and ≥ 20 ng/mL. RESULTS: Serum 25OHD levels were lower in patients with UTI (p < 0.01). Women with UTI presented significantly lower 25OHD concentrations than those without UTI (p < 0.01). No association between serum 25OHD levels and UTI in men was found (p > 0.05). The multivariable logistic regression models showed significant associations between UTI and 25OHD, female sex, neutrophilic lymphocyte ratio and C-reactive protein (p < 0.05). CONCLUSION: Lower 25OHD concentrations associated with UTI were most prominent among women. The associations between UTI and low serum 25OHD levels as well as female sex were independent of each other.


Assuntos
Infecções Urinárias , Deficiência de Vitamina D , Vitamina D , Adulto , Proteína C-Reativa/metabolismo , Feminino , Humanos , Masculino , Estudos Retrospectivos , Infecções Urinárias/sangue , Vitamina D/sangue , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/microbiologia
3.
BMC Nephrol ; 21(1): 541, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33308181

RESUMO

BACKGROUND: Blood pressure is an important and modifiable cardiovascular risk factor. Ambulatory blood pressure monitoring (ABPM) provides valuable prognostic information in patients with chronic kidney disease (CKD), yet little is known about the association of various types of BP measurements with target organ damage (TOD) in patients with primary glomerular disease. The goal of this study was to investigate whether ambulatory blood pressure is better associated with TOD than clinic blood pressure in patients with primary glomerular disease. METHODS: 1178 patients with primary glomerular disease were recruited in this cross-sectional study. TOD were assessed by the following 4 parameters: left ventricular mass index (LVMI or LVH, left ventricular hypertrophy), estimated glomerular filtration rate (eGFR< 60 ml/min/1.73m2), albumin-to-creatinine ratio (ACR ≥ 30 mg/g) and carotid intima-media thickness (cIMT) or plaque. Receiver operating characteristic (ROC) curve and multivariate logistic regression analyses were used to evaluate the relationship between ambulatory or clinic systolic blood pressure (SBP) indexes and TOD. RESULTS: Among 1178 patients (mean age, 39 years,54% men), 116, 458, 1031 and 251 patients had LVH, eGFR < 60 ml/min/1.73m2, ACR ≥ 30 mg/g and cIMT≥0.9 mm or plaque respectively. Area under ROC curves for TOD in ambulatory SBP, especially nighttime SBP, was greater than that in clinic SBP (P < 0.05). Multivariate logistic regression analyses showed that 24 h SBP, daytime SBP and nighttime SBP were significantly associated with LVH, eGFR< 60 ml/min/1.73m2 and ACR ≥ 30 mg/g after adjustment for clinic SBP, while the association of clinic SBP was attenuated after further adjustment for nighttime SBP. CONCLUSIONS: Ambulatory blood pressure, especially nighttime blood pressure, is probably superior to clinic blood pressure and has a significant association with TOD in primary glomerular disease patients.


Assuntos
Monitorização Ambulatorial da Pressão Arterial , Doenças das Artérias Carótidas/epidemiologia , Taxa de Filtração Glomerular , Glomerulonefrite/fisiopatologia , Hipertensão/diagnóstico , Hipertrofia Ventricular Esquerda/epidemiologia , Placa Aterosclerótica/epidemiologia , Adulto , Doenças das Artérias Carótidas/etiologia , Espessura Intima-Media Carotídea , Creatinina/metabolismo , Feminino , Glomerulonefrite/complicações , Glomerulonefrite por IGA/complicações , Glomerulonefrite por IGA/fisiopatologia , Glomerulonefrite Membranoproliferativa/fisiopatologia , Glomerulonefrite Membranosa/complicações , Glomerulonefrite Membranosa/fisiopatologia , Glomerulosclerose Segmentar e Focal/fisiopatologia , Humanos , Hipertensão/complicações , Hipertensão/fisiopatologia , Hipertrofia Ventricular Esquerda/etiologia , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Nefrose Lipoide/complicações , Nefrose Lipoide/fisiopatologia , Placa Aterosclerótica/etiologia , Prognóstico , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/fisiopatologia , Albumina Sérica/metabolismo , Adulto Jovem
4.
Int J Biometeorol ; 64(9): 1549-1560, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32415618

RESUMO

Examining whether a phenophase occurrence date in the current year affects the same phenophase occurrence date in the following year is crucial for developing cross-year phenological prediction models. Here, we carried out correlation analyses between leaf unfolding start (LUS)/leaf fall end (LFE) dates in the current and following years for four dominant tree species in temperate northern China from 1981 to 2012. Then, we calculated the recurrence intervals of LUS and LFE between two adjacent years for each species. Moreover, we investigated temperature effects on LUS/LFE dates, growing season and non-growing season lengths. Results show that correlation coefficients between LUS/LFE dates in the current and following years are nonsignificant at most stations. The recurrence interval of a phenophase has slight interannual variation and correlates significantly (and negatively) with the phenophase occurrence date of the current year. Further analyses indicate that LUS dates correlate significantly (and negatively) with spring mean temperatures, while LFE dates correlate significantly (and positively) with autumn mean temperatures, but negatively with growing season mean temperatures. In addition, spring mean temperatures can influence growing season length by controlling LUS date but cannot influence the following non-growing season length. Similarly, autumn mean temperatures and growing season mean temperatures can influence the subsequent non-growing season length but cannot influence the growing season length of the following year. Our study highlights that recurrence interval and time restrictions in the effects of seasonal temperatures on phenophase dates are the main environmental causes of nonsignificant correlations between phenophase occurrence dates in the current and following years.


Assuntos
Folhas de Planta , Árvores , China , Mudança Climática , Estações do Ano , Temperatura
5.
Int J Biometeorol ; 64(11): 1911-1922, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32740667

RESUMO

Using leaf area index (LAI) data from 1981 to 2014 in the tropical moist forest eco-zone of South America, we extracted start (SOS) and end (EOS) dates of the active growing season in forest and savanna at each pixel. Then, we detected spatiotemporal characteristics of SOS and EOS in the two vegetation types. Moreover, we analyzed relationships between interannual variations of SOS/EOS and climatic factors, and simulated SOS/EOS time series based on preceding mean air temperature and accumulated rainfall. Results show that mean SOS and EOS ranged from 260 to 330 day of year (DOY) and from 150 to 260 DOY across the study region, respectively. From 1981 to 2014, SOS advancement is more extensive than SOS delay, while EOS advancement and delay are similarly extensive. For most pixels of forest and savanna in tropical moist forest eco-zone, preceding rainfall correlates predominantly negatively with SOS but positively with EOS, while the relationship between preceding temperature and phenophases is location-specific. In addition, preceding rainfall is more extensive than preceding temperature in simulating SOS, while both preceding rainfall and temperature play an important role for simulating EOS. This study highlights the reliability of using LAI data for long-term phenological analysis in the tropical moist forest eco-zone.


Assuntos
Florestas , Reprodutibilidade dos Testes , Estações do Ano , América do Sul , Temperatura
6.
J Environ Sci (China) ; 80: 257-266, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30952343

RESUMO

Light-absorbing carbonaceous aerosols including black carbon (BC) and brown carbon (BrC) play significant roles in atmospheric radiative properties. One-year measurements of aerosol light absorption at multi-wavelength were continuously conducted in Xiamen, southeast of China in 2014 to determine the light absorption properties including absorption coefficients (σabs) and absorption Ångström exponent (AAE) in the coastal city. Light absorptions of BC and BrC with their contributions to total light absorption were further quantified. Mean σabs at 370 nm and 880 nm were 56.6 ±â€¯34.3 and 16.5 ±â€¯11.2 Mm-1, respectively. σabs presented a double-peaks diurnal pattern with the maximum in the morning and the minimum in the afternoon. σabs was low in warm seasons and high in cold seasons. AAE ranged from 0.26 to 2.58 with the annual mean of 1.46, implying that both fossil fuel combustion and biomass burning influenced aerosol optical properties. σabs of BrC at 370 nm was 24.0 ±â€¯5.7 Mm-1, contributing 42% to the total absorption. The highest AAE (1.52 ±â€¯0.02) and largest BrC contributions (47% ±â€¯4%) in winter suggested the significant influence of biomass burning on aerosol light absorption. Long-distance air masses passing through North China Plain and the Yangtze River Delta led to high AAE and BrC contributions. High AAE value of 1.46 in July indicated that long-range transport of the air pollutants from intense biomass burning in Southeast Asia would affect aerosol light absorption in Southeast China. The study will improve the understanding of light absorption properties of aerosols and the optical impacts of BrC in China.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Absorção Fisico-Química , China , Combustíveis Fósseis , Material Particulado
7.
Glob Chang Biol ; 24(8): 3537-3545, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29460318

RESUMO

Autumn phenology remains a relatively neglected aspect in climate change research, which hinders an accurate assessment of the global carbon cycle and its sensitivity to climate change. Leaf coloration, a key indicator of the growing season end, is thought to be triggered mainly by high or low temperature and drought. However, how the control of leaf coloration is split between temperature and drought is not known for many species. Moreover, whether growing season and autumn temperatures interact in influencing the timing of leaf coloration is not clear. Here, we revealed major climate drivers of leaf coloration dates and their interactions using 154 phenological datasets for four winter deciduous tree species at 89 stations, and the corresponding daily mean/minimum air temperature and precipitation data across China's temperate zone from 1981 to 2012. Results show that temperature is more decisive than drought in causing leaf coloration, and the growing season mean temperature plays a more important role than the autumn mean minimum temperature. Higher growing season temperature and lower autumn minimum temperature would induce earlier leaf coloration date. Moreover, the mean temperature over the growing season correlates positively with the autumn minimum temperature. This implies that growing season mean temperature may offset the requirement of autumn minimum temperature in triggering leaf coloration. Our findings deepen the understanding of leaf coloration mechanisms in winter deciduous trees and suggest that leaf life-span control depended on growing season mean temperature and autumn low temperature control and their interaction are major environmental cues. In the context of climate change, whether leaf coloration date advances or is delayed may depend on intensity of the offset effect of growing season temperature on autumn low temperature.


Assuntos
Mudança Climática , Secas , Temperatura , Árvores/fisiologia , China , Cor , Pigmentação , Folhas de Planta/fisiologia , Populus/fisiologia , Robinia/fisiologia , Salix/fisiologia , Estações do Ano , Ulmus/fisiologia
8.
Int J Biometeorol ; 61(4): 601-612, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27562030

RESUMO

Plant phenology is a key link for controlling interactions between climate change and biogeochemical cycles. Satellite-derived normalized difference vegetation index (NDVI) has been extensively used to detect plant phenology at regional scales. Here, we introduced a new vegetation index, plant senescence reflectance index (PSRI), and determined PSRI-derived start (SOS) and end (EOS) dates of the growing season using Moderate Resolution Imaging Spectroradiometer data from 2000 to 2011 in the Inner Mongolian Grassland. Then, we validated the reliability of PSRI-derived SOS and EOS dates using NDVI-derived SOS and EOS dates. Moreover, we conducted temporal and spatial correlation analyses between PSRI-derived SOS/EOS date and climatic factors and revealed spatiotemporal patterns of PSRI-derived SOS and EOS dates across the entire research region at pixel scales. Results show that PSRI has similar performance with NDVI in extracting SOS and EOS dates in the Inner Mongolian Grassland. Precipitation regime is the key climate driver of interannual variation of grassland phenology, while temperature and precipitation regimes are the crucial controlling factors of spatial differentiation of grassland phenology. Thus, PSRI-derived vegetation phenology can effectively reflect land surface vegetation dynamics and its response to climate change. Moreover, a significant linear trend of PSRI-derived SOS and EOS dates was detected only at small portions of pixels, which is consistent with that of greenup and brownoff dates of herbaceous plant species in the Inner Mongolian Grassland. Overall, PSRI is a useful and robust metric in addition to NDVI for monitoring land surface grassland phenology.


Assuntos
Mudança Climática , Pradaria , Desenvolvimento Vegetal , Estações do Ano , China , Imagens de Satélites , Temperatura
9.
Int J Biometeorol ; 61(10): 1733-1748, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28466416

RESUMO

Using woody plant phenological data in the Beijing Botanical Garden from 1979 to 2013, we revealed three levels of phenology rhythms and examined their coherence with temperature rhythms. First, the sequential and correlative rhythm shows that occurrence dates of various phenological events obey a certain time sequence within a year and synchronously advance or postpone among years. The positive correlation between spring phenophase dates is much stronger than that between autumn phenophase dates and attenuates as the time interval between two spring phenophases increases. This phenological rhythm can be explained by positive correlation between above 0 °C mean temperatures corresponding to different phenophase dates. Second, the circannual rhythm indicates that recurrence interval of a phenophase in the same species in two adjacent years is about 365 days, which can be explained by the 365-day recurrence interval in the first and last dates of threshold temperatures. Moreover, an earlier phenophase date in the current year may lead to a later phenophase date in the next year through extending recurrence interval. Thus, the plant phenology sequential and correlative rhythm and circannual rhythm are interacted, which mirrors the interaction between seasonal variation and annual periodicity of temperature. Finally, the multi-year rhythm implies that phenophase dates display quasi-periodicity more than 1 year. The same 12-year periodicity in phenophase and threshold temperature dates confirmed temperature controls of the phenology multi-year rhythm. Our findings provide new perspectives for examining phenological response to climate change and developing comprehensive phenology models considering temporal coherence of phenological and climatic rhythmicity.


Assuntos
Magnoliopsida/crescimento & desenvolvimento , Pequim , Clima , Estações do Ano , Temperatura
10.
Environ Toxicol ; 32(3): 877-889, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27203204

RESUMO

Maternal exposure to airborne particulate matter with aerodynamic diameter <2.5 µm (PM2.5 ) during pregnancy and lactation periods is associated with filial congenital cardiovascular diseases. This study aimed to investigate the toxic effects of maternal exposure to ambient levels of PM2.5 on filial cardiovascular maldevelopment induced by homocysteine. Using a 2 × 2 factorial design, rats were randomized into four groups and were exposed to ambient PM2.5 or filtered air (FA) throughout the pregnancy and lactation periods coupled with the administration of either homocysteine (HCY) or normal saline (NS) daily from gestation days 8-10. Morphological changes in the heart, myocardial apoptosis, expressions of cardiac progenitor transcriptional factors, and levels of cytokines were investigated in the offspring. The apoptosis-like changes in the myocardium were seen in the FA plus HCY-treated group and more obviously in the PM2.5 plus HCY-treated group, which was in accordance with an increased myocardial apoptosis rate in the two groups. PM2.5 exposure resulted in significantly decreased Nkx2-5 protein level and GATA4 and Nkx2-5 mRNA expressions, and significantly increased TNF-α and IL-1ß levels. There were significant interactions between PM2.5 exposure and HCY-treatment that PM2.5 exposure reduced Nkx2-5 protein levels and GATA4 and Nkx2-5 mRNA expressions in the HCY-treated groups. These results suggest that maternal exposure to PM2.5 , even at the ambient levels in urban regions in China, exaggerates filial cardiovascular maldevelopment induced by HCY in a murine model, exacerbating structural abnormalities in the filial cardiac tissue, which is possibly associated with oxidative stress and reduced GATA4 and Nkx2-5 transcription factor expressions. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 877-889, 2017.


Assuntos
Coração/efeitos dos fármacos , Homocisteína/farmacologia , Miocárdio/metabolismo , Material Particulado/toxicidade , Animais , Regulação para Baixo/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Feminino , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Interleucina-1beta/sangue , Masculino , Exposição Materna , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Fator de Necrose Tumoral alfa/sangue
11.
Glob Chang Biol ; 22(9): 3057-66, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27103613

RESUMO

Understanding vegetation responses to climate change on the Tibetan Plateau (TP) helps in elucidating the land-atmosphere energy exchange, which affects air mass movement over and around the TP. Although the TP is one of the world's most sensitive regions in terms of climatic warming, little is known about how the vegetation responds. Here, we focus on how spring phenology and summertime greenness respond to the asymmetric warming, that is, stronger warming during nighttime than during daytime. Using both in situ and satellite observations, we found that vegetation green-up date showed a stronger negative partial correlation with daily minimum temperature (Tmin ) than with maximum temperature (Tmax ) before the growing season ('preseason' henceforth). Summer vegetation greenness was strongly positively correlated with summer Tmin , but negatively with Tmax . A 1-K increase in preseason Tmin advanced green-up date by 4 days (P < 0.05) and in summer enhanced greenness by 3.6% relative to the mean greenness during 2000-2004 (P < 0.01). In contrast, increases in preseason Tmax did not advance green-up date (P > 0.10) and higher summer Tmax even reduced greenness by 2.6% K(-1) (P < 0.05). The stimulating effects of increasing Tmin were likely caused by reduced low temperature constraints, and the apparent negative effects of higher Tmax on greenness were probably due to the accompanying decline in water availability. The dominant enhancing effect of nighttime warming indicates that climatic warming will probably have stronger impact on TP ecosystems than on apparently similar Arctic ecosystems where vegetation is controlled mainly by Tmax . Our results are crucial for future improvements of dynamic vegetation models embedded in the Earth System Models which are being used to describe the behavior of the Asian monsoon. The results are significant because the state of the vegetation on the TP plays an important role in steering the monsoon.


Assuntos
Mudança Climática , Plantas , Temperatura , Regiões Árticas , Estações do Ano , Tibet
12.
Glob Chang Biol ; 21(10): 3635-46, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25906987

RESUMO

Rapid temperature increase and its impacts on alpine ecosystems in the Qinghai-Tibetan Plateau, the world's highest and largest plateau, are a matter of global concern. Satellite observations have revealed distinctly different trend changes and contradicting temperature responses of vegetation green-up dates, leading to broad debate about the Plateau's spring phenology and its climatic attribution. Large uncertainties in remote-sensing estimates of phenology significantly limit efforts to predict the impacts of climate change on vegetation growth and carbon balance in the Qinghai-Tibetan Plateau, which are further exacerbated by a lack of detailed ground observation calibration. Here, we revealed the spatiotemporal variations and climate drivers of ground-based herbaceous plant green-up dates using 72 green-up datasets for 22 herbaceous plant species at 23 phenological stations, and corresponding daily mean air temperature and daily precipitation data from 19 climate stations across eastern and southern parts of the Qinghai-Tibetan Plateau from 1981 to 2011. Results show that neither the continuously advancing trend from 1982 to 2011, nor a turning point in the mid to late 1990s as reported by remote-sensing studies can be verified by most of the green-up time series, and no robust evidence for a warmer winter-induced later green-up dates can be detected. Thus, chilling requirements may not be an important driver influencing green-up responses to spring warming. Moreover, temperature-only control of green-up dates appears mainly at stations with relatively scarce preseason snowfall and lower elevation, while coupled temperature and precipitation controls of green-up dates occur mostly at stations with relatively abundant preseason snowfall and higher elevation. The diversified interactions between snowfall and temperature during late winter to early spring likely determine the spatiotemporal variations of green-up dates. Therefore, prediction of vegetation growth and carbon balance responses to global climate change on the world's roof should integrate both temperature and snowfall variations.


Assuntos
Mudança Climática , Magnoliopsida/crescimento & desenvolvimento , Neve , Altitude , China , Ecossistema , Temperatura
13.
Int J Biometeorol ; 59(10): 1437-52, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25627826

RESUMO

Using leaf unfolding and leaf coloration data of a widely distributed herbaceous species, Taraxacum mongolicum, we detected linear trend and temperature response of the growing season at 52 stations from 1990 to 2009. Across the research region, the mean growing season beginning date marginal significantly advanced at a rate of -2.1 days per decade, while the mean growing season end date was significantly delayed at a rate of 3.1 days per decade. The mean growing season length was significantly prolonged at a rate of 5.1 days per decade. Over the 52 stations, linear trends of the beginning date correlate negatively with linear trends of spring temperature, whereas linear trends of the end date and length correlate positively with linear trends of autumn temperature and annual mean temperature. Moreover, the growing season linear trends are also closely related to the growing season responses to temperature and geographic coordinates plus elevation. Regarding growing season responses to temperature, a 1 °C increase in regional mean spring temperature results in an advancement of 2.1 days in regional mean growing season beginning date, and a 1 °C increase in regional mean autumn temperature causes a delay of 2.3 days in regional mean growing season end date. A 1 °C increase in regional annual mean temperature induces an extension of 8.7 days in regional mean growing season length. Over the 52 stations, response of the beginning date to spring temperature depends mainly on local annual mean temperature and geographic coordinates plus elevation. Namely, a 1 °C increase in spring temperature induces a larger advancement of the beginning date at warmer locations with lower latitudes and further west longitudes than at colder locations with higher latitudes and further east longitudes, while a 1 °C increase in spring temperature causes a larger advancement of the beginning date at higher than at lower elevations.


Assuntos
Mudança Climática , Taraxacum/fisiologia , China , Geografia , Folhas de Planta/fisiologia , Estações do Ano , Temperatura
14.
Int J Biometeorol ; 58(4): 463-71, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24065573

RESUMO

This work was undertaken to examine the combined effect of air temperature and precipitation during late winter and early spring on modeling greenup date of grass species in the Inner Mongolian Grassland. We used the traditional thermal time model and developed two revised thermal time models coupling air temperature and precipitation to simulate greenup date of three dominant grass species at six stations from 1983 to 2009. Results show that climatic controls on greenup date of grass species were location-specific. The revised thermal time models coupling air temperature and precipitation show higher simulation parsimony and efficiency than the traditional thermal time model for five of 11 data sets at Bayartuhushuo, Xilinhot and Xianghuangqi, whereas the traditional thermal time model indicates higher simulation parsimony and efficiency than the revised thermal time models coupling air temperature and precipitation for the other six data sets at E'ergunayouqi, Ewenkeqi and Chaharyouyihouqi. The mean root mean square error of the 11 models is 4.9 days. Moreover, the influence of late winter and early spring precipitation on greenup date seems to be stronger at stations with scarce precipitation than at stations with relatively abundant precipitation. From the mechanism perspectives, accumulated late winter and early spring precipitation may play a more important role as the precondition of forcing temperature than as the supplementary condition of forcing temperature in triggering greenup. Our findings suggest that predicting responses of grass phenology to global climate change should consider both thermal and moisture scenarios in some semiarid and arid areas.


Assuntos
Modelos Teóricos , Poaceae/crescimento & desenvolvimento , China , Chuva , Temperatura
15.
Sci Total Environ ; 934: 173280, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38768721

RESUMO

Simulating the timing of leaf fall in large scale is crucial for accurate estimation of ecosystem carbon sequestration. However, the limited understanding of leaf senescence mechanisms often impedes the accuracy of simulation and prediction. In this study, we employed the advanced process-based models to fit remote sensing-derived end dates of the growing season (EOS) across deciduous broadleaf forests in the Northern Hemisphere, and revealed the spatial pattern associated with two leaf senescence pathways (i.e., either photoperiod- or temperature- initiated leaf senescence) and their potential effects on EOS prediction. The results show that the pixel-specific optimum models effectively fitted all EOS time series. Leaf senescence in 67.6 % and 32.4 % of pixels was initiated by shortening daylength and declining temperature, respectively. Shortening daylength triggered leaf senescence occurs mainly in areas with shorter summer daylength and/or warmer autumns, whereas declining temperature induced leaf senescence appears primarily in areas with longer summer daylength and/or colder autumns. The strong dependence of leaf senescence initiation cues on local temperature conditions implies that the ongoing increase in autumn temperature has the potential to alter the leaf senescence initiation, shifting from temperature cues to photoperiod signals. This shift would occur in 26.2-49.6 % of the areas where leaf senescence is initiated by declining temperature under RCP 4.5 and 8.5 scenarios, while forest areas where leaf senescence is induced by shortening daylength may expand northward. The overall delaying of the currently predicted EOS would therefore slow down by 4.5-10.3 % under the two warming scenarios. This implies that the adaptive nature of plants will reduce the overestimation of changes in carbon exchange capacity between ecosystems and atmosphere. Our study offers novel insights into understanding the mechanism of leaf senescence and improving the estimation of autumn phenology and ecosystem carbon balance in the deciduous broadleaf forests.


Assuntos
Florestas , Folhas de Planta , Estações do Ano , Temperatura , Folhas de Planta/fisiologia , Senescência Vegetal , Árvores/fisiologia , Tecnologia de Sensoriamento Remoto , Sequestro de Carbono , Fotoperíodo
16.
Sci Total Environ ; 929: 172553, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38663615

RESUMO

As a sensitive indicator of climate change and a key variable in ecosystem surface-atmosphere interaction, vegetation phenology, and the growing season length, as well as climatic factors (i.e., temperature, precipitation, and sunshine duration) are widely recognized as key factors influencing vegetation productivity. Recent studies have highlighted the importance of soil moisture in regulating grassland productivity. However, the relative importance of phenology, climatic factors, and soil moisture to plant species-level productivity across China's grasslands remains poorly understood. Here, we use nearly four decades (1981 to 2018) of in situ species-level observations from 17 stations distributed across grasslands in China to examine the key mechanisms that control grassland productivity. The results reveal that soil moisture is the strongest determinant of the interannual variability in grassland productivity. In contrast, the spring/autumn phenology, the length of vegetation growing season, and climate factors have relatively minor impacts. Generally, annual aboveground biomass increases by 3.9 to 25.3 g∙m2 (dry weight) with a 1 % increase in growing season mean soil moisture across the stations. Specifically, the sensitivity of productivity to moisture in wetter and colder environments (e.g., alpine meadows) is significantly higher than that in drier and warmer environments (e.g., temperate desert steppes). In contrast, the sensitivity to the precipitation of the latter is greater than the former. The effect of soil moisture is the most pronounced during summer. Dominant herb productivity is more sensitive to soil moisture than the others. Moreover, multivariate regression analyses show that the primary climatic factors and their attributions to variations in soil moisture differ among the stations, indicating the interaction between climate and soil moisture is very complex. Our study highlights the interspecific difference in the soil moisture dependence of grassland productivity and provides guidance to climate change impact assessments in grassland ecosystems.


Assuntos
Mudança Climática , Pradaria , Solo , China , Solo/química , Estações do Ano , Monitoramento Ambiental , Biomassa , Clima
17.
Front Plant Sci ; 14: 1327509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38273945

RESUMO

Climate warming has induced significant shifts in spring phenology over both temperate and boreal forests. The timing of bud growth resuming from dormancy is crucial for predicting spring phenology. However, the mechanisms by which environmental cues, other than chilling accumulation, initiate bud growth remains unclear. By constructing a revised process-based spring phenology model incorporating photoperiod and temperature triggers of bud growth, we simulated the first leaf unfolding and first flowering dates of four deciduous forest trees during 1981-2014 at 102 stations across China's monsoon regions. Then, we revealed spatial patterns of the two triggers. Moreover, we compared fitting precision and robustness of the revised model with three mainstream models. Results show that the revised models can effectively simulate all spring phenology time series. Growth initiation of foliar and floral buds was induced by photoperiod lengthening in 80.8% and 77.7% of time series, and by temperature increasing in remaining 19.2% and 22.3% of time series, respectively. The proportions of time series with photoperiod- and temperature-initiated bud growth significantly increase and decrease from northern to southern climatic zones, respectively. Chilling exposure controls the predominant bud growth triggers in different climate zones. Specifically, in regions with long and severe winters where chilling requirement is easily fulfilled, rising temperature in spring alleviates the cold constraint and initiate bud growth. Conversely, in regions with short and mild winters, prolonged daylength in spring compensates the lack of chilling exposure to initiate bud growth. These findings suggest that photoperiod may limit spring phenology response to temperature in low-latitudes. Overall, our model slightly outperforms other models in terms of efficiency, accuracy, and robustness in modeling leaf unfolding and flowering dates. Therefore, this study deepens our understanding of the mechanisms of spring phenology, and improves the predicting capability of spring phenology models in the face of ongoing global warming.

18.
Int J Biometeorol ; 56(4): 695-706, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21805230

RESUMO

Using Ulmus pumila (Siberian Elm) leaf unfolding and leaf fall phenological data from 46 stations in the temperate zone of China for the period 1986-2005, we detected linear trends in both start and end dates and length of the growing season. Moreover, we defined the optimum length period during which daily mean temperature affects the growing season start and end dates most markedly at each station in order to more precisely and rationally identify responses of the growing season to temperature. On average, the growing season start date advanced significantly at a rate of -4.0 days per decade, whereas the growing season end date was delayed significantly at a rate of 2.2 days per decade and the growing season length was prolonged significantly at a rate of 6.5 days per decade across the temperate zone of China. Thus, the growing season extension was induced mainly by the advancement of the start date. At individual stations, linear trends of the start date correlate negatively with linear trends of spring temperature during the optimum length period, namely, the quicker the spring temperature increased at a station, the quicker the start date advanced. With respect to growing season response to interannual temperature variation, a 1°C increase in spring temperature during the optimum length period may induce an advancement of 2.8 days in the start date of the growing season, whereas a 1°C increase in autumn temperature during the optimum length period may cause a delay of 2.1 days in the end date of the growing season, and a 1°C increase in annual mean temperature may result in a lengthening of the growing season of 9 days across the temperate zone of China. Therefore, the response of the start date to temperature is more sensitive than the response of the end date. At individual stations, the sensitivity of growing season response to temperature depends obviously on local thermal conditions, namely, either the negative response of the start date or the positive response of the end date and growing season length to temperature was stronger at warmer locations than at colder locations. Thus, future regional climate warming may enhance the sensitivity of plant phenological response to temperature, especially in colder regions.


Assuntos
Mudança Climática , Folhas de Planta/crescimento & desenvolvimento , Ulmus/crescimento & desenvolvimento , China , Clima , Estações do Ano , Temperatura
19.
J Environ Sci (China) ; 24(7): 1225-33, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23513443

RESUMO

Haze phenomena were found to have an increasing tendency in recent years in Yong'an, a mountainous industrial city located in the center part of Fujian Province, China. Atmospheric fine particles (PM2.5) in the urban area during haze periods in three seasons (spring, autumn and winter) from 2007 to 2008 were collected, and the mass concentrations and chemical compositions (seventeen elements, water soluble inorganic ions (WSIIs) and carbonaceous species) of PM2.5 were determined. PM2.5 mass concentrations did not show a distinct difference among the three seasons. The carbonaceous species organic carbon (OC) and elemental carbon (EC) constituted up to 19.2%-30.4% of the PM2.5 mass during sampling periods, while WSIIs made up 25.3%-52.5% of the PM2.5 mass. The major ions in PM2.5 were SO4(2-), NO3(-) and NH4(+), while the major elements were Si, K, Pb, Zn, Ca and Al. The experimental results (from data based on three haze periods with a 10-day sampling length for each period) showed that the crustal element species was the most abundant component of PM2.5 in spring, and the secondary ions species (5O4(2-), NO3(-), NH4(+), etc.) was the most abundant component in PM2.5 in autumn and winter. This indicated that dust was the primary pollution source for PM2.5 in spring and combustion and traffic emissions could be the main pollution sources for PM2.5 in autumn and winter. Generally, coal combustion and traffic emissions were considered to be the most prominent pollution sources for this city on haze days.


Assuntos
Poluição do Ar/análise , Material Particulado/química , Aerossóis , Poluição do Ar/estatística & dados numéricos , China , Cidades/estatística & dados numéricos , Elementos Químicos , Íons/análise , Compostos Orgânicos/análise , Material Particulado/análise , Estações do Ano , Tempo (Meteorologia)
20.
Front Plant Sci ; 13: 844971, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392512

RESUMO

The phenology of alpine grassland on the Qinghai-Tibet Plateau (QTP) is critical to regional climate change through climate-vegetation feedback. Although many studies have examined QTP vegetation dynamics and their climate sensitivities, the interspecific difference in the phenology response to climate change between alpine species is poorly understood. Here, we used a 30-year (1989-2018) record of in situ phenological observation for five typical alpine herbs (Elymus nutans, Kobresia pygmaea, Plantago asiatica, Puccinellia tenuiflora, and Scirpus distigmaticus) and associated climatic records at Henan Station in the eastern QTP to examine the species-level difference in spring and autumn phenology and then quantify their climate sensitivities. Our results show that with significantly warming, the green-up dates of herbs were insignificantly shifted, while the brown-off dates in four out of the five herbs were significantly delayed. Meanwhile, the interspecific difference in brown-off dates significantly increased at a rate of 0.62 days/annual from 1989 to 2016, which was three times larger than that in green-up dates (0.20 days/annual). These diverse rates were attributed to the different climate controls on spring and autumn phenology. In particular, green-up dates in most herbs were sensitive to mean surface temperature, while brown-off dates were sensitive to the night surface temperature. Furthermore, brown-off dates are less sensitive to the warming in high ecological niche (with higher herb height and aboveground biomass) herbs than low niche herbs (with lower herb height and aboveground biomass). The increased phenology interspecific difference highlights the complex responses of herbs to future climate change even under the same alpine environment and indicates a potential alternation in the plants community of alpine QTP, which may further influence the regional climate-vegetation feedback.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA