Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.127
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(6): 949-966.e19, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35247329

RESUMO

Beige fat plays key roles in the regulation of systemic energy homeostasis; however, detailed mechanisms and safe strategy for its activation remain elusive. In this study, we discovered that local hyperthermia therapy (LHT) targeting beige fat promoted its activation in humans and mice. LHT achieved using a hydrogel-based photothermal therapy activated beige fat, preventing and treating obesity in mice without adverse effects. HSF1 is required for the effects since HSF1 deficiency blunted the metabolic benefits of LHT. HSF1 regulates Hnrnpa2b1 (A2b1) transcription, leading to increased mRNA stability of key metabolic genes. Importantly, analysis of human association studies followed by functional analysis revealed that the HSF1 gain-of-function variant p.P365T is associated with improved metabolic performance in humans and increased A2b1 transcription in mice and cells. Overall, we demonstrate that LHT offers a promising strategy against obesity by inducing beige fat activation via HSF1-A2B1 transcriptional axis.


Assuntos
Tecido Adiposo Bege , Tecido Adiposo Branco , Hipertermia Induzida , Obesidade/terapia , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
2.
Cell ; 178(6): 1509-1525.e19, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491389

RESUMO

Most tissue-resident macrophage (RTM) populations are seeded by waves of embryonic hematopoiesis and are self-maintained independently of a bone marrow contribution during adulthood. A proportion of RTMs, however, is constantly replaced by blood monocytes, and their functions compared to embryonic RTMs remain unclear. The kinetics and extent of the contribution of circulating monocytes to RTM replacement during homeostasis, inflammation, and disease are highly debated. Here, we identified Ms4a3 as a specific gene expressed by granulocyte-monocyte progenitors (GMPs) and subsequently generated Ms4a3TdT reporter, Ms4a3Cre, and Ms4a3CreERT2 fate-mapping models. These models traced efficiently monocytes and granulocytes, but no lymphocytes or tissue dendritic cells. Using these models, we precisely quantified the contribution of monocytes to the RTM pool during homeostasis and inflammation. The unambiguous identification of monocyte-derived cells will permit future studies of their function under any condition.


Assuntos
Proteínas de Ciclo Celular/genética , Expressão Gênica , Células Progenitoras de Granulócitos e Macrófagos/metabolismo , Granulócitos/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/genética , Monócitos/metabolismo , Animais , Células Progenitoras de Granulócitos e Macrófagos/citologia , Granulócitos/citologia , Hematopoese/fisiologia , Homeostase/fisiologia , Inflamação/metabolismo , Macrófagos/citologia , Camundongos , Monócitos/citologia
3.
Annu Rev Cell Dev Biol ; 33: 291-318, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28800257

RESUMO

Semiconservative DNA replication has provided an elegant solution to the fundamental problem of how life is able to proliferate in a way that allows cells, organisms, and populations to survive and replicate many times over. Somewhat lost, however, in our admiration for this mechanism is an appreciation for the asymmetries that occur in the process of DNA replication. As we discuss in this review, these asymmetries arise as a consequence of the structure of the DNA molecule and the enzymatic mechanism of DNA synthesis. Increasing evidence suggests that asymmetries in DNA replication are able to play a central role in the processes of adaptation and evolution by shaping the mutagenic landscape of cells. Additionally, in eukaryotes, recent work has demonstrated that the inherent asymmetries in DNA replication may play an important role in the process of chromatin replication. As chromatin plays an essential role in defining cell identity, asymmetries generated during the process of DNA replication may play critical roles in cell fate decisions related to patterning and development.


Assuntos
Replicação do DNA , Animais , Linhagem da Célula/genética , Cromatina/metabolismo , Humanos , Modelos Genéticos
4.
Annu Rev Genet ; 56: 113-143, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-35905975

RESUMO

The discovery of biased histone inheritance in asymmetrically dividing Drosophila melanogaster male germline stem cells demonstrates one means to produce two distinct daughter cells with identical genetic material. This inspired further studies in different systems, which revealed that this phenomenon may be a widespread mechanism to introduce cellular diversity. While the extent of asymmetric histone inheritance could vary among systems, this phenomenon is proposed to occur in three steps: first, establishment of histone asymmetry between sister chromatids during DNA replication; second, recognition of sister chromatids carrying asymmetric histone information during mitosis; and third, execution of this asymmetry in the resulting daughter cells. By compiling the current knowledge from diverse eukaryotic systems, this review comprehensively details and compares known chromatin factors, mitotic machinery components, and cell cycle regulators that may contribute to each of these three steps. Also discussed are potential mechanisms that introduce and regulate variable histone inheritance modes and how these different modes may contribute to cell fate decisions in multicellular organisms.


Assuntos
Drosophila melanogaster , Histonas , Animais , Histonas/genética , Drosophila melanogaster/genética , Padrões de Herança , Cromatina/genética , Cromátides
5.
Cell ; 163(4): 920-33, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26522592

RESUMO

A long-standing question concerns how stem cells maintain their identity through multiple divisions. Previously, we reported that pre-existing and newly synthesized histone H3 are asymmetrically distributed during Drosophila male germline stem cell (GSC) asymmetric division. Here, we show that phosphorylation at threonine 3 of H3 (H3T3P) distinguishes pre-existing versus newly synthesized H3. Converting T3 to the unphosphorylatable residue alanine (H3T3A) or to the phosphomimetic aspartate (H3T3D) disrupts asymmetric H3 inheritance. Expression of H3T3A or H3T3D specifically in early-stage germline also leads to cellular defects, including GSC loss and germline tumors. Finally, compromising the activity of the H3T3 kinase Haspin enhances the H3T3A but suppresses the H3T3D phenotypes. These studies demonstrate that H3T3P distinguishes sister chromatids enriched with distinct pools of H3 in order to coordinate asymmetric segregation of "old" H3 into GSCs and that tight regulation of H3T3 phosphorylation is required for male germline activity.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Espermatogênese , Animais , Proteínas de Drosophila/química , Drosophila melanogaster/citologia , Células Germinativas/citologia , Células Germinativas/metabolismo , Histonas/química , Masculino , Mitose , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Testículo/metabolismo , Treonina/metabolismo
6.
Nature ; 629(8014): 1041-1046, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720078

RESUMO

Electrocaloric1,2 and electrostrictive3,4 effects concurrently exist in dielectric materials. Combining these two effects could achieve the lightweight, compact localized thermal management that is promised by electrocaloric refrigeration5. Despite a handful of numerical models and schematic presentations6,7, current electrocaloric refrigerators still rely on external accessories to drive the working bodies8-10 and hence result in a low device-level cooling power density and coefficient of performance (COP). Here we report an electrocaloric thin-film device that uses the electro-thermomechanical synergy provided by polymeric ferroelectrics. Under one-time a.c. electric stimulation, the device is thermally and mechanically cycled by the working body itself, resulting in an external-driver-free, self-cycling, soft refrigerator. The prototype offers a directly measured cooling power density of 6.5 W g-1 and a peak COP exceeding 58 under a zero temperature span. Being merely a 30-µm-thick polymer film, the device achieved a COP close to 24 under a 4 K temperature span in an open ambient environment (32% thermodynamic efficiency). Compared with passive cooling, the thin-film refrigerator could immediately induce an additional 17.5 K temperature drop against an electronic chip. The soft, polymeric refrigerator can sense, actuate and pump heat to provide automatic localized thermal management.


Assuntos
Polímeros , Refrigeração , Termodinâmica , Refrigeração/instrumentação , Polímeros/química , Temperatura Baixa , Eletricidade , Desenho de Equipamento , Estimulação Elétrica , Temperatura
7.
Nature ; 626(7998): 411-418, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297130

RESUMO

Ferroptosis, a form of regulated cell death that is driven by iron-dependent phospholipid peroxidation, has been implicated in multiple diseases, including cancer1-3, degenerative disorders4 and organ ischaemia-reperfusion injury (IRI)5,6. Here, using genome-wide CRISPR-Cas9 screening, we identified that the enzymes involved in distal cholesterol biosynthesis have pivotal yet opposing roles in regulating ferroptosis through dictating the level of 7-dehydrocholesterol (7-DHC)-an intermediate metabolite of distal cholesterol biosynthesis that is synthesized by sterol C5-desaturase (SC5D) and metabolized by 7-DHC reductase (DHCR7) for cholesterol synthesis. We found that the pathway components, including MSMO1, CYP51A1, EBP and SC5D, function as potential suppressors of ferroptosis, whereas DHCR7 functions as a pro-ferroptotic gene. Mechanistically, 7-DHC dictates ferroptosis surveillance by using the conjugated diene to exert its anti-phospholipid autoxidation function and shields plasma and mitochondria membranes from phospholipid autoxidation. Importantly, blocking the biosynthesis of endogenous 7-DHC by pharmacological targeting of EBP induces ferroptosis and inhibits tumour growth, whereas increasing the 7-DHC level by inhibiting DHCR7 effectively promotes cancer metastasis and attenuates the progression of kidney IRI, supporting a critical function of this axis in vivo. In conclusion, our data reveal a role of 7-DHC as a natural anti-ferroptotic metabolite and suggest that pharmacological manipulation of 7-DHC levels is a promising therapeutic strategy for cancer and IRI.


Assuntos
Desidrocolesteróis , Ferroptose , Humanos , Membrana Celular/metabolismo , Colesterol/biossíntese , Colesterol/metabolismo , Sistemas CRISPR-Cas/genética , Desidrocolesteróis/metabolismo , Genoma Humano , Nefropatias/metabolismo , Membranas Mitocondriais/metabolismo , Metástase Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Fosfolipídeos/metabolismo , Traumatismo por Reperfusão/metabolismo
8.
Mol Cell ; 82(10): 1821-1835.e6, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35381197

RESUMO

GLS1 orchestrates glutaminolysis and promotes cell proliferation when glutamine is abundant by regenerating TCA cycle intermediates and supporting redox homeostasis. CB-839, an inhibitor of GLS1, is currently under clinical investigation for a variety of cancer types. Here, we show that GLS1 facilitates apoptosis when glutamine is deprived. Mechanistically, the absence of exogenous glutamine sufficiently reduces glutamate levels to convert dimeric GLS1 to a self-assembled, extremely low-Km filamentous polymer. GLS1 filaments possess an enhanced catalytic activity, which further depletes intracellular glutamine. Functionally, filamentous GLS1-dependent glutamine scarcity leads to inadequate synthesis of asparagine and mitogenome-encoded proteins, resulting in ROS-induced apoptosis that can be rescued by asparagine supplementation. Physiologically, we observed GLS1 filaments in solid tumors and validated the tumor-suppressive role of constitutively active, filamentous GLS1 mutants K320A and S482C in xenograft models. Our results change our understanding of GLS1 in cancer metabolism and suggest the therapeutic potential of promoting GLS1 filament formation.


Assuntos
Glutaminase , Glutamina , Apoptose , Asparagina/genética , Glutaminase/genética , Glutaminase/metabolismo , Glutamina/metabolismo , Humanos , Espécies Reativas de Oxigênio
9.
Nature ; 619(7970): 533-538, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37407823

RESUMO

Weather forecasting is important for science and society. At present, the most accurate forecast system is the numerical weather prediction (NWP) method, which represents atmospheric states as discretized grids and numerically solves partial differential equations that describe the transition between those states1. However, this procedure is computationally expensive. Recently, artificial-intelligence-based methods2 have shown potential in accelerating weather forecasting by orders of magnitude, but the forecast accuracy is still significantly lower than that of NWP methods. Here we introduce an artificial-intelligence-based method for accurate, medium-range global weather forecasting. We show that three-dimensional deep networks equipped with Earth-specific priors are effective at dealing with complex patterns in weather data, and that a hierarchical temporal aggregation strategy reduces accumulation errors in medium-range forecasting. Trained on 39 years of global data, our program, Pangu-Weather, obtains stronger deterministic forecast results on reanalysis data in all tested variables when compared with the world's best NWP system, the operational integrated forecasting system of the European Centre for Medium-Range Weather Forecasts (ECMWF)3. Our method also works well with extreme weather forecasts and ensemble forecasts. When initialized with reanalysis data, the accuracy of tracking tropical cyclones is also higher than that of ECMWF-HRES.

10.
EMBO J ; 43(2): 196-224, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177502

RESUMO

Ion channels, transporters, and other ion-flux controlling proteins, collectively comprising the "ion permeome", are common drug targets, however, their roles in cancer remain understudied. Our integrative pan-cancer transcriptome analysis shows that genes encoding the ion permeome are significantly more often highly expressed in specific subsets of cancer samples, compared to pan-transcriptome expectations. To enable target selection, we identified 410 survival-associated IP genes in 33 cancer types using a machine-learning approach. Notably, GJB2 and SCN9A show prominent expression in neoplastic cells and are associated with poor prognosis in glioblastoma, the most common and aggressive brain cancer. GJB2 or SCN9A knockdown in patient-derived glioblastoma cells induces transcriptome-wide changes involving neuron projection and proliferation pathways, impairs cell viability and tumor sphere formation in vitro, perturbs tunneling nanotube dynamics, and extends the survival of glioblastoma-bearing mice. Thus, aberrant activation of genes encoding ion transport proteins appears as a pan-cancer feature defining tumor heterogeneity, which can be exploited for mechanistic insights and therapy development.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Glioblastoma/patologia , Agressão , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Transcriptoma , Transporte de Íons/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Canal de Sódio Disparado por Voltagem NAV1.7/genética
11.
Nature ; 609(7929): 1021-1028, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36131014

RESUMO

Medulloblastoma (MB) comprises a group of heterogeneous paediatric embryonal neoplasms of the hindbrain with strong links to early development of the hindbrain1-4. Mutations that activate Sonic hedgehog signalling lead to Sonic hedgehog MB in the upper rhombic lip (RL) granule cell lineage5-8. By contrast, mutations that activate WNT signalling lead to WNT MB in the lower RL9,10. However, little is known about the more commonly occurring group 4 (G4) MB, which is thought to arise in the unipolar brush cell lineage3,4. Here we demonstrate that somatic mutations that cause G4 MB converge on the core binding factor alpha (CBFA) complex and mutually exclusive alterations that affect CBFA2T2, CBFA2T3, PRDM6, UTX and OTX2. CBFA2T2 is expressed early in the progenitor cells of the cerebellar RL subventricular zone in Homo sapiens, and G4 MB transcriptionally resembles these progenitors but are stalled in developmental time. Knockdown of OTX2 in model systems relieves this differentiation blockade, which allows MB cells to spontaneously proceed along normal developmental differentiation trajectories. The specific nature of the split human RL, which is destined to generate most of the neurons in the human brain, and its high level of susceptible EOMES+KI67+ unipolar brush cell progenitor cells probably predisposes our species to the development of G4 MB.


Assuntos
Diferenciação Celular , Neoplasias Cerebelares , Meduloblastoma , Metencéfalo , Diferenciação Celular/genética , Linhagem da Célula , Neoplasias Cerebelares/classificação , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Cerebelo/embriologia , Cerebelo/patologia , Subunidades alfa de Fatores de Ligação ao Core/genética , Proteínas Hedgehog/metabolismo , Histona Desmetilases , Humanos , Antígeno Ki-67/metabolismo , Meduloblastoma/classificação , Meduloblastoma/genética , Meduloblastoma/patologia , Metencéfalo/embriologia , Metencéfalo/patologia , Proteínas Musculares , Mutação , Fatores de Transcrição Otx/deficiência , Fatores de Transcrição Otx/genética , Proteínas Repressoras , Proteínas com Domínio T/metabolismo , Fatores de Transcrição
12.
Development ; 151(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39007366

RESUMO

Many tissue-specific adult stem cell lineages maintain a balance between proliferation and differentiation. Here, we study how the H3K4me3 methyltransferase Set1 regulates early-stage male germ cells in Drosophila. Early-stage germline-specific knockdown of Set1 results in temporally progressive defects, arising as germ cell loss and developing into overpopulated early-stage germ cells. These germline defects also impact the niche architecture and cyst stem cell lineage non-cell-autonomously. Additionally, wild-type Set1, but not the catalytically inactive Set1, rescues the Set1 knockdown phenotypes, highlighting the functional importance of the methyltransferase activity of Set1. Further, RNA-sequencing experiments reveal key signaling pathway components, such as the JAK-STAT pathway gene Stat92E and the BMP pathway gene Mad, which are upregulated upon Set1 knockdown. Genetic interaction assays support the functional relationships between Set1 and JAK-STAT or BMP pathways, as both Stat92E and Mad mutations suppress the Set1 knockdown phenotypes. These findings enhance our understanding of the balance between proliferation and differentiation in an adult stem cell lineage. The phenotype of germ cell loss followed by over-proliferation when inhibiting a histone methyltransferase also raises concerns about using their inhibitors in cancer therapy.


Assuntos
Diferenciação Celular , Proteínas de Drosophila , Drosophila melanogaster , Células Germinativas , Histona-Lisina N-Metiltransferase , Transdução de Sinais , Animais , Masculino , Diferenciação Celular/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Transdução de Sinais/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Células Germinativas/metabolismo , Células Germinativas/citologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/genética , Janus Quinases/metabolismo , Janus Quinases/genética , Proliferação de Células/genética , Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento
13.
Plant Cell ; 36(3): 626-641, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-37950906

RESUMO

Sphingolipids are components of plant membranes, and their heterogeneous distribution gives different membrane systems distinct properties. For example, glycosyl inositol phosphoceramides (GIPCs), 1 major type of sphingolipids, aggregate in the outer layer of the plasma membrane (PM), as well as in extracellular vesicles (EVs), including the small (30 to 100 nm) EVs termed exosomes. How these sphingolipids are sorted and trafficked is not clear. In this work, we report that Arabidopsis thaliana TETRASPANIN8 (TET8) acts as a sphingolipid carrier and thus regulates the export of GIPCs from the Golgi apparatus. TET8 recognized the coat protein complex I (COPI) subunit γ2-COPI and moved to its proper location in the PM; this recognition required the TET8 C-terminal tail. Deleting the C-terminal tail of TET8 largely restricted its roles in GIPC transport and endosomal trafficking. Further, we show that TET8 affects EV secretion in association with GIPCs. Thus, our findings shed light on GIPC transport and the molecular machinery involved in EV biogenesis.


Assuntos
Arabidopsis , Exossomos , Arabidopsis/genética , Arabidopsis/metabolismo , Exossomos/metabolismo , Inositol/metabolismo , Esfingolipídeos , Complexo I de Proteína do Envoltório/metabolismo
14.
Cell ; 150(6): 1147-57, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22980978

RESUMO

Transcription elongation is increasingly recognized as an important mechanism of gene regulation. Here, we show that microprocessor controls gene expression in an RNAi-independent manner. Microprocessor orchestrates the recruitment of termination factors Setx and Xrn2, and the 3'-5' exoribonuclease, Rrp6, to initiate RNAPII pausing and premature termination at the HIV-1 promoter through cleavage of the stem-loop RNA, TAR. Rrp6 further processes the cleavage product, which generates a small RNA that is required to mediate potent transcriptional repression and chromatin remodeling at the HIV-1 promoter. Using chromatin immunoprecipitation coupled to high-throughput sequencing (ChIP-seq), we identified cellular gene targets whose transcription is modulated by microprocessor. Our study reveals RNAPII pausing and premature termination mediated by the co-operative activity of ribonucleases, Drosha/Dgcr8, Xrn2, and Rrp6, as a regulatory mechanism of RNAPII-dependent transcription elongation.


Assuntos
Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Regulação Viral da Expressão Gênica , HIV-1/genética , RNA Helicases/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica , Sequência de Bases , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , DNA Helicases , Repetição Terminal Longa de HIV , Humanos , Dados de Sequência Molecular , Enzimas Multifuncionais , Regiões Promotoras Genéticas , Interferência de RNA , RNA Viral/química , RNA Viral/genética , Fatores de Transcrição/metabolismo
15.
Cell ; 149(2): 307-21, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22500798

RESUMO

Kinase inhibitors have limited success in cancer treatment because tumors circumvent their action. Using a quantitative proteomics approach, we assessed kinome activity in response to MEK inhibition in triple-negative breast cancer (TNBC) cells and genetically engineered mice (GEMMs). MEK inhibition caused acute ERK activity loss, resulting in rapid c-Myc degradation that induced expression and activation of several receptor tyrosine kinases (RTKs). RNAi knockdown of ERK or c-Myc mimicked RTK induction by MEK inhibitors, and prevention of proteasomal c-Myc degradation blocked kinome reprogramming. MEK inhibitor-induced RTK stimulation overcame MEK2 inhibition, but not MEK1 inhibition, reactivating ERK and producing drug resistance. The C3Tag GEMM for TNBC similarly induced RTKs in response to MEK inhibition. The inhibitor-induced RTK profile suggested a kinase inhibitor combination therapy that produced GEMM tumor apoptosis and regression where single agents were ineffective. This approach defines mechanisms of drug resistance, allowing rational design of combination therapies for cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , MAP Quinase Quinase 1/antagonistas & inibidores , Proteínas Quinases/genética , Proteoma/análise , Animais , Antineoplásicos/uso terapêutico , Benzenossulfonatos/uso terapêutico , Benzimidazóis/uso terapêutico , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Niacinamida/análogos & derivados , Compostos de Fenilureia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Piridinas/uso terapêutico , Receptores Proteína Tirosina Quinases/genética , Sorafenibe
16.
Nature ; 600(7890): 664-669, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34937898

RESUMO

More than a decade of research on the electrocaloric (EC) effect has resulted in EC materials and EC multilayer chips that satisfy a minimum EC temperature change of 5 K required for caloric heat pumps1-3. However, these EC temperature changes are generated through the application of high electric fields4-8 (close to their dielectric breakdown strengths), which result in rapid degradation and fatigue of EC performance. Here we report a class of EC polymer that exhibits an EC entropy change of 37.5 J kg-1 K-1 and a temperature change of 7.5 K under 50 MV m-1, a 275% enhancement over the state-of-the-art EC polymers under the same field strength. We show that converting a small number of the chlorofluoroethylene groups in poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer into covalent double bonds markedly increases the number of the polar entities and enhances the polar-nonpolar interfacial areas of the polymer. The polar phases in the polymer adopt a loosely correlated, high-entropy state with a low energy barrier for electric-field-induced switching. The polymer maintains performance for more than one million cycles at the low fields necessary for practical EC cooling applications, suggesting that this strategy may yield materials suitable for use in caloric heat pumps.

17.
Proc Natl Acad Sci U S A ; 121(21): e2322501121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38748578

RESUMO

Biological regulation often depends on reversible reactions such as phosphorylation, acylation, methylation, and glycosylation, but rarely halogenation. A notable exception is the iodination and deiodination of thyroid hormones. Here, we report detection of bromotyrosine and its subsequent debromination during Drosophila spermatogenesis. Bromotyrosine is not evident when Drosophila express a native flavin-dependent dehalogenase that is homologous to the enzyme responsible for iodide salvage from iodotyrosine in mammals. Deletion or suppression of the dehalogenase-encoding condet (cdt) gene in Drosophila allows bromotyrosine to accumulate with no detectable chloro- or iodotyrosine. The presence of bromotyrosine in the cdt mutant males disrupts sperm individualization and results in decreased fertility. Transgenic expression of the cdt gene in late-staged germ cells rescues this defect and enhances tolerance of male flies to bromotyrosine. These results are consistent with reversible halogenation affecting Drosophila spermatogenesis in a process that had previously eluded metabolomic, proteomic, and genomic analyses.


Assuntos
Proteínas de Drosophila , Fertilidade , Espermatogênese , Tirosina , Animais , Masculino , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Tirosina/metabolismo , Tirosina/análogos & derivados , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila/genética , Drosophila/metabolismo , Animais Geneticamente Modificados , Hidrolases/metabolismo , Hidrolases/genética
18.
Proc Natl Acad Sci U S A ; 121(4): e2314396121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38236736

RESUMO

In our quest to leverage the capabilities of the emerging single-atom catalysts (SACs) for wastewater purification, we confronted fundamental challenges related to electron scarcity and instability. Through meticulous theoretical calculations, we identified optimal placements for nitrogen vacancies (Nv) and iron (Fe) single-atom sites, uncovering a dual-site approach that significantly amplified visible-light absorption and charge transfer dynamics. Informed by these computational insights, we cleverly integrated Nv into the catalyst design to boost electron density around iron atoms, yielding a potent and flexible photoactivator for benign peracetic acid. This exceptional catalyst exhibited remarkable stability and effectively degraded various organic contaminants over 20 cycles with self-cleaning properties. Specifically, the Nv sites captured electrons, enabling their swift transfer to adjacent Fe sites under visible light irradiation. This mechanism accelerated the reduction of the formed "peracetic acid-catalyst" intermediate. Theoretical calculations were used to elucidate the synergistic interplay of dual mechanisms, illuminating increased adsorption and activation of reactive molecules. Furthermore, electron reduction pathways on the conduction band were elaborately explored, unveiling the production of reactive species that enhanced photocatalytic processes. A six-flux model and associated parameters were also applied to precisely optimize the photocatalytic process, providing invaluable insights for future photocatalyst design. Overall, this study offers a molecule-level insight into the rational design of robust SACs in a photo-Fenton-like system, with promising implications for wastewater treatment and other high-value applications.

19.
Proc Natl Acad Sci U S A ; 121(25): e2400568121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857392

RESUMO

Nano ferroelectrics holds the potential application promise in information storage, electro-mechanical transformation, and novel catalysts but encounters a huge challenge of size limitation and manufacture complexity on the creation of long-range ferroelectric ordering. Herein, as an incipient ferroelectric, nanosized SrTiO3 was indued with polarized ordering at room temperature from the nonpolar cubic structure, driven by the intrinsic three-dimensional (3D) tensile strain. The ferroelectric behavior can be confirmed by piezoelectric force microscopy and the ferroelectric TO1 soft mode was verified with the temperature stability to 500 K. Its structural origin comes from the off-center shift of Ti atom to oxygen octahedron and forms the ultrafine head-to-tail connected 90° nanodomains about 2 to 3 nm, resulting in an overall spontaneous polarization toward the short edges of nanoparticles. According to the density functional theory calculations and phase-field simulations, the 3D strain-related dipole displacement transformed from [001] to [111] and segmentation effect on the ferroelectric domain were further proved. The topological ferroelectric order induced by intrinsic 3D tensile strain shows a unique approach to get over the nanosized limitation in nanodevices and construct the strong strain-polarization coupling, paving the way for the design of high-performance and free-assembled ferroelectric devices.

20.
Proc Natl Acad Sci U S A ; 121(10): e2319366121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422020

RESUMO

Acute myeloid leukemia (AML) is an aging-related and heterogeneous hematopoietic malignancy. In this study, a total of 1,474 newly diagnosed AML patients with RNA sequencing data were enrolled, and targeted or whole exome sequencing data were obtained in 94% cases. The correlation of aging-related factors including age and clonal hematopoiesis (CH), gender, and genomic/transcriptomic profiles (gene fusions, genetic mutations, and gene expression networks or pathways) was systematically analyzed. Overall, AML patients aged 60 y and older showed an apparently dismal prognosis. Alongside age, the frequency of gene fusions defined in the World Health Organization classification decreased, while the positive rate of gene mutations, especially CH-related ones, increased. Additionally, the number of genetic mutations was higher in gene fusion-negative (GF-) patients than those with GF. Based on the status of CH- and myelodysplastic syndromes (MDS)-related mutations, three mutant subgroups were identified among the GF- AML cohort, namely, CH-AML, CH-MDS-AML, and other GF- AML. Notably, CH-MDS-AML demonstrated a predominance of elderly and male cases, cytopenia, and significantly adverse clinical outcomes. Besides, gene expression networks including HOXA/B, platelet factors, and inflammatory responses were most striking features associated with aging and poor prognosis in AML. Our work has thus unraveled the intricate regulatory circuitry of interactions among different age, gender, and molecular groups of AML.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Idoso , Humanos , Masculino , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Envelhecimento/genética , Mutação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA