RESUMO
The retina, a tissue of the central nervous system, is vital for vision as its photoreceptors capture light and transform it into electrical signals, which are further processed before they are sent to the brain to be interpreted as images. The retina is unique in that it is continuously exposed to light and has the highest metabolic rate and demand for energy amongst all the tissues in the body. Consequently, the retina is very susceptible to oxidative stress. VDAC, a pore in the outer membrane of mitochondria, shuttles metabolites between mitochondria and the cytosol and normally protects cells from oxidative damage, but when a cell's integrity is greatly compromised it initiates cell death. There are three isoforms of VDAC, and existing evidence indicates that all three are expressed in the retina. However, their precise localization and function in each cell type is unknown. It appears that most retinal cells express substantial amounts of VDAC2 and VDAC3, presumably to protect them from oxidative stress. Photoreceptors express VDAC2, HK2, and PKM2-key proteins in the Warburg pathway that also protect these cells. Consistent with its role in initiating cell death, VDAC is overexpressed in the retinal degenerative diseases retinitis pigmentosa, age related macular degeneration (AMD), and glaucoma. Treatment with antioxidants or inhibiting VDAC oligomerization reduced its expression and improved cell survival. Thus, VDAC may be a promising therapeutic candidate for the treatment of these diseases.
Assuntos
Retina , Canais de Ânion Dependentes de Voltagem , Humanos , Canais de Ânion Dependentes de Voltagem/metabolismo , Retina/metabolismo , Animais , Estresse Oxidativo , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Mitocôndrias/metabolismo , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologiaRESUMO
Zeaxanthin dipalmitate (ZD) is a chemical extracted from wolfberry that protects degenerated photoreceptors in mouse retina. However, the pure ZD is expensive and hard to produce. In this study, we developed a method to enrich ZD from wolfberry on a production line and examined whether it may also protect the degenerated mouse retina. The ZD-enriched wolfberry extract (ZDE) was extracted from wolfberry by organic solvent method, and the concentration of ZD was identified by HPLC. The adult C57BL/6 mice were treated with ZDE or solvent by daily gavage for 2 weeks, at the end of the first week the animals were intraperitoneally injected with N-methyl-N-nitrosourea to induce photoreceptor degeneration. Then optomotor, electroretinogram, and immunostaining were used to test the visual behavior, retinal light responses, and structure. The final ZDE product contained ~30mg/g ZD, which was over 9 times higher than that from the dry fruit of wolfberry. Feeding degenerated mice with ZDE significantly improved the survival of photoreceptors, enhanced the retinal light responses and the visual acuity. Therefore, our ZDE product successfully alleviated retinal morphological and functional degeneration in mouse retina, which may provide a basis for further animal studies for possible applying ZDE as a supplement to treat degenerated photoreceptor in the clinic.
Assuntos
Modelos Animais de Doenças , Lycium , Camundongos Endogâmicos C57BL , Células Fotorreceptoras de Vertebrados , Extratos Vegetais , Degeneração Retiniana , Zeaxantinas , Animais , Lycium/química , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/patologia , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Zeaxantinas/farmacologia , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/patologia , Eletrorretinografia , Retina/efeitos dos fármacos , Retina/patologia , Retina/metabolismo , Visão Ocular/efeitos dos fármacos , Masculino , Xantofilas/farmacologiaRESUMO
The onset of retinal degenerative disease is often associated with neuronal loss. Therefore, how to regenerate new neurons to restore vision is an important issue. NeuroD1 is a neural transcription factor with the ability to reprogram brain astrocytes into neurons in vivo. Here, we demonstrate that in adult mice, NeuroD1 can reprogram Müller cells, the principal glial cell type in the retina, to become retinal neurons. Most strikingly, ectopic expression of NeuroD1 using two different viral vectors converted Müller cells into different cell types. Specifically, AAV7m8 GFAP681::GFP-ND1 converted Müller cells into inner retinal neurons, including amacrine cells and ganglion cells. In contrast, AAV9 GFAP104::ND1-GFP converted Müller cells into outer retinal neurons such as photoreceptors and horizontal cells, with higher conversion efficiency. Furthermore, we demonstrate that Müller cell conversion induced by AAV9 GFAP104::ND1-GFP displayed clear dose- and time-dependence. These results indicate that Müller cells in adult mice are highly plastic and can be reprogrammed into various subtypes of retinal neurons.
RESUMO
Retinitis pigmentosa is a retinal disease characterized by photoreceptor degeneration. There is currently no effective treatment for retinitis pigmentosa. Although a mixture of lutein and other antioxidant agents has shown promising effects in protecting the retina from degeneration, the role of lutein alone remains unclear. In this study, we administered intragastric lutein to Pde6brd10 model mice, which display degeneration of retinal photoreceptors, on postnatal days 17 (P17) to P25, when rod apoptosis reaches peak. Lutein at the optimal protective dose of 200 mg/kg promoted the survival of photoreceptors compared with vehicle control. Lutein increased rhodopsin expression in rod cells and opsin expression in cone cells, in line with an increased survival rate of photoreceptors. Functionally, lutein improved visual behavior, visual acuity, and retinal electroretinogram responses in Pde6brd10 mice. Mechanistically, lutein reduced the expression of glial fibrillary acidic protein in Müller glial cells. The results of this study confirm the ability of lutein to postpone photoreceptor degeneration by reducing reactive gliosis of Müller cells in the retina and exerting anti-inflammatory effects. This study was approved by the Laboratory Animal Ethics Committee of Jinan University (approval No. LACUC-20181217-02) on December 17, 2018.