RESUMO
There is a lack of evidence from cohort studies on the causal association of long-term exposure to ambient fine particulate matter (PM2.5) and its chemical components with the risk of nasopharyngeal carcinoma (NPC) recurrence. Based on a 10-year prospective cohort of 1184 newly diagnosed NPC patients, we comprehensively evaluated the potential causal links of ambient PM2.5 and its chemical components including black carbon (BC), organic matter (OM), sulfate (SO4 2-), nitrate (NO3 -), and ammonium (NH4 +) with the recurrence risk of NPC using a marginal structural Cox model adjusted with inverse probability weighting. We observed 291 NPC patients experiencing recurrence during the 10-year follow-up and estimated a 33% increased risk of NPC recurrence (hazard ratio [HR]: 1.33, 95% confidence interval [CI]: 1.02-1.74) following each interquartile range (IQR) increase in PM2.5 exposure. Each IQR increment in BC, NH4 +, OM, NO3 -, and SO4 2- was associated with HRs of 1.36 (95%CI: 1.13-1.65), 1.35 (95%CI: 1.07-1.70), 1.33 (95%CI: 1.11-1.59), 1.32 (95%CI: 1.06-1.64), 1.31 (95%CI: 1.08-1.57). The elderly, patients with no family history of cancer, no smoking history, no drinking history, and those with severe conditions may exhibit a greater likelihood of NPC recurrence following exposure to PM2.5 and its chemical components. Additionally, the effect estimates of the five components are greater among patients who were exposed to high concentration than in the full cohort of patients. Our study provides solid evidence for a potential relationship between long-term exposure to PM2.5 and its components and the risk of NPC recurrence.
Assuntos
Exposição Ambiental , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Recidiva Local de Neoplasia , Material Particulado , Humanos , Material Particulado/efeitos adversos , Masculino , Carcinoma Nasofaríngeo/etiologia , Carcinoma Nasofaríngeo/epidemiologia , Feminino , Pessoa de Meia-Idade , China/epidemiologia , Recidiva Local de Neoplasia/epidemiologia , Neoplasias Nasofaríngeas/epidemiologia , Neoplasias Nasofaríngeas/etiologia , Exposição Ambiental/efeitos adversos , Estudos Prospectivos , Adulto , Fatores de Risco , Idoso , Estudos de Coortes , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , SeguimentosRESUMO
Evidence of the potential causal links between long-term exposure to particulate matters (PM, i.e., PM1, PM2.5, and PM1-2.5) and T2DM mortality based on large cohorts is limited. In contrast, the existing evidence usually suffers from inherent bias with the traditional association assessment. A prospective cohort of 580,757 participants in the southern region of China were recruited during 2009 and 2015 and followed up through December 2020. PM exposure at each residential address was estimated by linking to the well-established high-resolution simulation dataset. Hazard ratios (HRs) were calculated using time-varying marginal structural Cox models, an established causal inference approach, after adjusting for potential confounders. During follow-up, a total of 717 subjects died from T2DM. For every 1⯵g/m3 increase in PM2.5, the adjusted HRs and 95% confidence interval (CI) for T2DM mortality was 1.036 (1.019-1.053). Similarly, for every 1⯵g/m3 increase in PM1 and PM1-2.5, the adjusted HRs and 95% CIs were 1.032 (1.003-1.062) and 1.085 (1.054-1.116), respectively. Additionally, we observed a generally more pronounced impact among individuals with lower levels of education or lower residential greenness which as measured by the Normalized Difference Vegetation Index (NDVI). We identified substantial interactions between NDVI and PM1 (P-interaction = 0.003), NDVI and PM2.5 (P-interaction = 0.019), as well as education levels and PM1 (P-interaction = 0.049). The study emphasizes the need to consider environmental and socio-economic factors in strategies to reduce T2DM mortality. We found that PM1, PM2.5, and PM1-2.5 heighten the peril of T2DM mortality, with education and green space exposure roles in modifying it.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Diabetes Mellitus Tipo 2 , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Diabetes Mellitus Tipo 2/epidemiologia , Estudos Prospectivos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , China/epidemiologia , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversosRESUMO
Regulated cell death (RCD) is a regulable cell death that involves well-organized signaling cascades and molecular mechanisms. RCD is implicated in fundamental processes such as organ production and tissue remodeling, removing superfluous structures or cells, and regulating cell numbers. Previous studies have not been able to reveal the complete mechanisms, and novel methods of RCD are constantly being proposed. Two metal ions, iron (Fe) and copper (Cu) are essential factors leading to RCDs that not only induce ferroptosis and cuproptosis, respectively but also lead to cell impairment and eventually diverse cell death. This review summarizes the direct and indirect mechanisms by which Fe and Cu impede cell growth and the various forms of RCD mediated by these two metals. Moreover, we aimed to delineate the interrelationships between these RCDs with the distinct pathways of ferroptosis and cuproptosis, shedding light on the complex and intricate mechanisms that govern cellular survival and death. Finally, the prospects outlined in this review suggest a novel approach for investigating cell death, which may involve integrating current therapeutic strategies and offer a promising solution to overcome drug resistance in certain diseases. Video Abstract.
Assuntos
Ferroptose , Morte Celular Regulada , Morte Celular , Cobre , Ferro , ApoptoseRESUMO
Background: Myositis is the main manifestation of Trachipleistophora hominis (T. hominis) infection and other microsporidians infection in immunocompromised patients. Clinical differential diagnosis of different microsporidians can be challenging, as the standard technique to distinguish various microsporidia species, transmission electron microscopy (TEM), is time-consuming and relies on equipment and experienced staffs who can perform the test and interpret the results. Case presentation: We report a 37-year-old Chinese man with acquired immune deficiency syndrome (AIDS) developed headache and muscle pain in the extremities. Tramadol was used to relieve his pain. Infectious lesions in his brain were detected by cerebral magnetic resonance imaging (MRI). Oval-shaped pathogens was observed by biopsy of right gastrocnemius. Finally, T. hominis was identified by metagenomic next-generation sequencing (mNGS) in the gastrocnemius tissue and cerebrospinal fluid. After a 12-week course of antifungal treatment and antiretroviral therapy, the patient recovered from the encephalitis and myositis caused by T. hominis. Conclusion: This report described the diagnosis and treatment of the first case of encephalitis caused by T. hominis. And mNGS is recommended for the rapid diagnosis of uncommon pathogens.
Assuntos
Encefalite , Microsporídios , Miosite , Masculino , Humanos , Adulto , Miosite/diagnóstico , Miosite/tratamento farmacológico , Encefalite/diagnóstico , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
The diagnosis and classification of soft tissue sarcomas (STS) remain challenging because of the rarity and overlapping morphologic manifestations of diverse STS subtypes. Characteristic gene fusions are commonly detected in STS and represent useful diagnostic markers. This study established and validated a custom-designed RNA sequencing panel that identified 64 gene fusions in STS. The analytical performance validation yielded excellent accuracy, with 100% (95% CI, 94.40%-100%) sensitivity and 93.33% (95% CI, 68.05%-99.83%) specificity. Clinical performances were further confirmed with 145 clinical formalin-fixed and paraffin-embedded (FFPE) samples from STS patients. Fusions were detected in 40% of samples (58/145). The common fusions SS18-SSX family, EWSR1-related fusions, COL1A1-PDGFB, FOXO1-associated fusions, and FUS-associated fusions were identified in corresponding STS subtypes. The RNA panel detected specific fusions in several cases where no conclusive diagnosis can be made based on the morphology and immunohistochemistry results. Data collected in this study demonstrate that the RNA fusions panel can better classify STS subtypes and serve as a good supplement for histopathology, exhibiting a great potential for the STS precise diagnosis.
Assuntos
Fusão Oncogênica , Sarcoma , Análise de Sequência de RNA , Neoplasias de Tecidos Moles , Humanos , Fusão Gênica , RNA/genética , RNA/metabolismo , Sarcoma/diagnóstico , Sarcoma/genética , Sarcoma/patologia , Neoplasias de Tecidos Moles/diagnóstico , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/patologia , Análise de Sequência de RNA/métodosRESUMO
The study of the reaction between plutonium and nitrogen is helpful in further understanding the interaction between plutonium and air molecules. Currently, there is no research on the microscopic reaction mechanism of plutonium nitridation reactions. Therefore, the microscopic mechanism of the Pu with N2 gas phase reaction is explored in this study, based on density functional theory (DFT) using different basis functions. In this paper, the geometry of stationary points on the potential energy surface is optimized. In addition, the transition states are verified by frequency analysis and intrinsic reaction coordination (IRC). Finally, we obtained the reaction potential energy curve and micro reaction pathways. Analysis of the reaction mechanism shows that the reaction of Pu with N2 has two pathways. Pathway 1 (Pu + N2 â R1 â TS1 â PuN2) has a T-shaped transition state and pathway 2 (Pu + N2 â R2 â TS2 â PuN + N) has an L-shaped transition state. Both transition states have only one imaginary frequency. According to the comparison of the energy at each stagnation point along the two pathways, and the heat energy emitted by the two reaction paths, we found that pathway 1 is the main reaction pathway. The nature of Pu-N bonding evolution along the pathways was studied by atoms in molecules (AIM) and electron localization function (ELF) topological approaches. In order to analyze the role of the plutonium atom 5f orbital in the reaction, the variation in density state along the pathways was measured. Results show that the 5f orbital mainly contributes to the formation of Pu-N bonds, and the influence of temperature on the reaction rate is revealed by calculating the rate constants of the two reaction pathways.
RESUMO
OBJECTIVE: The novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic, but the factors influencing viral RNA shedding, which would help inform optimal control strategies, remain unclear. METHODS: The clinical course and viral RNA shedding pattern of 267 consecutive symptomatic COVID-19 patients admitted to the hospital from January 20, 2020 to March 15, 2020 were evaluated retrospectively. RESULTS: The median duration of viral RNA shedding was 12 days (interquartile range 8-16 days) after the onset of illness. Of the 267 patients included in this study, 65.2% had viral RNA clearance within 14 days, 88.8% within 21 days, and 94.4% within 28 days. Older age (hazard ratio (HR) 0.99, 95% confidence interval (CI) 0.98-1.00; p = 0.04), time lag from illness onset to hospital admission (HR 0.91, 95% CI 0.88-0.94; p < 0.001), diarrhea (HR 0.59, 95% CI 0.36-0.96; p = 0.036), corticosteroid treatment (HR 0.60, 95% CI 0.39-0.94; p = 0.024), and lopinavir/ritonavir use (HR 0.70, 95% CI 0.52-0.94; p = 0.014) were significantly and independently associated with prolonged viral RNA shedding. CONCLUSIONS: Early detection and timely hospital admission may be warranted for symptomatic COVID-19 patients, especially for older patients and patients with diarrhea. Corticosteroid treatment is associated with prolonged viral RNA shedding and should be used with caution. Lopinavir/ritonavir use may be associated with prolonged viral RNA shedding in non-severe patients; further randomized controlled trials are needed to confirm this finding.
Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , RNA Viral/genética , Eliminação de Partículas Virais , Adulto , Idoso , Betacoronavirus/isolamento & purificação , Betacoronavirus/fisiologia , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/tratamento farmacológico , Feminino , Hospitalização , Humanos , Lopinavir/uso terapêutico , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/diagnóstico , Pneumonia Viral/tratamento farmacológico , RNA Viral/metabolismo , Estudos Retrospectivos , Ritonavir/uso terapêutico , SARS-CoV-2 , Eliminação de Partículas Virais/efeitos dos fármacosRESUMO
BACKGROUND: Antiviral therapies against the novel coronavirus SARS-CoV-2, which has caused a global pandemic of respiratory illness called COVID-19, are still lacking. METHODS: Our study (ClinicalTrials.gov: NCT04252885, named ELACOI), was an exploratory randomized (2:2:1) controlled trial assessing the efficacy and safety of lopinavir/ritonavir (LPV/r) or arbidol monotherapy for treating patients with mild/moderate COVID-19. FINDINGS: This study successfully enrolled 86 patients with mild/moderate COVID-19, with 34 randomly assigned to receive LPV/r, 35 to arbidol, and 17 with no antiviral medication as control. Baseline characteristics of the three groups were comparable. The primary endpoint, the rate of positive-to-negative conversion of SARS-CoV-2 nucleic acid, was similar between groups (all p > 0.05). There were no differences between groups in the secondary endpoints, the rates of antipyresis, cough alleviation, or improvement of chest computed tomography (CT) at days 7 or 14 (all p > 0.05). At day 7, 8 (23.5%) patients in the LPV/r group, 3 (8.6%) in the arbidol group, and 2 (11.8%) in the control group showed a deterioration in clinical status from moderate to severe/critical (p = 0.206). Overall, 12 (35.3%) patients in the LPV/r group and 5 (14.3%) in the arbidol group experienced adverse events during the follow-up period. No apparent adverse event occurred in the control group. CONCLUSIONS: LPV/r or arbidol monotherapy present little benefit for improving the clinical outcome of patients hospitalized with mild/moderate COVID-19 over supportive care. FUNDING: This study was supported by project 2018ZX10302103-002, 2017ZX10202102-003-004, and Infectious Disease Specialty of Guangzhou High-level Clinical Key Specialty (2019-2021).
Assuntos
Tratamento Farmacológico da COVID-19 , Ritonavir , Adulto , Humanos , Indóis , Lopinavir/efeitos adversos , Ritonavir/efeitos adversos , SARS-CoV-2 , SulfetosRESUMO
Background: The pandemic of coronavirus disease 2019 (COVID-19) resulted in grave morbidity and mortality worldwide. There is currently no effective drug to cure COVID-19. Based on analyses of available data, we deduced that excessive prostaglandin E2 (PGE2) produced by cyclooxygenase-2 was a key pathological event of COVID-19. Methods: A prospective clinical study was conducted in one hospital for COVID-19 treatment with Celebrex to suppress the excessive PGE2 production. A total of 44 COVID-19 cases were enrolled, 37 cases in the experimental group received Celebrex as adjuvant (full dose: 0.2 g, bid; half dose: 0.2 g, qd) for 7-14 days, and the dosage and duration was adjusted for individuals, while seven cases in the control group received the standard therapy. The clinical outcomes were evaluated by measuring the urine PGE2 levels, lab tests, CT scans, vital signs, and other clinical data. The urine PGE2 levels were measured by mass spectrometry. The study was registered and can be accessed at http://www.chictr.org.cn/showproj.aspx?proj=50474. Results: The concentrations of PGE2 in urine samples of COVID-19 patients were significantly higher than those of PGE2 in urine samples of healthy individuals (mean value: 170 ng/ml vs 18.8 ng/ml, p < 0.01) and positively correlated with the progression of COVID-19. Among those 37 experimental cases, there were 10 cases with age over 60 years (27%, 10/37) and 13 cases (35%, 13/37) with preexisting conditions including cancer, atherosclerosis, and diabetes. Twenty-five cases had full dose, 11 cases with half dose of Celebrex, and one case with ibuprofen. The remission rates in midterm were 100%, 82%, and 57% of the full dose, half dose, and control group, respectively, and the discharged rate was 100% at the endpoint with Celebrex treatment. Celebrex significantly reduced the PGE2 levels and promoted recovery of ordinary and severe COVID-19. Furthermore, more complications, severity, and death rate were widely observed and reported in the COVID-19 group of elders and with comorbidities; however, this phenomenon did not appear in this particular Celebrex adjunctive treatment study. Conclusion: This clinical study indicates that Celebrex adjuvant treatment promotes the recovery of all types of COVID-19 and further reduces the mortality rate of elderly and those with comorbidities.
RESUMO
Efficient removal of radioactive 90Sr from nuclear waste solutions and natural water systems is of vital importance due to its radioactive nature and high mobility. We present here an anionic layered compound (NC4H12)(NC2H8)2[In3(pydc)6]·13.1H2O (SZ-6; pydc = 2,5-pyridinedicarboxylic acid) with the potential remediation ability towards radioactive Sr2+ from seawater. This material exhibits excellent ß and γ radiation resistance both in air and in aqueous solutions. Besides, this material could maintain its structural integrity in real seawater for 77 days. The adsorption experiment results show that SZ-6 exhibits superior Sr2+ removal capability over a wide pH range from 4 to 12 with fast adsorption kinetics and high selectivity. The effective removal of 90Sr from real seawater was demonstrated as well. Our results strongly suggest the potential application of SZ-6 for selectively capturing radionuclides in natural water systems.