RESUMO
In response to the persistent exposure to phage infection, bacteria have evolved diverse antiviral defense mechanisms. In this study, we report a bacterial two-component defense system consisting of a Sir2 NADase and a HerA helicase. Cryo-electron microscopy reveals that Sir2 and HerA assemble into a â¼1 MDa supramolecular octadecamer. Unexpectedly, this complex exhibits various enzymatic activities, including ATPase, NADase, helicase, and nuclease, which work together in a sophisticated manner to fulfill the antiphage function. Therefore, we name this defense system "Nezha" after a divine warrior in Chinese mythology who employs multiple weapons to defeat enemies. Our findings demonstrate that Nezha could sense phage infections, self-activate to arrest cell growth, eliminate phage genomes, and subsequently deactivate to allow for cell recovery. Collectively, Nezha represents a paradigm of sophisticated and multifaceted strategies bacteria use to defend against viral infections.
Assuntos
Caudovirales , Escherichia coli , Adenosina Trifosfatases , Microscopia Crioeletrônica , DNA Helicases , NAD+ Nucleosidase , Escherichia coli/enzimologia , Escherichia coli/virologiaRESUMO
The high-order three-dimensional (3D) organization of regulatory genomic elements provides a topological basis for gene regulation, but it remains unclear how multiple regulatory elements across the mammalian genome interact within an individual cell. To address this, herein, we developed scNanoHi-C, which applies Nanopore long-read sequencing to explore genome-wide proximal high-order chromatin contacts within individual cells. We show that scNanoHi-C can reliably and effectively profile 3D chromatin structures and distinguish structure subtypes among individual cells. This method could also be used to detect genomic variations, including copy-number variations and structural variations, as well as to scaffold the de novo assembly of single-cell genomes. Notably, our results suggest that extensive high-order chromatin structures exist in active chromatin regions across the genome, and multiway interactions between enhancers and their target promoters were systematically identified within individual cells. Altogether, scNanoHi-C offers new opportunities to investigate high-order 3D genome structures at the single-cell level.
RESUMO
Emotions are fundamental to social interaction and deeply intertwined with interpersonal dynamics, especially in romantic relationships. Although the neural basis of interaction processes in romance has been widely explored, the underlying emotions and the connection between relationship quality and neural synchronization remain less understood. Our study employed EEG hyperscanning during a non-interactive video-watching paradigm to compare the emotional coordination between romantic couples and close friends. Couples showed significantly greater behavioral and prefrontal alpha synchronization than friends. Notably, couples with low relationship quality required heightened neural synchronization to maintain robust behavioral synchronization. Further support vector machine analysis underscores the crucial role of prefrontal activity in differentiating couples from friends. In summary, our research addresses gaps concerning how intrinsic emotions linked to relationship quality influence neural and behavioral synchronization by investigating a natural non-interactive context, thereby advancing our understanding of the neural mechanisms underlying emotional coordination in romantic relationships.
Assuntos
Eletroencefalografia , Emoções , Amigos , Relações Interpessoais , Humanos , Masculino , Amigos/psicologia , Emoções/fisiologia , Feminino , Adulto Jovem , Adulto , Córtex Pré-Frontal/fisiologia , Interação SocialRESUMO
The reliability of plasma biomarkers of Alzheimer's disease (AD) can be compromised by protease-induced degradation. This can limit the feasibility of conducting plasma biomarker studies in environments that lack the capacity for immediate processing and appropriate storage of blood samples. We hypothesized that blood collection tube supplementation with protease inhibitors can improve the stability of plasma biomarkers at room temperatures (RT). In this study, we conducted a comparative analysis of blood biomarker stability in traditional ethylenediaminetetraacetic acid (EDTA) tubes versus BD™ P100 collection tubes, the latter being coated with a protease inhibitor cocktail. The stability of six plasma AD biomarkers was evaluated over time under RT conditions. We evaluated three experimental approaches. In Approach 1, pooled plasma samples underwent storage at RT for up to 96 h. In Approach 2, plasma samples isolated upfront from whole blood collected into EDTA or P100 tubes were stored at RT for 0 h or 24 h before biomarker measurements. In Approach 3, whole blood samples were collected into paired EDTA and P100 tubes, followed by storage at RT for 0 h or 24 h before isolating the plasma for analyses. Biomarkers were measured with Single Molecule Array (Simoa) and immunoprecipitation-mass spectrometry (IP-MS) assays. Both the IP-MS and Simoa methods revealed that the use of P100 tubes significantly improves the stability of Aß42 and Aß40 across all approaches. However, the Aß42/Aß40 ratio levels were significantly stabilized only in the IP-MS assay in Approach 3. No significant differences were observed in the levels of plasma p-tau181, GFAP, and NfL for samples collected using either tube type in any of the approaches. Supplementation of blood collection tubes with protease inhibitors could reduce the protease-induced degradation of plasma Aß42 and Aß40, and the Aß42/40 ratio for the IP-MS assay. These findings have crucial implications for preanalytical procedures, particularly in resource-limited settings.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Biomarcadores , Coleta de Amostras Sanguíneas , Inibidores de Proteases , Doença de Alzheimer/sangue , Humanos , Coleta de Amostras Sanguíneas/métodos , Biomarcadores/sangue , Inibidores de Proteases/farmacologia , Masculino , Idoso , Feminino , Peptídeos beta-Amiloides/sangue , Idoso de 80 Anos ou mais , Ácido Edético/farmacologia , Proteínas tau/sangue , Fragmentos de Peptídeos/sangueRESUMO
Hemispherotomy is an effective surgery for treating refractory epilepsy from diffuse unihemispheric lesions. To date, postsurgery neuroplastic changes supporting behavioral recovery after left or right hemispherotomy remain unclear. In the present study, we systematically investigated changes in gray matter volume (GMV) before and after surgery and further analyzed their relationships with behavioral scores in two large groups of pediatric patients with left and right hemispherotomy (29 left and 28 right). To control for the dramatic developmental effect during this stage, age-adjusted GMV within unaffected brain regions was derived voxel by voxel using a normative modeling approach with an age-matched reference cohort of 2115 healthy children. Widespread GMV increases in the contralateral cerebrum and ipsilateral cerebellum and GMV decreases in the contralateral cerebellum were consistently observed in both patient groups, but only the left hemispherotomy patients showed GMV decreases in the contralateral cingulate gyrus. Intriguingly, the GMV decrease in the contralateral cerebellum was significantly correlated with improvement in behavioral scores in the right but not the left hemispherotomy patients. Importantly, the preoperative voxelwise GMV features can be used to significantly predict postoperative behavioral scores in both patient groups. These findings indicate an important role of the contralateral cerebellum in the behavioral recovery following right hemispherotomy and highlight the predictive potential of preoperative imaging features in postoperative behavioral performance.
Assuntos
Epilepsia Resistente a Medicamentos , Substância Cinzenta , Hemisferectomia , Imageamento por Ressonância Magnética , Humanos , Hemisferectomia/métodos , Feminino , Masculino , Criança , Pré-Escolar , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Substância Cinzenta/cirurgia , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/patologia , Adolescente , Cerebelo/diagnóstico por imagem , Cerebelo/cirurgia , Cerebelo/patologia , Plasticidade Neuronal/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Encéfalo/patologia , Lateralidade Funcional/fisiologiaRESUMO
Chilling stress has seriously limited the global production and geographical distribution of rice. However, the molecular mechanisms associated with plant responses to chilling stress are less known. In this study, we revealed a member of ß-ketoacyl-ACP synthase I family (KASI), OsKASI-2 which confers chilling tolerance in rice. OsKASI-2 encodes a chloroplast-localized KASI enzyme mainly expressed in the leaves and anthers of rice and strongly induced by chilling stress. Disruption of OsKASI-2 led to decreased KAS enzymatic activity and the levels of unsaturated fatty acids, which impairs degree of unsaturation of membrane lipids, thus increased sensitivity to chilling stress in rice. However, the overexpression of OsKASI-2 significantly improved the chilling tolerance ability in rice. In addition, OsKASI-2 may regulate ROS metabolism in response to chilling stress. Natural variation of OsKASI-2 might result in difference in chilling tolerance between indica and japonica accessions, and Hap1 of OsKASI-2 confers chilling tolerance in rice. Taken together, we suggest OsKASI-2 is critical for regulating degree of unsaturation of membrane lipids and ROS accumulation for maintenance of membrane structural homeostasis under chilling stress, and provide a potential target gene for improving chilling tolerance of rice.
Assuntos
Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Lipídeos de Membrana , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Oryza/fisiologia , Lipídeos de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Estresse Fisiológico , Espécies Reativas de Oxigênio/metabolismoRESUMO
BACKGROUND: With the increasing prevalence of antibiotic resistance, real-world data on the optimal empirical second-line therapy for Helicobacter pylori are still limited. OBJECTIVES: To evaluate the real-world efficacy of various second-line therapies for H. pylori. PATIENTS AND METHODS: This was a retrospective population-based cohort study of all H. pylori-infected patients who had received the second-line treatment after the failure of primary clarithromycin triple therapy in Hong Kong between 2003 and 2018. The retreatment success rates of different second-line therapies were evaluated. RESULTS: A total of 7591 patients who received second-line treatment were included. Notably, the most commonly prescribed regimen was still clarithromycin triple therapy, but the frequency of use had decreased from 59.5% in 2003-06 to 28.7% in 2015-18. Concomitant non-bismuth quadruple therapy had emerged as the commonest regimen (from 3.3% to 43.9%). In a validation analysis, the sensitivity and specificity of retreatment-inferred second-line treatment failure were 88.3% and 97.1%, respectively. The overall success rate of second-line therapies was 73.6%. Bismuth quadruple therapy had the highest success rate of 85.6%, while clarithromycin triple therapy had the lowest success rate of 63.5%. Specifically, bismuth/metronidazole/tetracycline quadruple, metronidazole/tetracycline triple, levofloxacin/metronidazole/tetracycline quadruple, rifabutin/amoxicillin triple and amoxicillin/levofloxacin triple therapies had relatively higher success rates over 80%. Age, treatment duration, baseline conditions and first-line treatment used were associated with success rate. CONCLUSIONS: Bismuth quadruple therapy was the most effective second-line regimen for H. pylori in this real-world study. Despite a very low success rate, clarithromycin-containing triple therapies were still commonly used as second-line regimens.
Assuntos
Antibacterianos , Claritromicina , Quimioterapia Combinada , Infecções por Helicobacter , Helicobacter pylori , Humanos , Infecções por Helicobacter/tratamento farmacológico , Estudos Retrospectivos , Feminino , Masculino , Helicobacter pylori/efeitos dos fármacos , Antibacterianos/uso terapêutico , Pessoa de Meia-Idade , Claritromicina/uso terapêutico , Hong Kong , Adulto , Idoso , Resultado do Tratamento , Metronidazol/uso terapêutico , Retratamento , Amoxicilina/uso terapêutico , Falha de Tratamento , Inibidores da Bomba de Prótons/uso terapêutico , Inibidores da Bomba de Prótons/administração & dosagem , Levofloxacino/uso terapêuticoRESUMO
Fusarium diseases pose a severe global threat to major cereal crops, particularly wheat. Existing biocontrol strains against Fusarium diseases are believed to primarily rely on antagonistic mechanisms, but not widely used under field conditions. Here, we report an endophytic fungus, Purpureocillium lilacinum YZ1, that shows promise in combating wheat Fusarium diseases. Under glasshouse conditions, YZ1 inoculation increased the survival rate of Fusarium graminearum (Fg)-infected wheat seedlings from 0% to > 60% at the seedling stage, and reduced spikelet infections by 70.8% during anthesis. In field trials, the application of YZ1 resulted in an impressive 89.0% reduction in Fg-susceptible spikelets. While a slight antagonistic effect of YZ1 against Fg was observed on plates, the induction of wheat systemic resistance by YZ1, which is distantly effective, non-specific, and long-lasting, appeared to be a key contributor to YZ1's biocontrol capabilities. Utilizing three imaging methods, we confirmed YZ1 as a potent endophyte capable of rapid colonization of wheat roots, and systematically spreading to the stem and leaves. Integrating dual RNA-Seq, photosynthesis measurements and cell wall visualization supported the link between YZ1's growth-promoting abilities and the activation of wheat systemic resistance. In conclusion, endophytes such as YZ1, which exhibits non-antagonistic mechanisms, hold significant potential for industrial-scale biocontrol applications.
Assuntos
Resistência à Doença , Endófitos , Fusarium , Doenças das Plantas , Triticum , Fusarium/fisiologia , Fusarium/patogenicidade , Triticum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Endófitos/fisiologia , Hypocreales/fisiologia , Hypocreales/patogenicidade , Raízes de Plantas/microbiologia , Plântula/microbiologia , Regulação da Expressão Gênica de PlantasRESUMO
BACKGROUND: Hereditary spastic paraplegias (HSP) are neurologic disorders characterized by progressive lower-extremity spasticity. Despite the identification of several HSP-related genes, many patients lack a genetic diagnosis. OBJECTIVES: The aims were to confirm the pathogenic role of biallelic COQ4 mutations in HSP and elucidate the clinical, genetic, and functional molecular features of COQ4-associated HSP. METHODS: Whole exome sequences of 310 index patients with HSP of unknown cause from three distinct populations were analyzed to identify potential HSP causal genes. Clinical data obtained from patients harboring candidate causal mutations were examined. Functional characterization of COQ4 variants was performed using bioinformatic tools, single-cell RNA sequencing, biochemical assays in cell lines, primary fibroblasts, induced pluripotent stem cell-derived pyramidal neurons, and zebrafish. RESULTS: Compound heterozygous variants in COQ4, which cosegregated with HSP in pedigrees, were identified in 7 patients from six unrelated families. Patients from four of the six families presented with pure HSP, whereas probands of the other two families exhibited complicated HSP with epilepsy or with cerebellar ataxia. In patient-derived fibroblasts and COQ4 knockout complementation lines, stable expression of these missense variants exerted loss-of-function effects, including mitochondrial reactive oxygen species accumulation, decreased mitochondrial membrane potential, and lower ubiquinone biosynthesis. Whereas differentiated pyramidal neurons expressed high COQ4 levels, coq4 knockdown zebrafish displayed severe motor dysfunction, reflecting motor neuron dysregulation. CONCLUSIONS: Our study confirms that loss-of-function, compound heterozygous, pathogenic COQ4 variants are causal for autosomal recessive pure and complicated HSP. Moreover, reduced COQ4 levels attributable to variants correspond with decreased ubiquinone biosynthesis, impaired mitochondrial function, and higher phenotypic disease severity. © 2023 International Parkinson and Movement Disorder Society.
Assuntos
Paraplegia Espástica Hereditária , Peixe-Zebra , Animais , Humanos , Ubiquinona/genética , Paraplegia Espástica Hereditária/genética , Mutação/genética , Mutação de Sentido Incorreto , Proteínas Mitocondriais/genéticaRESUMO
The assessment of dissolved oxygen (DO) concentration at the sea surface is essential for comprehending the global ocean oxygen cycle and associated environmental and biochemical processes as it serves as the primary site for photosynthesis and sea-air exchange. However, limited comprehensive measurements and imprecise numerical simulations have impeded the study of global sea surface DO and its relationship with environmental challenges. This paper presents a novel spatiotemporal information embedding machine-learning framework that provides explanatory insights into the underlying driving mechanisms. By integrating extensive in situ data and high-resolution satellite data, the proposed framework successfully generated high-resolution (0.25° × 0.25°) estimates of DO concentration with exceptional accuracy (R2 = 0.95, RMSE = 11.95 µmol/kg, and test number = 2805) for near-global sea surface areas from 2010 to 2018, uncertainty estimated to be ±13.02 µmol/kg. The resulting sea surface DO data set exhibits precise spatial distribution and reveals compelling correlations with prominent marine phenomena and environmental stressors. Leveraging its interpretability, our model further revealed the key influence of marine factors on surface DO and their implications for environmental issues. The presented machine-learning framework offers an improved DO data set with higher resolution, facilitating the exploration of oceanic DO variability, deoxygenation phenomena, and their potential consequences for environments.
Assuntos
Monitoramento Ambiental , Oxigênio , Monitoramento Ambiental/métodos , Oceanos e Mares , Aprendizado de MáquinaRESUMO
The m6A reader insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1) is involved in multiple pathophysiological processes through enhanced expression of the proteins encoded by their target mRNAs. However, the functional role of IGF2BP1-mediated m6A in liver fibrosis remains elusive. Here, we report that IGF2BP1 is highly expressed in activated hepatic stellate cells (HSCs), the major driver of fibrogenesis, and TUBB4B is identified as a potential target of IGF2BP1 by re-analysis of the RNA-seq, RIP-seq, and m6A-seq data. The relevant findings were subsequently demonstrated by a series of molecular and cellular evidences. The knockdown of IGF2BP1 or TUBB4B and pharmacological inhibition of TUBB4B by mebendazole treatments significantly suppress the proliferation, migration, and activation of HSCs. Mechanistically, IGF2BP1 upregulates TUBB4B expression through stabilizing TUBB4B in an m6A-dependent manner, and TUBB4B induces liver fibrosis by activating the FAK signaling pathway. Collectively, our results indicate that targeting IGF2BP1/TUBB4B/FAK axis in HSCs could be a promising therapeutic approach for liver fibrosis.
RESUMO
Tyrosine kinase inhibitors have been the standard treatment for patients with Philadelphia chromosome-positive (Ph+) leukemia. However, a series of issues, including drug resistance, relapse and intolerance, are still an unmet medical need. Here, we report the targeted siRNA-based lipid nanoparticles in Ph+ leukemic cell lines for gene therapy of Ph+ leukemia, which specifically targets a recently identified NEDD8 E3 ligase RAPSYN in Ph+ leukemic cells to disrupt the neddylation of oncogenic BCR-ABL. To achieve the specificity for Ph+ leukemia therapy, a single-chain fragment variable region (scFv) of anti-CD79B monoclonal antibody was covalently conjugated on the surface of OA2-siRAPSYN lipid nanoparticles to generate the targeted lipid nanoparticles (scFv-OA2-siRAPSYN). Through effectively silencing RAPSYN gene in leukemic cell lines by the nanoparticles, BCR-ABL was remarkably degraded accompanied by the inhibition of proliferation and the promotion of apoptosis. The specific targeting, therapeutic effects and systemic safety were further evaluated and demonstrated in cell line-derived mouse models. The present study has not only addressed the clinical need of Ph+ leukemia, but also enabled gene therapy against a less druggable target.
Assuntos
Proteínas de Fusão bcr-abl , Nanopartículas , Animais , Humanos , Camundongos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Inativação Gênica , Terapia Genética/métodos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia , Camundongos Endogâmicos BALB C , Nanopartículas/química , Proteína NEDD8/metabolismo , Proteína NEDD8/genética , RNA Interferente Pequeno , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Musculares/metabolismoRESUMO
OBJECTIVE: Previous studies suggest a link between vitamin D status and COVID-19 susceptibility in hospitalised patients. This study aimed to investigate whether vitamin D concentrations in elderly individuals were associated with their susceptibility to Omicron COVID-19 incidence, the severity of the disease and the likelihood of reoccurrence during the era of the post-'zero-COVID-19' policies in China. DESIGN: In this retrospective study, participants were categorised into three groups based on their 25(OH)D concentrations: deficiency (< 20 ng/ml), insufficiency (20 to < 30 ng/ml) and sufficiency (≥ 30 ng/ml). The demographic and clinical characteristics, comorbidities and the incidence rate, reoccurrence rate and severity of Omicron COVID-19 were retrospectively recorded and analysed by using hospital information system data and an online questionnaire survey. SETTING: China. PARTICIPANTS: 222 participants aged 60 years or older from a health management centre. RESULTS: Our findings revealed significant differences in the incidence (P = 0·03) and recurrent rate (P = 0·02) of Omicron COVID-19 among the three groups. Participants with lower 25(OH)D concentrations (< 20 ng/ml) exhibited higher rates of initial incidence and reoccurrence and a greater percentage of severe and critical cases. Conversely, individuals with 25(OH)D concentrations ≥ 30 ng/ml had a higher percentage of mild cases (P = 0·003). Binary and ordinal logistic regression models indicated that vitamin D supplementation was not a significant risk factor for COVID-19 outcomes. CONCLUSIONS: In the elderly population, pre-infection vitamin D deficiency was associated with increased susceptibility to incidence, severity of illness and reoccurrence rates of Omicron COVID-19.
Assuntos
COVID-19 , SARS-CoV-2 , Índice de Gravidade de Doença , Deficiência de Vitamina D , Vitamina D , Humanos , COVID-19/sangue , COVID-19/epidemiologia , Idoso , Masculino , Feminino , Vitamina D/sangue , Vitamina D/análogos & derivados , Incidência , China/epidemiologia , Estudos Retrospectivos , Pessoa de Meia-Idade , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/epidemiologia , Idoso de 80 Anos ou mais , Recidiva , Fatores de RiscoRESUMO
Circular RNA ITCH (circ-ITCH) is implicated in papillary thyroid carcinoma (PTC) development. Nevertheless, the more detailed molecular mechanism remains uncovered. The transcriptional level of circ-ITCH was tested via quantitative real-time PCR. Transwell assay was introduced to assess the migrative and invasive abilities of cells. RNA interference technology was employed to reduce the level of circ-ITCH as well as JAZF1 in PTC cells. Western blot assay was utilized to reveal the content of JAZF1 and proteins related to epithelial-mesenchymal transformation (EMT) progression. Circ-ITCH was downregulated in PTC tissues as well as cells. Overexpression of circ-ITCH suppressed EMT, migration, invasion, facilitated apoptosis in PTC cells, while silencing circ-ITCH exhibited reversed effects. Additionally, miR-106a-5p was the target of circ-ITCH and negatively regulated through circ-ITCH. MiR-106a-5p mimic partly eliminated the influences of overexpressed circ-ITCH in PTC cells. Moreover, JAZF1 could interact with miR-106a-5p, then it was regulated via circ-ITCH. Silencing JAZF1 partially counteracted the role of circ-ITCH in PTC cells progress. This study uncovered that circ-ITCH suppressed the development of PTC cells at least partly by mediating miR-106a-5p/JAZF1 network.
RESUMO
Recruitment and accumulation of reactive astrocytes around senile plaques are common pathological features of Alzheimer's disease (AD), with unclear mechanisms. Chemerin, an adipokine implicated in neuroinflammation, acts through its receptor, chemokine-like receptor 1 (CMKLR1), which also functions as a receptor for amyloid ß (Aß). The impact of the chemerin/CMKLR1 axis on astrocyte migration towards Aß plaques is unknown. Here we investigated the effect of CMKLR1 on astrocyte migration around Aß deposition in APP/PS1 mice with Cmklr1 knockout (APP/PS1-Cmklr1-/-). CMKLR1-expressed astrocytes were upregulated in the cortices and hippocampi of 9-month-old APP/PS1 mice. Chemerin mainly co-localized with neurons, and its expression was reduced in the brains of APP/PS1 mice, compared to WT mice. CMKLR1 deficiency decreased astrocyte colocalization with Aß plaques in APP/PS1-Cmklr1-/- mice, compared to APP/PS1 mice. Activation of the chemerin/CMKLR1 axis promoted the migration of primary cultured astrocytes and U251 cells, and reduced astrocyte clustering induced by Aß42. Mechanistic studies revealed that chemerin/CMKLR1 activation induced STING phosphorylation. Deletion of STING attenuated the promotion of the chemerin/CMKLR1 axis relative to astrocyte migration and abolished the inhibitory effect of chemerin on Aß42-induced astrocyte clustering. These findings suggest the involvement of the chemerin/CMKLR1/STING pathway in the regulation of astrocyte migration and recruitment to Aß plaques/Aß42.
Assuntos
Doença de Alzheimer , Astrócitos , Quimiocinas , Peptídeos e Proteínas de Sinalização Intercelular , Placa Amiloide , Receptores de Quimiocinas , Animais , Astrócitos/metabolismo , Quimiocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Receptores de Quimiocinas/metabolismo , Receptores de Quimiocinas/genética , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Humanos , Peptídeos beta-Amiloides/metabolismo , Camundongos Knockout , Movimento Celular , Transdução de Sinais , Camundongos Transgênicos , Camundongos Endogâmicos C57BLRESUMO
The Fenton reaction is recognized as an effective technique for degrading persistent organic pollutants, such as the emerging pollutant trimethoprim (TMP). Recently, due to the excellent reducibility of active hydrogen ([H]), Pd-H2 has been preferred for Fenton-like reactions and the specific H2 activation of Pd-based catalysts. Herein, a heterogeneous Fenton catalyst named the hydrogen-accelerated oxygen reduction Fenton (MHORF@UiO-66(Zr)) system was prepared through the strategy of building ships in the bottle. The [H] has been used for the acceleration of the reduction of Fe(III) and self-generate H2O2. The systematic characterization demonstrated that the nano Pd0 particle was highly dispersed into the UiO-66(Zr). The results found that 20 mg L-1 of TMP was thoroughly degraded within 90 min in the MHORF@UiO-66(Zr) system under conditions of initial pH 3, 30 mL min-1 H2, 2 g L-1 Pd@UiO-66(Zr) and 25 µM Fe2+. The hydroxyl radical as well as the singlet oxygen were evidenced to be the main reactive oxygen species by scavenging experiments and electron spin resonance. In addition, both reducing Fe(III) and self-generating H2O2 could be achieved due to the strong metal-support interaction (SMSI) between the nano Pd0 particles and UiO-66(Zr) confirmed by the correlation results of XPS and calculation of density functional theory. Finally, the working mechanism of the MHORF@UiO-66(Zr) system and the possible degradation pathway of the TMP have been proposed. The novel system exhibited excellent reusability and stability after six cyclic reaction processes.
Assuntos
Peróxido de Hidrogênio , Trimetoprima , Peróxido de Hidrogênio/química , Trimetoprima/química , Catálise , Ferro/química , Paládio/química , OxirreduçãoRESUMO
BACKGROUND: Pulmonary fibrosis (PF) is the terminal manifestation of a type of pulmonary disease, which seriously affects the respiratory function of the body, and with no effective cure for treatment. This study evaluated the effect of sea cucumber peptides (SCP) on bleomycin-induced SD rat PF. RESULTS: SCP can inhibit the PF induced by bleomycin. PF and SCP did not affect the food intake of rats, but PF reduced the body weight of rats, and SCP could improve the weight loss. SCP reduced lung index in PF rats in a dose-dependent manner. SCP significantly reduced IL-1ß, IL-6, TNF-α, α-SMA and VIM expression levels in lung tissue (P < 0.05), significantly decreased TGF-ß1 expression level in serum (P < 0.01) and the LSCP group and MSCP group had better inhibitory effects on PF than the HSCP group. Histomorphological results showed that SCP could ameliorate the structural damage of lung tissue, alveolar wall rupture, inflammatory cell infiltration, fibroblast proliferation and deposition of intercellular matrix and collagen fibers caused by PF. The improvement effect of the MSCP group was the most noteworthy in histomorphology. Metabolomics results showed that SCP significantly downregulated catechol, N-acetyl-l-histidine, acetylcarnitine, stearoylcarnitine, d-mannose, l-threonine, l-alanine, glycine, 3-guanidinopropionic acid, prostaglandin D2 and embelic acid d-(-)-ß-hydroxybutyric acid expression levels in lung tissue. CONCLUSION: SCP ameliorate bleomycin-induced SD rat PF. KEGG pathway analysis proved that SCP intervened in PF mainly via the lysosome pathway, with d-mannose as the key factor. © 2023 Society of Chemical Industry.
Assuntos
Fibrose Pulmonar , Animais , Ratos , Bleomicina/efeitos adversos , Bleomicina/metabolismo , Pulmão , Manose/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/genética , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/metabolismo , Treonina/química , Oligopeptídeos/química , Oligopeptídeos/metabolismoRESUMO
Cardiovascular disease is a major cause of death and disability worldwide. Recently, increasing evidence has demonstrated that long non-coding RNAs (lncRNAs) play critical roles in the pathogenesis of cardiovascular diseases, including atherosclerosis, coronary artery disease, dilated cardiomyopathy, diabetic cardiomyopathy, aortic dissection, and more. LncRNA H19 was the first to be described as a non-protein-coding mRNA-like molecule. A large number of studies have found that lncRNA H19 is related to the pathophysiological processes of cardiovascular diseases, and it is emerging as a potential key regulator of various heart diseases. In this review, we aim to summarize the role of lncRNA H19 in cardiovascular diseases in order to provide a theoretical basis for its potential use as a new therapeutic target in the future.
RESUMO
Alzheimer's Disease (AD) contributes to most cases of dementia. Its prominent neuropathological features are the extracellular neuritic plaques and intercellular neurofibrillary tangles composed of aggregated ß-amyloid (Aß) and hyperphosphorylated tau protein, respectively. In the past few decades, disease-modifying therapy targeting Aß has been the focus of AD drug development. Even though it is encouraging that two of these drugs have recently received accelerated US Food and Drug Administration approval for AD treatment, their efficacy or long-term safety is controversial. Tau has received increasing attention as a potential therapeutic target, since evidence indicates that tau pathology is more associated with cognitive dysfunction. Moreover, inflammation, especially neuroinflammation, accompanies AD pathological processes and is also linked to cognitive deficits. Accumulating evidence indicates that inflammation has a complex and tight interplay with tau pathology. Here, we review recent evidence on the interaction between tau pathology, focusing on tau post-translational modification and dissemination, and neuroinflammatory responses, including glial cell activation and inflammatory signaling pathways. Then, we summarize the latest clinical trials targeting tau and neuroinflammation. Sustained and increased inflammatory responses in glial cells and neurons are pivotal cellular drivers and regulators of the exacerbation of tau pathology, which further contributes to its worsening by aggravating inflammatory responses. Unraveling the precise mechanisms underlying the relationship between tau pathology and neuroinflammation will provide new insights into the discovery and clinical translation of therapeutic targets for AD and other tau-related diseases (tauopathies). Targeting multiple pathologies and precision therapy strategies will be the crucial direction for developing drugs for AD and other tauopathies.
Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Doenças Neuroinflamatórias , Tauopatias/patologia , Peptídeos beta-Amiloides , Inflamação/complicaçõesRESUMO
OBJECTIVES: To diagnose the molecular cause of hereditary spastic paraplegia (HSP) observed in a four-generation family with autosomal dominant inheritance. METHODS: Multiplex ligation-dependent probe amplification (MLPA), whole-exome sequencing (WES), and RNA sequencing (RNA-seq) of peripheral blood leukocytes were performed. Reverse transcription polymerase chain reaction (RT-PCR) and Sanger sequencing were used to characterize target regions of SPAST. RESULTS: A 121-bp AluYb9 insertion with a 30-bp poly-A tail flanked by 15-bp direct repeats on both sides was identified in the edge of intron 16 in SPAST that segregated with the disease phenotype. CONCLUSIONS: We identified an intronic AluYb9 insertion inducing splicing alteration in SPAST causing pure HSP phenotype that was not detected by routine WES analysis. Our findings suggest RNA-seq is a recommended implementation for undiagnosed cases by first-line diagnostic approaches. © 2023 International Parkinson and Movement Disorder Society.