Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Angew Chem Int Ed Engl ; : e202416426, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39305135

RESUMO

Sonocatalytic therapy (SCT) holds promise due to its exceptional penetration depth; however, the rapid recombination of electron-hole (e--h+) pairs and the complex tumor microenvironment (TME) impede its broader application. Herein, we discovered that antimony (Sb)-based nanomaterials induced pyroptosis in cancer cells. Therefore, a Schottky heterojunction containing a Sb component (Sb2Se3@Pt) was effectively designed and constructed via in-situ growth of platinum (Pt) nanoparticles (NPs) on a Sb2Se3 semiconductor with narrow bandgaps, which were utilized as US-heightened pyroptosis initiators to induce highly effective pyroptosis in cancer cells to boost SCT-immunotherapy. The biological effects of the Sb2Se3@Pt nanoheterojunction itself combined with the sonocatalytic amplification of oxidative stress significantly induced Caspase-1/GSDMD-dependent pyroptosis in cancer cells. Therefore, SCT treatment with Sb2Se3@Pt not only effectively restrained tumor proliferation but also induced potent immune memory responses and suppressed tumor recurrence. Furthermore, the integration of this innovative strategy with immune checkpoint blockade (ICB) treatment elicited a systemic immune response, effectively augmenting therapeutic effects and impeding the growth of abscopal tumors. Overall, this study provides further opportunities to explore pyroptosis-mediated SCT-immunotherapy.

2.
Sensors (Basel) ; 24(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38202915

RESUMO

To address the common drawbacks of current disinfection robots, which include the potential for secondary environmental pollution, disinfection dead corners, and low efficiency, in this paper, an autonomous mobile combination disinfection system is proposed. The system utilizes ultraviolet (UV) radiation and a low-concentration hydrogen peroxide aerosol to kill pathogens. It comprises three parts: a human-computer interface, a mobile robot, and disinfection equipment. A disinfection process model with continuous and fixed-point modes was established, and the effective disinfection range, speed, and duration were quantitatively calculated. The developed prototype was tested on-site by a professional third-party testing agency. The experimental results demonstrated that the combination disinfection robot achieved a 92.95% disinfection rate of natural airborne bacteria in a room measuring 22 square meters with a height of 2.8 m in just 30 min. The disinfection efficiency is at least 25% higher compared to standalone UV lamp disinfection and also exhibits a noticeable improvement over standalone hydrogen peroxide aerosol disinfection. The system enables the environmentally friendly, rapid, efficient, and all-encompassing disinfection of natural airborne bacteria. Finally, various disinfection solutions and recommendations for different application scenarios and requirements are provided.


Assuntos
Desinfecção , Peróxido de Hidrogênio , Humanos , Poluição Ambiental , Raios Ultravioleta , Aerossóis
3.
Cell Tissue Res ; 388(3): 549-563, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35347409

RESUMO

Mesenchymal stem cells (MSCs) have shown great potential in treating autoimmune diseases due to their immunomodulatory capability, which has been verified in both animal experiments and clinical trials. Psoriasis is a chronic and remitting immune-related disease. Limited studies have demonstrated that MSCs might be an effective therapeutic approach for managing psoriasis, whose underlying mechanism remains to be elucidated. In our present study, human umbilical cord-derived MSCs (hUC-MSCs) were subcutaneously injected into mice with imiquimod (IMQ)-induced psoriasis-like skin inflammation to explore the feasibility of this cellular therapy. The severity of psoriasis-like dermatitis was evaluated by cumulative psoriasis area and severity index score and epidermal thickness of skin tissue sections. Flow cytometric analysis was utilized to detect T helper cells, regulatory T cells, and γδ T cells in skin-draining lymph nodes. Real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay were used to assess the expression levels of psoriasis-related cytokines and chemokines in mouse dorsal skin lesions. We discovered that hUC-MSCs drastically diminished the severity of IMQ-induced psoriasis-like dermatitis and suppressed inflammatory cell response. Although the tail vein injection of hUC-MSCs was also effective, it was correlated with higher mortality owing to pulmonary embolism. By comparison, subcutaneous injection with two million hUC-MSCs was identified to be the optimal therapeutic strategy. Furthermore, we uncovered that hUC-MSCs might repress skin inflammation probably through inhibiting interleukin-17-producing γδ T cells. In conclusion, subcutaneous administration of hUC-MSCs might be a promising therapeutic approach for psoriasis. Our findings provide novel insights into the underpinning mechanism of hUC-MSC treatment in the management of psoriasis.


Assuntos
Dermatite , Interleucina-17/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Psoríase , Animais , Dermatite/metabolismo , Humanos , Imiquimode/efeitos adversos , Imiquimode/metabolismo , Inflamação/patologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Psoríase/induzido quimicamente , Psoríase/terapia , Linfócitos T/metabolismo , Cordão Umbilical
4.
Sensors (Basel) ; 22(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35408212

RESUMO

Industrial control systems (ICS) are applied in many fields. Due to the development of cloud computing, artificial intelligence, and big data analysis inducing more cyberattacks, ICS always suffers from the risks. If the risks occur during system operations, corporate capital is endangered. It is crucial to assess the security of ICS dynamically. This paper proposes a dynamic assessment framework for industrial control system security (DAF-ICSS) based on machine learning and takes an industrial robot system as an example. The framework conducts security assessment from qualitative and quantitative perspectives, combining three assessment phases: static identification, dynamic monitoring, and security assessment. During the evaluation, we propose a weighted Hidden Markov Model (W-HMM) to dynamically establish the system's security model with the algorithm of Baum-Welch. To verify the effectiveness of DAF-ICSS, we have compared it with two assessment methods to assess industrial robot security. The comparison result shows that the proposed DAF-ICSS can provide a more accurate assessment. The assessment reflects the system's security state in a timely and intuitive manner. In addition, it can be used to analyze the security impact caused by the unknown types of ICS attacks since it infers the security state based on the explicit state of the system.


Assuntos
Inteligência Artificial , Computação em Nuvem , Algoritmos , Big Data , Aprendizado de Máquina
5.
Sensors (Basel) ; 22(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35009693

RESUMO

The development of "large display, high performance and low cost" in the FPD industry demands glass substrates to be "larger and thinner". Therefore, the requirements of handling robots are developing in the direction of large scale, high speed, and high precision. This paper presents a novel construction of a glass substrate handling robot, which has a 2.5 m/s travelling speed. It innovatively adopts bionic end-suction technology to grasp the glass substrate more firmly. The structure design is divided into the following three parts: a travel track, a robot body, and an end-effector. The manipulator can be smoothly and rapidly extended by adjusting the transmission ratio of the reducer to 1:2:1, using only one motor to drive two sections of the arm. This robot can transfer two pieces of glass substrate at one time, and improves the working efficiency. The kinematic and dynamic models of the robot are built based on the DH coordinate. Through the positioning accuracy experiment and vibration experiment of the end-effector, it is found that the robot has high precision during handling. The robots developed in this study can be used in large-scale glass substrate handling.


Assuntos
Biônica , Robótica , Fenômenos Biomecânicos , Vidro
6.
Immunology ; 160(4): 382-392, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32306382

RESUMO

Psoriasis is a chronic inflammatory skin disease with unclear pathogenesis. Interleukin-33 (IL-33) is highly expressed in patients with psoriasis, but its role in psoriasis is unknown. The aim of this study was to investigate the possible role of IL-33 in the pathogenesis and treatment of psoriasis. IL-33 expression was determined using enzyme-linked immunosorbent assay, real-time fluorescent quantitative polymerase chain reaction and immunohistochemical staining. CD4+ T cells were sorted using magnetic beads and treated with or without IL-33. Imiquimod (IMQ) was used to induce psoriatic inflammation in mice. The frequency of immune cells was determined using flow cytometry. The cytokine level in mouse skin was measured using cytometric bead array. Our results showed that IL-33 was highly expressed in the lesional skin and serum of patients with moderate-to-severe plaque psoriasis. IL-33 inhibited the expression of IL-17 in CD4+ T cells of psoriasis patients. Subcutaneous injection of IL-33 alleviated the IMQ-induced psoriatic inflammation in mice, reduced tumor necrosis factor-α and IL-23 expression, and decreased the proportion of T helper type 17 (Th17) cells in the skin-draining lymph nodes in the mice. Our results suggest that IL-33 plays a protective role in the pathogenesis of psoriasis by suppressing Th17 cell differentiation and function. The potential therapeutic effect of IL-33 in treating psoriasis warrants further investigation.


Assuntos
Inflamação/imunologia , Interleucina-33/metabolismo , Psoríase/imunologia , Pele/patologia , Células Th17/imunologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Imiquimode , Tolerância Imunológica , Imunidade Celular , Interleucina-17/metabolismo , Interleucina-33/genética , Camundongos , Camundongos Endogâmicos C57BL , Psoríase/induzido quimicamente
7.
Biochem Biophys Res Commun ; 515(4): 665-671, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31182284

RESUMO

BACKGROUND: Psoriasis is a chronic inflammatory skin disease characterized by keratinocyte hyperproliferation. Ginsenoside compound K (CK), a bioactive metabolite of ginseng, modulates various skin disorders with an impact on keratinocyte biology. However, the effect of Ginsenoside CK in psoriasis has not been explored. OBJECTIVE: Our aim was to investigate whether ginsenoside CK could affect the homeostasis of keratinocytes and their expression of psoriasis-associated antimicrobial protein regenerating islet-derived protein 3-alpha (REG3A) and its murine ortholog RegIIIγ. We further explored the therapeutic potential of ginsenoside CK in imiquimod (IMQ)-induced psoriasis-like dermatitis. METHODS: The effects of ginsenoside CK in cell growth and apoptosis of human keratinocytes were measured by MTT assay and flow cytometry, respectively. Bax levels were evaluated by Western blot in HaCaT cells following ginsenoside CK stimulation. REG3A levels were assessed by RT-PCR and Western blot in human keratinocytes following interleukin (IL)-36γ and ginsenoside CK co-simulation. Utilizing IMQ-induced psoriasis mouse model, the therapeutic effects of 0.1% and 1% ginsenoside CK cream were assessed by skin thicknesses and histological examinations, and RegIIIγ level in the lesional skin was detected by Western blot and immunofluorescence. RESULTS: Ginsenoside CK prohibited human keratinocyte proliferation but did not affect their apoptosis. Moreover, it inhibited IL-36γ-induced REG3A expression in HaCaT cells. Ginsenoside CK alleviated imiquimod-induced psoriasis-like hyperkeratosis and reduced RegIIIγ expression in the keratinocytes from lesional skin. CONCLUSION: Ginsenoside CK ameliorated IMQ-induced psoriasis-like dermatitis possibly through inhibiting REG3A/RegIIIγ expression in keratinocytes, which highlighted a therapeutic potential of ginsenoside CK in psoriasis.


Assuntos
Dermatite/tratamento farmacológico , Ginsenosídeos/farmacologia , Queratinócitos/citologia , Proteínas Associadas a Pancreatite/antagonistas & inibidores , Psoríase/tratamento farmacológico , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Feminino , Humanos , Imiquimode , Interleucina-1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Psoríase/induzido quimicamente , Pele/metabolismo
8.
Sensors (Basel) ; 16(11)2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27886090

RESUMO

In this paper, an efficient method based on a light section sensor is presented for measuring cylindrical objects' radii and orientations in a robotic application. By this method, the cylindrical objects can be measured under some special conditions, such as when the cylindrical objects are welded with others, or in the presence of interferences. Firstly, the measurement data are roughly identified and accurately screened to effectively recognize ellipses. Secondly, the data are smoothed and homogenized to eliminate the effect of laser line loss or jump and reduce the influence of the inhomogeneity of measurement data on the ellipse fitting to a minimum. Finally, the ellipse fitting is carried out to obtain the radii and orientations of the cylindrical objects. Measuring experiments and results demonstrate the effective of the proposed radius and orientation measurement method for cylindrical object.

9.
Tumour Biol ; 36(2): 729-35, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25286762

RESUMO

MicroRNAs (miRNAs) can function as tumor suppressors and might provide an efficient strategy for annihilating cancer. Specific miRNAs can be reintroduced into tumor cells to elicit the tumor suppressor activities. We show that systemically delivered, synthetic miRNA mimics in complex with a novel neutral lipid emulsion are preferentially targeted to lung tumors and show therapeutic benefit in mouse models of lung cancer. The delivery was demonstrated using mimics of the tumor suppressor microRNA-495 which is found downregulated in most lung cancer. Systemic treatment of a Kras-activated autochthonous mouse model of non-small cell lung cancer (NSCLC) led to a significant decrease in tumor burden. Specifically, mice treated with microRNA-495 displayed a large reduction in tumor area compared to mice treated with a miRNA control. These findings provide direct evidence that systematically delivered synthetic miRNA mimics to the mammalian lung can inhibit tumor proliferation and support the promise of miRNAs as a targeted therapy for lung cancer in future.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Técnicas de Transferência de Genes , Genes Supressores de Tumor , Neoplasias Pulmonares/genética , MicroRNAs/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Camundongos , MicroRNAs/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
10.
ACS Nano ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010657

RESUMO

Pyroptosis is an inflammatory form of programmed cell death associated with the immune system that can be induced by reactive oxygen species (ROS). As a therapeutic strategy with better penetration depth, sonodynamic therapy (SDT) is expected to induce pyroptosis of cancer cells and boost the immune response. However, it is still a limited problem to precisely adjust the structure of sonosensitizers to exhibit satisfactory sono-catalytic properties. Herein, fluorinated titanium oxide (TiO2-xFx) sonosensitizers were developed to induce pyroptosis under ultrasound (US) to boost antitumor immune responses, enabling highly effective SDT. On the one hand, the introduction of F atoms significantly reduced the adsorption energy of TiO2-xFx for oxygen and water, which is conducive to the occurrence of sono-catalytic reactions. On the other hand, the process of F replacing O increased the oxygen vacancies of the sonosensitizer and shortened the band gap, which enabled powerful ROS generation ability under US stimulation. In this case, large amounts of ROS could effectively kill cancer cells by inducing mitochondrial damage and disrupting oxidative homeostasis, leading to significant cell pyroptosis. Moreover, SDT treatment with TiO2-xFx not only suppressed tumor proliferation but also elicited robust immune memory effects and hindered tumor recurrence. This work highlighted the importance of precisely regulating the structure of sonosensitizers to achieve efficient ROS generation for inducing pyroptosis, which sets the stage for the further development of SDT-immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA