Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.627
Filtrar
1.
Cell ; 182(5): 1271-1283.e16, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32795413

RESUMO

There is an urgent need for vaccines against coronavirus disease 2019 (COVID-19) because of the ongoing SARS-CoV-2 pandemic. Among all approaches, a messenger RNA (mRNA)-based vaccine has emerged as a rapid and versatile platform to quickly respond to this challenge. Here, we developed a lipid nanoparticle-encapsulated mRNA (mRNA-LNP) encoding the receptor binding domain (RBD) of SARS-CoV-2 as a vaccine candidate (called ARCoV). Intramuscular immunization of ARCoV mRNA-LNP elicited robust neutralizing antibodies against SARS-CoV-2 as well as a Th1-biased cellular response in mice and non-human primates. Two doses of ARCoV immunization in mice conferred complete protection against the challenge of a SARS-CoV-2 mouse-adapted strain. Additionally, ARCoV is manufactured as a liquid formulation and can be stored at room temperature for at least 1 week. ARCoV is currently being evaluated in phase 1 clinical trials.


Assuntos
RNA Mensageiro/genética , RNA Viral/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Sítios de Ligação , Vacinas contra COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Feminino , Células HEK293 , Células HeLa , Humanos , Imunogenicidade da Vacina , Injeções Intramusculares , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos ICR , Nanopartículas/química , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Th1/imunologia , Potência de Vacina , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Células Vero , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
2.
Nat Immunol ; 19(4): 342-353, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29507355

RESUMO

Pathogens have co-evolved with mosquitoes to optimize transmission to hosts. Mosquito salivary-gland extract is known to modulate host immune responses and facilitate pathogen transmission, but the underlying molecular mechanisms of this have remained unknown. In this study, we identified and characterized a prominent 15-kilodalton protein, LTRIN, obtained from the salivary glands of the mosquito Aedes aegypti. LTRIN expression was upregulated in blood-fed mosquitoes, and LTRIN facilitated the transmission of Zika virus (ZIKV) and exacerbated its pathogenicity by interfering with signaling through the lymphotoxin-ß receptor (LTßR). Mechanically, LTRIN bound to LTßR and 'preferentially' inhibited signaling via the transcription factor NF-κB and the production of inflammatory cytokines by interfering with the dimerization of LTßR during infection with ZIKV. Furthermore, treatment with antibody to LTRIN inhibited mosquito-mediated infection with ZIKV, and abolishing LTßR potentiated the infectivity of ZIKV both in vitro and in vivo. This study provides deeper insight into the transmission of mosquito-borne diseases in nature and supports the therapeutic potential of inhibiting the action of LTRIN to disrupt ZIKV transmission.


Assuntos
Aedes/virologia , Proteínas de Insetos/metabolismo , Saliva/metabolismo , Infecção por Zika virus/transmissão , Zika virus/patogenicidade , Animais , Humanos , Receptor beta de Linfotoxina/imunologia , Receptor beta de Linfotoxina/metabolismo , Camundongos , Mosquitos Vetores/química , Mosquitos Vetores/imunologia , Mosquitos Vetores/metabolismo , Saliva/química
3.
Immunity ; 52(6): 971-977.e3, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32413330

RESUMO

The World Health Organization has declared SARS-CoV-2 virus outbreak a worldwide pandemic. However, there is very limited understanding on the immune responses, especially adaptive immune responses to SARS-CoV-2 infection. Here, we collected blood from COVID-19 patients who have recently become virus-free, and therefore were discharged, and detected SARS-CoV-2-specific humoral and cellular immunity in eight newly discharged patients. Follow-up analysis on another cohort of six patients 2 weeks post discharge also revealed high titers of immunoglobulin G (IgG) antibodies. In all 14 patients tested, 13 displayed serum-neutralizing activities in a pseudotype entry assay. Notably, there was a strong correlation between neutralization antibody titers and the numbers of virus-specific T cells. Our work provides a basis for further analysis of protective immunity to SARS-CoV-2, and understanding the pathogenesis of COVID-19, especially in the severe cases. It also has implications in developing an effective vaccine to SARS-CoV-2 infection.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/imunologia , Imunidade Celular , Imunidade Humoral , Pneumonia Viral/imunologia , Adulto , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19 , Convalescença , Infecções por Coronavirus/sangue , Infecções por Coronavirus/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/patologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia
4.
Nature ; 603(7903): 919-925, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35090164

RESUMO

Omicron (B.1.1.529), the most heavily mutated SARS-CoV-2 variant so far, is highly resistant to neutralizing antibodies, raising concerns about the effectiveness of antibody therapies and vaccines1,2. Here we examined whether sera from individuals who received two or three doses of inactivated SARS-CoV-2 vaccine could neutralize authentic Omicron. The seroconversion rates of neutralizing antibodies were 3.3% (2 out of 60) and 95% (57 out of 60) for individuals who had received 2 and 3 doses of vaccine, respectively. For recipients of three vaccine doses, the geometric mean neutralization antibody titre for Omicron was 16.5-fold lower than for the ancestral virus (254). We isolated 323 human monoclonal antibodies derived from memory B cells in triple vaccinees, half of which recognized the receptor-binding domain, and showed that a subset (24 out of 163) potently neutralized all SARS-CoV-2 variants of concern, including Omicron. Therapeutic treatments with representative broadly neutralizing monoclonal antibodies were highly protective against infection of mice with SARS-CoV-2 Beta (B.1.351) and Omicron. Atomic structures of the Omicron spike protein in complex with three classes of antibodies that were active against all five variants of concern defined the binding and neutralizing determinants and revealed a key antibody escape site, G446S, that confers greater resistance to a class of antibodies that bind on the right shoulder of the receptor-binding domain by altering local conformation at the binding interface. Our results rationalize the use of three-dose immunization regimens and suggest that the fundamental epitopes revealed by these broadly ultrapotent antibodies are rational targets for a universal sarbecovirus vaccine.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Células B de Memória , SARS-CoV-2 , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Anticorpos Antivirais/uso terapêutico , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Modelos Animais de Doenças , Humanos , Células B de Memória/imunologia , Camundongos , Testes de Neutralização , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
5.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38487851

RESUMO

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for investigating cellular heterogeneity through high-throughput analysis of individual cells. Nevertheless, challenges arise from prevalent sequencing dropout events and noise effects, impacting subsequent analyses. Here, we introduce a novel algorithm, Single-cell Gene Importance Ranking (scGIR), which utilizes a single-cell gene correlation network to evaluate gene importance. The algorithm transforms single-cell sequencing data into a robust gene correlation network through statistical independence, with correlation edges weighted by gene expression levels. We then constructed a random walk model on the resulting weighted gene correlation network to rank the importance of genes. Our analysis of gene importance using PageRank algorithm across nine authentic scRNA-seq datasets indicates that scGIR can effectively surmount technical noise, enabling the identification of cell types and inference of developmental trajectories. We demonstrated that the edges of gene correlation, weighted by expression, play a critical role in enhancing the algorithm's performance. Our findings emphasize that scGIR outperforms in enhancing the clustering of cell subtypes, reverse identifying differentially expressed marker genes, and uncovering genes with potential differential importance. Overall, we proposed a promising method capable of extracting more information from single-cell RNA sequencing datasets, potentially shedding new lights on cellular processes and disease mechanisms.


Assuntos
Redes Reguladoras de Genes , Análise de Célula Única , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Algoritmos , Análise por Conglomerados , Perfilação da Expressão Gênica/métodos
6.
Immunity ; 46(6): 992-1004.e5, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28636969

RESUMO

RNA interference (RNAi) functions as a potent antiviral immunity in plants and invertebrates; however, whether RNAi plays antiviral roles in mammals remains unclear. Here, using human enterovirus 71 (HEV71) as a model, we showed HEV71 3A protein as an authentic viral suppressor of RNAi during viral infection. When the 3A-mediated RNAi suppression was impaired, the mutant HEV71 readily triggered the production of abundant HEV71-derived small RNAs with canonical siRNA properties in cells and mice. These virus-derived siRNAs were produced from viral dsRNA replicative intermediates in a Dicer-dependent manner and loaded into AGO, and they were fully active in degrading cognate viral RNAs. Recombinant HEV71 deficient in 3A-mediated RNAi suppression was significantly restricted in human somatic cells and mice, whereas Dicer deficiency rescued HEV71 infection independently of type I interferon response. Thus, RNAi can function as an antiviral immunity, which is induced and suppressed by a human virus, in mammals.


Assuntos
Enterovirus Humano A/imunologia , Infecções por Enterovirus/imunologia , Imunidade , Interferência de RNA , RNA Viral/imunologia , Animais , Proteínas Argonautas/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Enterovirus Humano A/genética , Células HEK293 , Humanos , Mamíferos , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Mutação/genética , Ribonuclease III/metabolismo , Proteínas Virais/imunologia
7.
Immunity ; 46(3): 446-456, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28314593

RESUMO

Zika virus (ZIKV) has become a public health threat due to its global transmission and link to severe congenital disorders. The host immune responses to ZIKV infection have not been fully elucidated, and effective therapeutics are not currently available. Herein, we demonstrated that cholesterol-25-hydroxylase (CH25H) was induced in response to ZIKV infection and that its enzymatic product, 25-hydroxycholesterol (25HC), was a critical mediator of host protection against ZIKV. Synthetic 25HC addition inhibited ZIKV infection in vitro by blocking viral entry, and treatment with 25HC reduced viremia and conferred protection against ZIKV in mice and rhesus macaques. 25HC suppressed ZIKV infection and reduced tissue damage in human cortical organoids and the embryonic brain of the ZIKV-induced mouse microcephaly model. Our findings highlight the protective role of CH25H during ZIKV infection and the potential use of 25HC as a natural antiviral agent to combat ZIKV infection and prevent ZIKV-associated outcomes, such as microcephaly.


Assuntos
Antivirais/farmacologia , Hidroxicolesteróis/farmacologia , Microcefalia/virologia , Infecção por Zika virus/complicações , Animais , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Imunofluorescência , Humanos , Macaca mulatta , Camundongos , Microscopia Confocal , Internalização do Vírus/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Zika virus/fisiologia
8.
Proc Natl Acad Sci U S A ; 120(42): e2305208120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37816049

RESUMO

Polyploidization is important to the evolution of plants. Subgenome dominance is a distinct phenomenon associated with most allopolyploids. A gene on the dominant subgenome tends to express to higher RNA levels in all organs as compared to the expression of its syntenic paralogue (homoeolog). The mechanism that underlies the formation of subgenome dominance remains unknown, but there is evidence for the involvement of transposon/DNA methylation density differences nearby the genes of parents as being causal. The subgenome with lower density of transposon and methylation near genes is positively associated with subgenome dominance. Here, we generated eight generations of allotetraploid progenies from the merging of parental genomes Brassica rapa and Brassica oleracea. We found that transposon/methylation density differ near genes between the parental (rapa:oleracea) existed in the wide hybrid, persisted in the neotetraploids (the synthetic Brassica napus), but these neotetraploids expressed no expected subgenome dominance. This absence of B. rapa vs. B. oleracea subgenome dominance is particularly significant because, while there is no negative relationship between transposon/methylation level and subgenome dominance in the neotetraploids, the more ancient parental subgenomes for all Brassica did show differences in transposon/methylation densities near genes and did express, in the same samples of cells, biased gene expression diagnostic of subgenome dominance. We conclude that subgenome differences in methylated transposon near genes are not sufficient to initiate the biased gene expressions defining subgenome dominance. Our result was unexpected, and we suggest a "nuclear chimera" model to explain our data.


Assuntos
Brassica napus , Brassica rapa , Brassica , Brassica/genética , Genoma de Planta/genética , Brassica rapa/genética , Brassica napus/genética , Metilação de DNA/genética , Poliploidia
9.
Plant J ; 120(1): 174-186, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39133828

RESUMO

Deep learning offers new approaches to investigate the mechanisms underlying complex biological phenomena, such as subgenome dominance. Subgenome dominance refers to the dominant expression and/or biased fractionation of genes in one subgenome of allopolyploids, which has shaped the evolution of a large group of plants. However, the underlying cause of subgenome dominance remains elusive. Here, we adopt deep learning to construct two convolutional neural network (CNN) models, binary expression model (BEM) and homoeolog contrast model (HCM), to investigate the mechanism underlying subgenome dominance using DNA sequence and methylation sites. We apply these CNN models to analyze three representative polyploidization systems, Brassica, Gossypium, and Cucurbitaceae, each with available ancient and neo/synthetic polyploidized genomes. The BEM shows that DNA sequence of the promoter region can accurately predict whether a gene is expressed or not. More importantly, the HCM shows that the DNA sequence of the promoter region predicts dominant expression status between homoeologous gene pairs retained from ancient polyploidizations, thus predicting subgenome dominance associated with these events. However, HCM fails to predict gene expression dominance between new homoeologous gene pairs arising from the neo/synthetic polyploidizations. These results are consistent across the three plant polyploidization systems, indicating broad applicability of our models. Furthermore, the two models based on methylation sites produce similar results. These results show that subgenome dominance is associated with long-term sequence differentiation between the promoters of homoeologs, suggesting that subgenome expression dominance precedes and is the driving force or even the determining factor for sequence divergence between subgenomes following polyploidization.


Assuntos
Aprendizado Profundo , Genoma de Planta , Poliploidia , Genoma de Planta/genética , Metilação de DNA , Regiões Promotoras Genéticas/genética , Evolução Molecular , Redes Neurais de Computação , Regulação da Expressão Gênica de Plantas
10.
Plant J ; 118(1): 73-89, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38112590

RESUMO

Actinidia ('Mihoutao' in Chinese) includes species with complex ploidy, among which diploid Actinidia chinensis and hexaploid Actinidia deliciosa are economically and nutritionally important fruit crops. Actinidia deliciosa has been proposed to be an autohexaploid (2n = 174) with diploid A. chinensis (2n = 58) as the putative parent. A CCS-based assembly anchored to a high-resolution linkage map provided a chromosome-resolved genome for hexaploid A. deliciosa yielded a 3.91-Gb assembly of 174 pseudochromosomes comprising 29 homologous groups with 6 members each, which contain 39 854 genes with an average of 4.57 alleles per gene. Here we provide evidence that much of the hexaploid genome matches diploid A. chinensis; 95.5% of homologous gene pairs exhibited >90% similarity. However, intragenome and intergenome comparisons of synteny indicate chromosomal changes. Our data, therefore, indicate that if A. deliciosa is an autoploid, chromosomal rearrangement occurred following autohexaploidy. A highly diversified pattern of gene expression and a history of rapid population expansion after polyploidisation likely facilitated the adaptation and niche differentiation of A. deliciosa in nature. The allele-defined hexaploid genome of A. deliciosa provides new genomic resources to accelerate crop improvement and to understand polyploid genome evolution.


Assuntos
Actinidia , Actinidia/genética , Mapeamento Cromossômico , Genoma de Planta/genética , Ploidias , Cromossomos , Frutas/genética
11.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38410843

RESUMO

In the African weakly electric fish genus Campylomormyrus, electric organ discharge signals are strikingly different in shape and duration among closely related species, contribute to prezygotic isolation, and may have triggered an adaptive radiation. We performed mRNA sequencing on electric organs and skeletal muscles (from which the electric organs derive) from 3 species with short (0.4 ms), medium (5 ms), and long (40 ms) electric organ discharges and 2 different cross-species hybrids. We identified 1,444 upregulated genes in electric organ shared by all 5 species/hybrid cohorts, rendering them candidate genes for electric organ-specific properties in Campylomormyrus. We further identified several candidate genes, including KCNJ2 and KLF5, and their upregulation may contribute to increased electric organ discharge duration. Hybrids between a short (Campylomormyrus compressirostris) and a long (Campylomormyrus rhynchophorus) discharging species exhibit electric organ discharges of intermediate duration and showed imbalanced expression of KCNJ2 alleles, pointing toward a cis-regulatory difference at this locus, relative to electric organ discharge duration. KLF5 is a transcription factor potentially balancing potassium channel gene expression, a crucial process for the formation of an electric organ discharge. Unraveling the genetic basis of the species-specific modulation of the electric organ discharge in Campylomormyrus is crucial for understanding the adaptive radiation of this emerging model taxon of ecological (perhaps even sympatric) speciation.


Assuntos
Peixe Elétrico , Animais , Peixe Elétrico/genética , Alelos , Órgão Elétrico/metabolismo , Regulação para Cima , Canais de Potássio/genética
12.
J Virol ; : e0125124, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39412258

RESUMO

Zika virus (ZIKV) remains a significant public health threat worldwide. A number of adaptive mutations have accumulated within the genome of ZIKV during global transmission, some of which have been linked to specific phenotypes. ZIKV maintains an alternating cycle of replication between mosquitoes and vertebrate hosts, but the role of mosquito-specific adaptive mutations in ZIKV has not been well investigated. In this study, we demonstrated that serial passaging of ZIKV in mosquito Aag2 cells led to the emergence of critical amino acid substitutions, including A94V in the prM protein and V153D and H401Y in the E protein. Further characterization via reverse genetics revealed that the H401Y substitution in the E protein did not augment viral replication in mosquitoes but significantly enhanced neurovirulence and lethality compared with those of the wild-type (WT) virus in mice. More importantly, the H401Y mutant maintained its virulence phenotype in mice after propagation in mosquitoes in mosquito-mouse cycle model. In particular, recombinant ZIKV harboring the H401Y substitution showed enhanced competitive fitness over WT ZIKV in various mammalian cells and mouse brains, but not in mosquito cells. Notably, the H401Y substitution in the ZIKV E protein has been detected in recent isolates derived from both mosquitoes and humans in Asia and the Americas. In summary, our findings not only identify a novel virulence determinant of ZIKV but also highlight the complexity of the relationship between the evolution of vector-borne viruses and their clinical outcome in nature. IMPORTANCE: Zika virus (ZIKV) is an important arbovirus with a global impact. Experimental evolution by serial passaging of ZIKV in susceptible cells has led to the identification of a panel of critical amino acid substitutions with specific functions. Herein, we identified a mosquito cell-derived substitution, H401Y, in the ZIKV E protein via experimental evolution. The H401Y substitution significantly enhanced viral virulence and fitness in mammal cells and mice. Notably, the H401Y substitution has been detected in recent mosquito and human isolates from regions spanning Asia to the Americas. Our work elucidates unrecognized virulence determinant in the ZIKV genome that warrants urgent attention. Moreover, the findings underscore the critical need for extensive molecular surveillance and rigorous clinical observation to establish the potential impact in natural circulation. These endeavors are crucial for unraveling the potential of mutation to act as a catalyst for future epidemics, thereby preempting the public health challenges it may pose.

13.
J Virol ; 98(2): e0195423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289102

RESUMO

During the life cycle of mosquito-borne flaviviruses, substantial subgenomic flaviviral RNA (sfRNA) is produced via incomplete degradation of viral genomic RNA by host XRN1. Zika virus (ZIKV) sfRNA has been detected in mosquito and mammalian somatic cells. Human neural progenitor cells (hNPCs) in the developing brain are the major target cells of ZIKV, and antiviral RNA interference (RNAi) plays a critical role in hNPCs. However, whether ZIKV sfRNA was produced in ZIKV-infected hNPCs as well as its function remains not known. In this study, we demonstrate that abundant sfRNA was produced in ZIKV-infected hNPCs. RNA pulldown and mass spectrum assays showed ZIKV sfRNA interacted with host proteins RHA and PACT, both of which are RNA-induced silencing complex (RISC) components. Functionally, ZIKV sfRNA can antagonize RNAi by outcompeting small interfering RNAs (siRNAs) in binding to RHA and PACT. Furthermore, the 3' stem loop (3'SL) of sfRNA was responsible for RISC components binding and RNAi inhibition, and 3'SL can enhance the replication of a viral suppressor of RNAi (VSR)-deficient virus in a RHA- and PACT-dependent manner. More importantly, the ability of binding to RISC components is conversed among multiple flaviviral 3'SLs. Together, our results identified flavivirus 3'SL as a potent VSR in RNA format, highlighting the complexity in virus-host interaction during flavivirus infection.IMPORTANCEZika virus (ZIKV) infection mainly targets human neural progenitor cells (hNPCs) and induces cell death and dysregulated cell-cycle progression, leading to microcephaly and other central nervous system abnormalities. RNA interference (RNAi) plays critical roles during ZIKV infections in hNPCs, and ZIKV has evolved to encode specific viral proteins to antagonize RNAi. Herein, we first show that abundant sfRNA was produced in ZIKV-infected hNPCs in a similar pattern to that in other cells. Importantly, ZIKV sfRNA acts as a potent viral suppressor of RNAi (VSR) by competing with siRNAs for binding RISC components, RHA and PACT. The 3'SL of sfRNA is responsible for binding RISC components, which is a conserved feature among mosquito-borne flaviviruses. As most known VSRs are viral proteins, our findings highlight the importance of viral non-coding RNAs during the antagonism of host RNAi-based antiviral innate immunity.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Humanos , Mamíferos/genética , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Viral/genética , RNA Viral/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , RNA Subgenômico , Proteínas Virais/metabolismo , Replicação Viral , Zika virus/fisiologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
14.
Hepatology ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302977

RESUMO

BACKGROUND AND AIMS: Hyperactivated inflammatory responses induced by cytokine release syndrome (CRS) are the primary causes of tissue damage and even death. The translation process is precisely regulated to control the production of proinflammatory cytokines. However, it is largely unknown whether targeting translation can effectively limit the hyperactivated inflammatory responses during acute hepatitis and graft-versus-host disease (GVHD). APPROACH AND RESULTS: By using in vitro translation and cellular overexpression systems, we have found that the non-structural protein gene NS2A of Zika virus (ZIKV) functions as RNA molecules to suppress the translation of both ectopic genes and endogenous proinflammatory cytokines. Mechanistically, results from RNA pulldown and co-immunoprecipitation (Co-IP) assays have demonstrated that NS2A RNA interacts with the translation initiation factor eIF2α to disrupt the dynamic balance of the eIF2/eIF2B complex and translation initiation, which is the rate-limiting step during the translation process. In the acetaminophen (APAP)-, LPS/D-galactosamine (D-GalN)-, viral infection-induced acute hepatitis, and GVHD mouse models, mice with myeloid cell-specific knock-in of NS2A show decreased levels of serum proinflammatory cytokines and reduced tissue damage. CONCLUSIONS: ZIKV NS2A dampens the production of proinflammatory cytokines and alleviates inflammatory injuries by interfering translation process as RNA molecules, which suggests that NS2A RNA is potentially used to treat numerous acute inflammatory diseases characterized by CRS.

15.
Plant Physiol ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162415

RESUMO

Polyploidization plays a crucial role in plant evolution and is becoming increasingly important in breeding. Structural variations and epigenomic repatterning have been observed in synthetic polyploidizations. However, the mechanisms underlying the occurrence and their effects on gene expression and phenotype remain unknown. Here, we investigated genome-wide large deletion/duplication regions (DelDups) and genomic methylation dynamics in leaf organs of progeny from the first eight generations of synthetic tetraploids derived from Chinese cabbage (Brassica rapa L. ssp. pekinensis) and cabbage (Brassica oleracea L. var. capitata). One- or two-copy DelDups, with a mean size of 5.70 Mb (400 kb - 65.85 Mb), occurred from the first generation of selfing and thereafter. The duplication of a fragment in one subgenome consistently coincided with the deletion of its syntenic fragment in the other subgenome, and vice versa, indicating that these DelDups were generated by homoeologous exchanges (HEs). Interestingly, the larger the genomic syntenic region, the higher the frequency of DelDups, further suggesting that the pairing of large homoeologous fragments is crucial for HEs. Moreover, we found that the active transcription of continuously distributed genes in local regions is positively associated with the occurrence of HE breakpoints. In addition, the expression of genes within DelDups exhibited a dosage effect, and plants with extra parental genomic fragments generally displayed phenotypes biased towards the corresponding parent. Genome-wide methylation fluctuated remarkably, which did not clearly affect gene expression on a large scale. Our findings provide insights into the early evolution of polyploid genomes, offering valuable knowledge for polyploidization-based breeding.

16.
Mol Ther ; 32(8): 2563-2583, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38879755

RESUMO

The extensive degeneration of functional somatic cells and the depletion of endogenous stem/progenitor populations present significant challenges to tissue regeneration in degenerative diseases. Currently, a cellular reprogramming approach enabling directly generating corresponding progenitor populations from degenerative somatic cells remains elusive. The present study focused on intervertebral disc degeneration (IVDD) and identified a three-factor combination (OCT4, FOXA2, TBXT [OFT]) that could induce the dedifferentiation-like reprogramming of degenerative nucleus pulposus cells (dNPCs) toward induced notochordal-like cells (iNCs). Single-cell transcriptomics dissected the transitions of cell identity during reprogramming. Further, OCT4 was found to directly interact with bromodomain PHD-finger transcription factor to remodel the chromatin during the early phases, which was crucial for initiating this dedifferentiation-like reprogramming. In rat models, intradiscal injection of adeno-associated virus carrying OFT generated iNCs from in situ dNPCs and reversed IVDD. These results collectively present a proof-of-concept for dedifferentiation-like reprogramming of degenerated somatic cells into corresponding progenitors through the development of a factor-based strategy, providing a promising approach for regeneration in degenerative disc diseases.


Assuntos
Desdiferenciação Celular , Reprogramação Celular , Degeneração do Disco Intervertebral , Notocorda , Núcleo Pulposo , Núcleo Pulposo/metabolismo , Núcleo Pulposo/citologia , Núcleo Pulposo/patologia , Animais , Reprogramação Celular/genética , Degeneração do Disco Intervertebral/terapia , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Ratos , Notocorda/metabolismo , Notocorda/citologia , Humanos , Modelos Animais de Doenças , Fator 3 de Transcrição de Octâmero/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Análise de Célula Única , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Células Cultivadas
17.
Nano Lett ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39393017

RESUMO

Three-dimensional (3D) imaging enables high-precision and high-resolution axial positioning, which is crucial for biological imaging, semiconductor defect monitoring, and other applications. Conventional implementations rely on bulky optical elements or scanning mechanisms, resulting in low speed and complicated setups. Here, we generate the double-helix (DH) point spread function with an all-dielectric metasurface and thus innovate the 3D imaging microscope (hence dubbed meta-microscope), both in 4f and 2f imaging systems. The 4f-meta-microscope with a numerical aperture of 0.7 achieves an axial localization accuracy below 0.12 µm within a 15.47 µm detection range, while the 2f-DH meta-microscope with a numerical aperture of 0.3 shows a 1.12 µm accuracy within a 227.33 µm range. We also demonstrate single-shot and accurate 3D biological imaging of the mouse kidney tissue and peach anther, providing a comprehensive and efficient approach for 3D bioimaging and other applications through a single-shot 3D meta-microscope.

18.
Gut ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353724

RESUMO

BACKGROUND: Enterically transmitted hepatitis viruses, such as hepatitis A virus (HAV) and hepatitis E virus (HEV), remain notable threats to public health. However, stable and reliable animal models of HAV and HEV infection are lacking. OBJECTIVE: This study aimed to establish HAV and HEV infections in multiple small animals by intravenously injecting lipid nanoparticle (LNP)-encapsulated full-length viral RNAs (LNP-vRNA). DESIGN: In vitro transcribed and capped full-length HAV RNA was encapsulated into LNP and was intravenously inoculated to Ifnar-/- mice, and HEV RNA to rabbits and gerbils. Virological parameters were determined by RT-qPCR, ELISA and immunohistochemistry. Liver histopathological changes were analysed by H&E staining. Antiviral drug and vaccine efficacy were further evaluated by using the LNP-vRNA-based animal model. RESULTS: On intravenous injection of LNP-vRNA, stable viral shedding was detected in the faeces and infectious HAV or HEV was recovered from the livers of the inoculated animals. Liver damage was observed in LNP-vRNA (HAV)-injected mice and LNP-vRNA (HEV)-injected rabbits. Mongolian gerbils were also susceptible to LNP-vRNA (HEV) injections. Finally, the antiviral countermeasures and in vivo function of HEV genome deletions were validated in the LNP-vRNA-based animal model. CONCLUSION: This stable and standardised LNP-vRNA-based animal model provides a powerful platform to investigate the pathogenesis and evaluate countermeasures for enterically transmitted hepatitis viruses and can be further expanded to other viruses that are not easily cultured in vitro or in vivo.

19.
Plant J ; 116(2): 446-466, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37428465

RESUMO

Although the South African Cape flora is one of the most remarkable biodiversity hotspots, its high diversity has not been associated with polyploidy. Here, we report the chromosome-scale genome assembly of an ephemeral cruciferous species Heliophila variabilis (~334 Mb, n = 11) adapted to South African semiarid biomes. Two pairs of differently fractionated subgenomes suggest an allo-octoploid origin of the genome at least 12 million years ago. The ancestral octoploid Heliophila genome (2n = 8x = ~60) has probably originated through hybridization between two allotetraploids (2n = 4x = ~30) formed by distant, intertribal, hybridization. Rediploidization of the ancestral genome was marked by extensive reorganization of parental subgenomes, genome downsizing, and speciation events in the genus Heliophila. We found evidence for loss-of-function changes in genes associated with leaf development and early flowering, and over-retention and sub/neofunctionalization of genes involved in pathogen response and chemical defense. The genomic resources of H. variabilis will help elucidate the role of polyploidization and genome diploidization in plant adaptation to hot arid environments and origin of the Cape flora. The sequenced H. variabilis represents the first chromosome-scale genome assembly of a meso-octoploid representative of the mustard family.


Assuntos
Brassicaceae , Genoma de Planta , Genoma de Planta/genética , Brassicaceae/genética , Poliploidia , Plantas/genética , Biodiversidade
20.
Mol Med ; 30(1): 144, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256642

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a special kind of chronic interstitial lung disease with insidious onset. Previous studies have revealed that mutations in ZCCHC8 may lead to IPF. The aim of this study is to explore the ZCCHC8 mutations in Chinese IPF patients. METHODS: Here, we enrolled 124 patients with interstitial lung disease from 2017 to 2023 in our hospital. Whole exome sequencing and Sanger sequencing were employed to explore the genetic lesions of these patients. RESULTS: Among these 124 patients, a novel mutation (NM_017612: c.1228 C > G/p.P410A) of Zinc Finger CCHC-Type Containing 8 (ZCCHC8)was identified in a family with IPF and chronic obstructive lung disease. As a component of the nuclear exosome-targeting complex that regulates the turnover of human telomerase RNA, ZCCHC8 mutations have been reported may lead to IPF in European population and American population. Functional study confirmed that the novel mutation can disrupt the nucleocytoplasmic localization of ZCCHC8, which further decreased the expression of DKC1 and RTEL1, and finally reduced the length of telomere and led to IPF and related disorders. CONCLUSIONS: We may first report the ZCCHC8 mutation in Asian population with IPF. Our study broadens the mutation, phenotype, and population spectrum of ZCCHC8 deficiency.


Assuntos
Fibrose Pulmonar Idiopática , Mutação , Doença Pulmonar Obstrutiva Crônica , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Masculino , Feminino , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pessoa de Meia-Idade , Idoso , Predisposição Genética para Doença , Sequenciamento do Exoma , Linhagem , Núcleo Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA