Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 10: 809738, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265612

RESUMO

Up to 50% of head and neck squamous cell carcinoma (HNSCC) patients have lymph node (LN) metastasis, resulting in poor survival rate. Numerous studies have supported the notion that the alterations of gene expression and mechanical properties of cancer cells play an important role in cancer metastasis. However, which genes and how they regulate the biomechanical properties of HNSCC cells to promote LN metastasis remains elusive. In this study, we used an LN-metastatic mouse model in vivo to generate an LN-metastatic head and neck squamous cell carcinoma cell line and compared the differences in the biomolecular and biomechanical properties of LN-metastatic and non-metastatic cells. Our results showed that LN-metastatic cells had a higher level of Snail expression compared to non-LN-metastatic cells. The higher Snail expression promoted the cellular invasion capability in confined environments, mainly by increasing the longitudinal strain of the cell nuclei, which could be attributed to the stronger cell traction force and softer nuclear stiffness. These two biomechanical changes were correlated, respectively, to a larger amount of focal adhesion and less amount of nuclear lamins. Taken together, our works revealed not only the biomechanical profiles of LN-metastatic cells but also the corresponding biomolecular expressions to pinpoint the key process in LN metastasis.

2.
J Immunother Cancer ; 10(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36002186

RESUMO

BACKGROUND: Compared with the precise targeting of drug-resistant mutant cancer cells, strategies for eliminating non-genetic adaptation-mediated resistance are limited. The pros and cons of the existence of inflammasomes in cancer have been reported. Nevertheless, the dynamic response of inflammasomes to therapies should be addressed. METHODS: Tumor-derived exosomes were purified by differential ultracentrifugation and validated by nanoparticle tracking analysis and transmission electron microscopy. A proximity ligation assay and interleukin-1ß (IL-1ß) level were used for detecting activation of NLRP3 inflammasomes. RNA sequencing was used to analyze the exosomal RNAs. MIR21 knocked out human monocytic THP cells and mir21 knocked out murine oral cancer MTCQ1 cells were generated for confirming the exosomal delivery of microRNA (miR)-21. Syngeneic murine models for head and neck cancer (C57BLJ/6J), breast cancer (BALB/C) and lung cancer (C57BL/6J) were applied for examining the impact of Snail-miR21 axis on inflammasome activation in vivo. Single-cell RNA sequencing was used for analyzing the tumor-infiltrated immune cells. Head and neck patient samples were used for validating the findings in clinical samples. RESULTS: We demonstrated that in cancer cells undergoing Snail-induced epithelial-mesenchymal transition (EMT), tumor cells suppress NLRP3 inflammasome activities of tumor-associated macrophages (TAMs) in response to chemotherapy through the delivery of exosomal miR-21. Mechanistically, miR-21 represses PTEN and BRCC3 to facilitate NLRP3 phosphorylation and lysine-63 ubiquitination, inhibiting NLRP3 inflammasome assembly. Furthermore, the Snail-miR-21 axis shapes the post-chemotherapy tumor microenvironment (TME) by repopulating TAMs and by activating CD8+ T cells. In patients with head and neck cancer, the Snail-high cases lacked post-chemotherapy IL-1ß surge and were correlated with a worse response. CONCLUSIONS: This finding reveals the mechanism of EMT-mediated resistance beyond cancer stemness through modulation of post-treatment inflammasome activity. It also highlights the dynamic remodeling of the TME throughout metastatic evolution.


Assuntos
Neoplasias de Cabeça e Pescoço , MicroRNAs , Fatores de Transcrição da Família Snail/metabolismo , Animais , Linfócitos T CD8-Positivos , Cisplatino , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Humanos , Inflamassomos , Camundongos , MicroRNAs/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Microambiente Tumoral
3.
Invest Ophthalmol Vis Sci ; 43(10): 3196-201, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12356824

RESUMO

PURPOSE: This study evaluated an improved perfluoropolyether polymer formulation designed for use as a corneal onlay to correct refractive error. METHODS: Collagen I coated perfluoropolyether lenticules were implanted in feline corneas exposing a 6-mm diameter area of lenticule surface for epithelial growth. A parallel series of sham-wounded corneas were also studied. All corneas were monitored clinically for 4 or 8 weeks after surgery when animals were terminated and corneas used for histology with light and electron microscopy. RESULTS: Postoperative epithelial growth began on days 1 and 2. Lenticule surfaces were fully epithelialized by days 5 to 11. Corneas remained clear, and the lenticules maintained epithelial cover until the designated time points. Histology of the implanted corneas showed that the lenticules were well tolerated by the cornea. Each lenticule was fully covered by a multilayered epithelium with microvilli, desmosomes, and a differentiated basal cell layer. Epithelial adhesive structures (basal lamina, hemidesmosomes, and anchoring fibrils) had assembled at the tissue-lenticule interface. CONCLUSIONS: Collagen coated perfluoropolyether lenticules implanted in the feline cornea supported the growth of a stable stratified squamous epithelium. These encouraging results are a step further in the development of a corneal onlay for correction of refractive error.


Assuntos
Córnea/cirurgia , Lentes Intraoculares , Animais , Gatos , Materiais Revestidos Biocompatíveis , Colágeno , Epitélio Corneano/crescimento & desenvolvimento , Epitélio Corneano/ultraestrutura , Éteres , Fluorocarbonos , Polímeros , Período Pós-Operatório , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA