Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Chem Soc Rev ; 53(2): 684-713, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38116613

RESUMO

Crystalline-amorphous hybrid materials (CA-HMs) possess the merits of both pure crystalline and amorphous phases. Abundant dangling bonds, unsaturated coordination atoms, and isotropic structural features in the amorphous phase, as well as relatively high electronic conductivity and thermodynamic structural stability of the crystalline phase simultaneously take effect in CA-HMs. Furthermore, the atomic and bandgap mismatch at the CA-HM interface can introduce more defects as extra active sites, reservoirs for promoted catalytic and electrochemical performance, and induce built-in electric field for facile charge carrier transport. Motivated by these intriguing features, herein, we provide a comprehensive overview of CA-HMs on various aspects-from synthetic methods to multiple applications. Typical characteristics of CA-HMs are discussed at the beginning, followed by representative synthetic strategies of CA-HMs, including hydrothermal/solvothermal methods, deposition techniques, thermal adjustment, and templating methods. Diverse applications of CA-HMs, such as electrocatalysis, batteries, supercapacitors, mechanics, optoelectronics, and thermoelectrics along with underlying structure-property mechanisms are carefully elucidated. Finally, challenges and perspectives of CA-HMs are proposed with an aim to provide insights into the future development of CA-HMs.

2.
Respiration ; 103(7): 406-416, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422997

RESUMO

INTRODUCTION: Distinguishing between malignant pleural effusion (MPE) and benign pleural effusion (BPE) poses a challenge in clinical practice. We aimed to construct and validate a combined model integrating radiomic features and clinical factors using computerized tomography (CT) images to differentiate between MPE and BPE. METHODS: A retrospective inclusion of 315 patients with pleural effusion (PE) was conducted in this study (training cohort: n = 220; test cohort: n = 95). Radiomic features were extracted from CT images, and the dimensionality reduction and selection processes were carried out to obtain the optimal radiomic features. Logistic regression (LR), support vector machine (SVM), and random forest were employed to construct radiomic models. LR analyses were utilized to identify independent clinical risk factors to develop a clinical model. The combined model was created by integrating the optimal radiomic features with the independent clinical predictive factors. The discriminative ability of each model was assessed by receiver operating characteristic curves, calibration curves, and decision curve analysis (DCA). RESULTS: Out of the total 1,834 radiomic features extracted, 15 optimal radiomic features explicitly related to MPE were picked to develop the radiomic model. Among the radiomic models, the SVM model demonstrated the highest predictive performance [area under the curve (AUC), training cohort: 0.876, test cohort: 0.774]. Six clinically independent predictive factors, including age, effusion laterality, procalcitonin, carcinoembryonic antigen, carbohydrate antigen 125 (CA125), and neuron-specific enolase (NSE), were selected for constructing the clinical model. The combined model (AUC: 0.932, 0.870) exhibited superior discriminative performance in the training and test cohorts compared to the clinical model (AUC: 0.850, 0.820) and the radiomic model (AUC: 0.876, 0.774). The calibration curves and DCA further confirmed the practicality of the combined model. CONCLUSION: This study presented the development and validation of a combined model for distinguishing MPE and BPE. The combined model was a powerful tool for assisting in the clinical diagnosis of PE patients.


Assuntos
Derrame Pleural Maligno , Tomografia Computadorizada por Raios X , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Derrame Pleural Maligno/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Idoso , Diagnóstico Diferencial , Derrame Pleural/diagnóstico por imagem , Máquina de Vetores de Suporte , Curva ROC , Modelos Logísticos , Adulto , Radiômica
3.
Angew Chem Int Ed Engl ; 63(7): e202315624, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38151704

RESUMO

Graphite (Gr) has been considered as the most promising anode material for potassium-ion batteries (PIBs) commercialization due to its high theoretical specific capacity and low cost. However, Gr-based PIBs remain unfeasible at low temperature (LT), suffering from either poor kinetics based on conventional carbonate electrolytes or K+ -solvent co-intercalation issue based on typical ether electrolytes. Herein, a high-performance Gr-based LT rechargeable PIB is realized for the first time by electrolyte chemistry. Applying unidentate-ether-based molecule as the solvent dramatically weakens the K+ -solvent interactions and lowers corresponding K+ de-solvation kinetic barrier. Meanwhile, introduction of steric hindrance suppresses co-intercalation of K+ -solvent into Gr, greatly elevating operating voltage and cyclability of the full battery. Consequently, the as-prepared Gr||prepotassiated 3,4,9,10-perylene-tetracarboxylicacid-dianhydride (KPTCDA) full PIB can reversibly charge/discharge between -30 and 45 °C with a considerable energy density up to 197 Wh kgcathode -1 at -20 °C, hopefully facilitating the development of LT PIBs.

4.
J Am Chem Soc ; 145(9): 5578-5588, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36812014

RESUMO

High-energy radiation that is compatible with renewable energy sources enables direct H2 production from water for fuels; however, the challenge is to convert it as efficiently as possible, and the existing strategies have limited success. Herein, we report the use of Zr/Hf-based nanoscale UiO-66 metal-organic frameworks as highly effective and stable radiation sensitizers for purified and natural water splitting under γ-ray irradiation. Scavenging and pulse radiolysis experiments with Monte Carlo simulations show that the combination of 3D arrays of ultrasmall metal-oxo clusters and high porosity affords unprecedented effective scattering between secondary electrons and confined water, generating increased precursors of solvated electrons and excited states of water, which are the main species responsible for H2 production enhancement. The use of a small quantity (<80 mmol/L) of UiO-66-Hf-OH can achieve a γ-rays-to-hydrogen conversion efficiency exceeding 10% that significantly outperforms Zr-/Hf-oxide nanoparticles and the existing radiolytic H2 promoters. Our work highlights the feasibility and merit of MOF-assisted radiolytic water splitting and promises a competitive method for creating a green H2 economy.

5.
J Bone Miner Metab ; 41(6): 877-889, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37898574

RESUMO

INTRODUCTION: The aim of this analysis is to construct a combined model that integrates radiomics, clinical risk factors, and machine learning algorithms to diagnose osteoporosis in patients and explore its potential in clinical applications. MATERIALS AND METHODS: A retrospective analysis was conducted on 616 lumbar spine. Radiomics features were extracted from the computed tomography (CT) scans and anteroposterior and lateral X-ray images of the lumbar spine. Logistic regression (LR), support vector machine (SVM), and random forest (RF) algorithms were used to construct radiomics models. The receiver operating characteristic curve (ROC) was employed to select the best-performing model. Clinical risk factors were identified through univariate logistic regression analysis (ULRA) and multivariate logistic regression analysis (MLRA) and utilized to develop a clinical model. A combined model was then created by merging radiomics and clinical risk factors. The performance of the models was evaluated using ROC curve analysis, and the clinical value of the models was assessed using decision curve analysis (DCA). RESULTS: A total of 4858 radiomics features were extracted. Among the radiomics models, the SVM model demonstrated the optimal diagnostic capabilities and accuracy, with an area under the curve (AUC) of 0.958 (0.9405-0.9762) in the training cohort and 0.907 (0.8648-0.9492) in the test cohort. Furthermore, the combined model exhibited an AUC of 0.959 (0.9412-0.9763) in the training cohort and 0.910 (0.8690-0.9506) in the test cohort. CONCLUSION: The combined model displayed outstanding ability in diagnosing osteoporosis, providing a safe and efficient method for clinical decision-making.


Assuntos
Osteoporose , Tomografia Computadorizada por Raios X , Humanos , Raios X , Estudos Retrospectivos , Aprendizado de Máquina , Osteoporose/diagnóstico por imagem
6.
Inorg Chem ; 62(39): 15834-15841, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37724987

RESUMO

A highly sensitive detection of ultraviolet (UV) radiation is required in a broad range of scientific research, chemical industries, and health-related applications. Traditional UV photodetectors fabricated by direct wide-band-gap inorganic semiconductors often suffer from several disadvantages such as complicated manufacturing procedures, requiring multiple operations and high-cost instruments to obtain a readout. Searching for new materials or simple strategies to develop UV dosimeters for quantitative, accurate, and on-site detection of UV radiation dose is still highly desirable. Herein, a photochromic uranyl-based coordination polymer [(UO2)(PBPCA)·DMF]·DMF (PBPCA = pyridine-3,5-bis(phenyl-4-carboxylate), DMF = N,N'-dimethylformamide, denoted as SXU-1) with highly radiolytic and chemical stabilities was successfully synthesized via the solvothermal method at 100 °C. Surprisingly, the fresh samples of SXU-1 underwent an ultra-fast UV-induced (365 nm, 2 mW) color variation from yellow to orange in less than 1 s, and then the color changed further from orange to brick red after the subsequent irradiation, inspiring us to develop a colorimetric dosimeter based on red-green-blue (RGB) parameters. The mechanism of radical-induced photochromism was intensively investigated by UV-vis absorption spectra, EPR analysis, and SC-XRD data. Furthermore, SXU-1 was incorporated into an optoelectronic device to fabricate a novel dosimeter for convenient, quantitative, and on-site detection of UV radiation dose.

7.
Angew Chem Int Ed Engl ; 62(29): e202306360, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37211534

RESUMO

Periodically arranging coordination-distinct actinides into one crystalline architecture is intriguing but of great synthetic challenge. We report a rare example of a heterobimetallic actinide metal-organic framework (An-MOF) by a unique reaction-induced preorganization strategy. A thorium MOF (SCU-16) with the largest unit cell among all Th-MOFs was prepared as the precursor, then the uranyl was precisely embedded into the MOF precursor under oxidation condition. Single crystal of the resulting thorium-uranium MOF (SCU-16-U) shows that a uranyl-specific site was in situ induced by the formate-to-carbonate oxidation reaction. The heterobimetallic SCU-16-U exhibits multifunction catalysis properties derived from two distinct actinides. The strategy proposed here offers a new avenue to create mixed-actinide functional material with unique architecture and versatile functionality.

8.
J Am Chem Soc ; 144(5): 2189-2196, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35073062

RESUMO

Exciton behaviors including exciton formation and dissociation dynamics play an essential role in the optoelectronic performance of semiconductive materials but remain unexplored in semiconductive metal-organic frameworks (MOFs). Herein, we reveal that the exciton behaviors in semiconductive MOFs can be regulated by framework-guest interactions, a feature often not achievable in traditional inorganic or organic semiconductors. Incorporation of the electron-deficient molecule within the pores of a terbium-based semiconductive MOF (Tb2L2·4H2O·6DMF, L = TATAB3-, 4,4',4″-s-triazine-1,3,5-triyltri-p-aminobenzoate, DMF = N,N-dimethylformamide) results in efficient energy transfer from the MOF skeleton to molecular acceptors, with a yield of up to 77.4%. This interaction facilitates distinctive exciton type conversion, giving rise to modified conductivity and photoelectric performance. We further fabricated a MOF-based X-ray detection device to demonstrate how the new architecture bolsters the optoelectronic efficiency, which outperforms the properties of parent semiconductive MOFs, with more than 60 times and 40 times enhancement of the photocurrent on-off ratio and detection sensitivity, respectively. With judiciously optimized exciton behaviors, the detection device exhibits a high sensitivity of 51.9 µC Gyair-1 cm-2 and records a charge carrier mobility-lifetime product of 1.12 × 10-3 cm2 V-1 among MOF-based X-ray detectors, which are competitive with values for commercially available detectors. These findings demonstrate a rational synthetic approach to designing exciton arrangements to improve the optoelectronic efficiency of semiconductive MOFs.

9.
Small ; 18(26): e2202214, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35623998

RESUMO

Zn anode is confronted with serious Zn dendrite growth and water-induced parasitic reactions, which severely hinders the rapid development and practical application of aqueous zinc metal batteries (AZMBs). Herein, inspired by sodium hyaluronate (SH) biomolecules in living organisms featured with the functions of water retention, ion-transport regulation, and film-formation, the SH working as a dynamic and self-adaptive "mask" is proposed to stabilize Zn anode. Benefiting from the abundant functional groups with high hydrophilicity and zincophilicity, SH molecule can constrain active water molecules on the Zn-electrolyte interface and participate in Zn2+ solvation structure to suppress parasitic reactions. Furthermore, the dynamical adsorption of SH with high-density negative charge on the Zn surface could serve as Zn2+ reservoirs to guide uniform Zn deposition. Consequently, stable Zn plating and an ultrahigh cumulative plating capacity (CPC) of 4.8 Ah cm-2 are achieved even at 20 mA cm-2 (20 mAh cm-2 ) in a Zn||Zn symmetric battery, reaching a record level in AZMBs. In addition, the Zn||ß-MnO2 full battery exhibits a substantially improved cycle stability. This work presents a route to realize a highly reversible and stable Zn metal anode by learning from nature.


Assuntos
Compostos de Manganês , Óxidos , Eletrodos , Zinco
10.
Phys Chem Chem Phys ; 24(7): 4620-4625, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35132975

RESUMO

Orthorhombic KFeO2 has a unique structure where K+ cations can migrate inside the Fe-O skeleton, thus making it a promising material for heterogeneous catalysis and electrochemical energy storage devices. However, KFeO2 is sensitive to conditions such as moisture and carbon dioxide, which would trigger severe phase evolution and consequently deteriorate the performance. In this work, we investigated the phase evolution using freshly prepared KFeO2 and KFeO2 after exposure to ambient air and after immersion in water, respectively. We found that the phase evolution of KFeO2 was composed of K-redistribution and phase transition, both of which originated from K+ extraction. We observed that K+ cations were extracted after exposing KFeO2 to ambient air, resulting in the formation of K2CO3·1.5 H2O outside KFeO2 and lattice expansion inside KFeO2. We also observed that water molecules were crucial to K+ extraction when calculating the function between potassium and the adjacent oxygen atoms via ab initio molecular dynamics simulations. Moreover, we successfully reinserted K+ cations into lattice expanded KFeO2 by high-temperature calcination at 900 °C; such a reversible extraction-insertion process would have great potential for application in catalyst reactivation and rechargeable high-temperature batteries.

11.
Angew Chem Int Ed Engl ; 60(18): 9886-9890, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33590695

RESUMO

We disclose the intrinsic semiconducting properties of one of the largest mixed-valent uranium clusters, [H3 O+ ][UV (UVI O2 )8 (µ3 -O)6 (PhCOO)2 (Py(CH2 O)2 )4 (DMF)4 ] (Ph=phenyl, Py=pyridyl, DMF=N,N-dimethylformamide) (1). Single-crystal X-ray crystallography demonstrates that UV center is stabilized within a tetraoxo core surrounded by eight uranyl(VI) pentagonal bipyramidal centers. The oxidation states of uranium are substantiated by spectroscopic data and magnetic susceptibility measurement. Electronic spectroscopy and theory corroborate that UV species serve as electron donors and thus facilitate 1 being a n-type semiconductor. With the largest effective atomic number among all reported radiation-detection semiconductor materials, charge transport properties and photoconductivity were investigated under X-ray excitation for 1: a large on-off ratio of 500 and considerable charge mobility lifetime product of 2.3×10-4  cm2 V-1 , as well as a high detection sensitivity of 23.4 µC Gyair -1 cm-2 .

12.
J Am Chem Soc ; 142(38): 16218-16222, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32881493

RESUMO

The potential applications of metal-organic cages (MOCs) are mostly achieved through specific host-guest interactions within their cavities. Electronic applications would require an effective electron transport pathway, which has been extensively studied in hybrid organic-inorganic materials with extended structures. These properties have not been considered for MOCs because cage-to-cage interactions in these materials have rarely been examined and are challenging to functionalize. We report here a previously unobserved actinide-based MOC assembled from four hexagonal-bipyramidal-coordinated uranyl ions and six bidentate flexible ligands. Remarkably, each isolated cage is further interlocked with six adjacent ones through mechanical bonds, resulting in the first case of a 0D → 3D f-element polycatenated metal-organic cage, SCU-14. Long-range π-π stacking extending throughout the structure is built via polycatenation, providing a visible carrier transmission path. SCU-14 is also an extremely rare case of an intrinsically semiconductive MOC with a wide band gap of 2.61 eV. Combined with the high X-ray attenuation efficiency, SCU-14 can effectively convert X-ray photons to electrical current signals and presents a promising sensitivity of 54.93 µC Gy-1 cm-2.

13.
Angew Chem Int Ed Engl ; 59(29): 11856-11860, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32270587

RESUMO

Semiconductive metal-organic frameworks (MOFs) have emerged in applications such as chemical sensors, electrocatalysts, energy storage materials, and electronic devices. However, examples of semiconductive MOFs within flexible electronics have not been reported. We present flexible X-ray detectors prepared by thermoplastic dispersal of a semiconductive MOF (SCU-13) through a commercially available polymer, poly(vinylidene fluoride). The flexible detectors exhibit efficient X-ray-to-electric current conversion with enhanced charge-carrier mobility and low trap density compared to pelleted devices. A high X-ray detection sensitivity of 65.86 µCGyair -1 cm-2 was achieved, which outperforms other pelleted devices and commercial flexible X-ray detectors. We demonstrate that the MOF-based flexible detectors can be operated at multiple bending angles without a deterioration in detection performance. As a proof-of-concept, an X-ray phase contrast under bending conditions was constructed using a 5×5 pixelated MOF-based imager.

14.
Angew Chem Int Ed Engl ; 58(46): 16451-16455, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31482655

RESUMO

Alloying anodes are promising high-capacity electrode materials for K-ion batteries (KIBs). However, KIBs based on alloying anodes suffer from rapid capacity decay due to the instability of K metal and large volume expansion of alloying anodes. Herein, the effects of salts and solvents on the cycling stability of KIBs based on a typical alloying anode such as amorphous red phosphorus (RP) are investigated, and the potassium bis(fluorosulfonyl)imide (KFSI) salt-based carbonate electrolyte is versatile to achieve simultaneous stabilization of K metal and RP electrodes for highly stable KIBs. This salt-solvent complex with a moderate solvation energy can alleviate side reactions between K metal and the electrolyte and facilitate K+ ion diffusion/desolvation. Moreover, robust SEI layers that form on K metal and RP electrodes can suppress K dendrite growth and resist RP volume change. This strategy of electrolyte regulation can be applicable to other alloying anodes for high-performance KIBs.

15.
Org Biomol Chem ; 13(7): 2100-7, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25525831

RESUMO

A straightforward synthesis of novel, 2-heterocyclyl polyhydroxylated pyrrolidines is described. Stereocontrolled additions of nucleophiles to cyclic nitrones generated the corresponding 2,3-trans adducts, allowing the synthesis of the corresponding pyrrolidines via key intermediates bearing an alkyne and a nitrile oxide. Three hybrid systems, including a pyrrolidine with two isoxazoles and one triazole, are efficiently prepared via 1,3-dipolar cycloaddition. Biological testing of the product alkaloids showed that subtle structural variations have drastic effects on their inhibitory activities against glucosidases.

16.
Anal Chem ; 86(11): 5567-72, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24819867

RESUMO

Rapid and efficient detection of cancer cells at their earliest stages is one of the central challenges in cancer diagnostics. We developed a simple, cost-effective, and highly sensitive colorimetric method for visually detecting rare cancer cells based on cell-triggered cyclic enzymatic signal amplification (CTCESA). In the absence of target cells, hairpin aptamer probes (HAPs) and linker DNAs stably coexist in solution, and the linker DNA assembles DNA-AuNPs, producing a purple solution. In the presence of target cells, the specific binding of HAPs to the target cells triggers a conformational switch that results in linker DNA hybridization and cleavage by nicking endonuclease-strand scission cycles. Consequently, the cleaved fragments of linker DNA can no longer assemble into DNA-AuNPs, resulting in a red color. UV-vis spectrometry and photograph analyses demonstrated that this CTCESA-based method exhibited selective and sensitive colorimetric responses to the presence of target CCRF-CEM cells, which could be detected by the naked eye. The linear response for CCRF-CEM cells in a concentration range from 10(2) to 10(4) cells was obtained with a detection limit of 40 cells, which is approximately 20 times lower than the detection limit of normal AuNP-based methods without amplification. Given the high specificity and sensitivity of CTCESA, this colorimetric method provides a sensitive, label-free, and cost-effective approach for early cancer diagnosis and point-to-care applications.


Assuntos
Técnicas Biossensoriais/métodos , Células/química , Neoplasias/química , Técnica de Seleção de Aptâmeros/métodos , Adenosina Trifosfatases/química , Animais , Aptâmeros de Nucleotídeos/química , Linhagem Celular Tumoral , Colorimetria , DNA/química , Ouro/química , Humanos , Nanopartículas Metálicas , Camundongos , Espectrofotometria Ultravioleta
17.
Opt Express ; 21(25): 30545-52, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24514631

RESUMO

Amplification and detection characteristics of mid-infrared quantum cascade lasers (QCLs) are studied. The QCL amplifier has an adjustable bandwidth and tunable gain peak to function as a tunable mid-IR filter. By biasing the QCL slightly below its threshold, we demonstrated more than 11dB optical gain and over 28dB electrical gain at specified wavelengths. In the electrical gain measurement process, the resonant amplifier also functioned as a detector. Mid-IR amplification and detection can be achieved using the same material for the laser source. This indicates that intersubband based gain materials can be ideal candidates for mid-IR photonic integrations.

18.
BMC Public Health ; 13: 713, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23915378

RESUMO

BACKGROUND: Chronic non-communicable diseases have become the major cause of death in China. This study describes and compares chronic disease mortality between urban and rural residents in Hubei Province, central China. METHODS: Death records of all individuals aged 15 years and over who died from 2008 through 2010 in Hubei were obtained from the Disease Surveillance Points system maintained by the Hubei Province Centers for Disease Control and Prevention. Average annual mortality, standardized death rates, years of potential life lost (YLL), average years of potential life lost (AYLL) and rates of life lost were calculated for urban and rural residents. Standardized rate ratios (SRR) were calculated to compare the death rates between urban and rural areas. RESULTS: A total of 86.2% of deaths were attributed to chronic non-communicable diseases in Hubei. Cerebrovascular diseases, ischemic heart disease and neoplasms were the main leading causes in both urban and rural areas, and the mortality rates were higher among rural residents. Lung cancer was the principal cause of mortality from cancer among urban and rural residents, and stomach cancer and liver cancer were more common in rural than urban areas. Breast cancer mortality among women in rural areas was lower than in urban areas (SRR=0.73, 95% CI=0.63-0.85). The standardized mortality for chronic lower respiratory disease among men in rural areas was higher than in urban areas (SRR=4.05, 95% CI=3.82-4.29). Among men, total AYLL from liver cancer and other diseases of liver were remarkably higher than other causes in urban and rural areas. Among women the highest AYLL were due to breast cancer in both urban and rural areas. CONCLUSIONS: Chronic diseases were the major cause of death in Hubei Province. While circulatory system diseases were the leading causes in both urban and rural areas, our study highlights that attention should also be paid to breast cancer among women and chronic lower respiratory disease among rural residents. It is important that governments focus on this public health issue and develop preventive strategies to reduce morbidity and premature mortality from chronic non-communicable diseases.


Assuntos
Doença Crônica/mortalidade , População Rural/estatística & dados numéricos , População Urbana/estatística & dados numéricos , Adolescente , Adulto , Idoso , China/epidemiologia , Feminino , Humanos , Expectativa de Vida , Masculino , Pessoa de Meia-Idade , Adulto Jovem
19.
Zhonghua Yu Fang Yi Xue Za Zhi ; 47(12): 1095-9, 2013 Dec.
Artigo em Zh | MEDLINE | ID: mdl-24529266

RESUMO

OBJECTIVE: To explore the integrated application of sales of child-specific over-the-counter (OTC) cold related medications in retail pharmacies and healthcare visits of children for influenza-like illness (ILI) in surveillance and early warning of influenza among children. METHODS: An integrated surveillance system (ISS) was implemented since 2012 in Qianjiang County, a rural area in Hubei Province of China. The daily information from August 1, 2012 to February 28, 2013 of health care visits of children for ILI reported by 80 health facilities and sales of 14 child-specific over-the-counter (OTC) cold related medications reported by 11 pharmacies were extracted from ISS database. Cumulative sums (CUSUM) model was conducted to analyze the degree of fitting and the early warning signal generated; the correlationship was then analyzed further. RESULTS: In 212 days, 983 visits of children for ILI and 12 819 sales by person of child-specific OTC were reported. Conducting CUSUM model, the fitting degree was in the acceptable range, 31 warning signals were generated from ILI data series with 3 peak periods and 14 from OTC data series with 2 peak periods. A similar time trend of two data series was observed with a correlation(r = 0.497, P < 0.05), but without any spatial clustering. And the optimal correlation(r = 0.505, P < 0.05) appeared at a time offset of 4 days preceded by OTC sales. CONCLUSION: The availability of integrated surveillance system for symptoms could be applied for surveillance of influenza among children; while it could explore the possibility of real epidemic in the very early stage.


Assuntos
Surtos de Doenças/prevenção & controle , Influenza Humana/prevenção & controle , Vigilância da População , Criança , China/epidemiologia , Humanos , Influenza Humana/epidemiologia , Medicamentos sem Prescrição
20.
Nat Commun ; 14(1): 6006, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752165

RESUMO

In contrast to conventional batteries, anode-free configurations can extend cell-level energy densities closer to the theoretical limit. However, realizing alkali metal plating/stripping on a bare current collector with high reversibility is challenging, especially at low temperature, as an unstable solid-electrolyte interphase and uncontrolled dendrite growth occur more easily. Here, a low-temperature anode-free potassium (K) metal non-aqueous battery is reported. By introducing Si-O-based additives, namely polydimethylsiloxane, in a weak-solvation low-concentration electrolyte of 0.4 M potassium hexafluorophosphate in 1,2-dimethoxyethane, the in situ formed potassiophilic interface enables uniform K deposition, and offers K||Cu cells with an average K plating/stripping Coulombic efficiency of 99.80% at -40 °C. Consequently, anode-free Cu||prepotassiated 3,4,9,10-perylene-tetracarboxylicacid-dianhydride full batteries achieve stable cycling with a high specific energy of 152 Wh kg-1 based on the total mass of the negative and positive electrodes at 0.2 C (26 mA g-1) charge/discharge and -40 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA