Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Small ; : e2406935, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39377311

RESUMO

Strain engineering is an effective strategy for manipulating the electronic structure of active sites and altering the binding strength toward adsorbates during the hydrogen evolution reaction (HER). However, the effects of weak and strong strain engineering on the HER catalytic activity have not been fully explored. Herein, the core-shell PdPt alloys with two-layer Pt shells (PdPt2L) and multi-layer Pt shells (PdPtML) is constructed, which exhibit distinct lattice strains. Notably, PdPt2L with weak strain effect just requires a low overpotential of 18 mV to reach 10 mA cm-2 for the HER and shows the superior long-term stability for 510 h with negligible activity degradation in 0.5 M H2SO4. The intrinsic activity of PdPt2L is 6.2 and 24.5 times higher than that of PdPtML and commercial Pt/C, respectively. Furthermore, PdPt2L||IrO2 exhibits superior activity over Pt/C||IrO2 in proton exchange membrane water electrolyzers and maintains stable operation for 100 h at large current density of 500 mA cm-2. In situ/operando measurements verify that PdPt2L exhibits lower apparent activation energy and accelerated ad-/desorption kinetics, benefiting from the weak strain effect. Density functional theory calculations also reveal that PdPt2L displays weaker H* adsorption energy compared to PdPtML, favoring for H* desorption and promoting H2 generation.

2.
Molecules ; 28(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37687104

RESUMO

Developing metal-organic framework (MOF) adsorbents with excellent performance and robust stability is of critical importance to reduce CO2 emissions yet challenging. Herein, a robust ultra-microporous MOF, Cu(bpfb)(bdc), with mixed ligands of N, N'-(1,4-phenylene)diisonicotinamide (bpfb), and 1,4-dicarboxybenzene (bdc) was delicately constructed. Structurally, this material possesses double-interpenetrated frameworks formed by two staggered, independent frameworks, resulting in two types of narrow ultra-micropores of 3.4 × 5.0 and 4.2 × 12.8 Å2, respectively. The above structural properties make its highly selective separation at 273~298 K with a CO2 capacity of 71.0~86.2 mg/g. Its adsorption heat over CO2 and IAST selectivity were calculated to be 27 kJ/mol and 52.2, respectively. Remarkably, cyclic breakthrough experiments corroborate its impressive performance in CO2/N2 separation in not only dry but also 75% RH humid conditions. Molecular simulation reveals that C-H···OCO2 in the pores plays a pivotal role in the high selectivity of CO2 adsorption. These results point out the huge potential application of this material for CO2/N2 separation.

3.
Molecules ; 28(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37959698

RESUMO

Previous work has indicated that aluminum (Al) complexes supported by a bipyridine bisphenolate (BpyBph) ligand exhibit higher activity in the ring-opening copolymerization (ROCOP) of maleic anhydride (MAH) and propylene oxide (PO) than their salen counterparts. Such a ligand effect in Al-catalyzed MAH-PO copolymerization reactions has yet to be clarified. Herein, the origin and applicability of the ligand effect have been explored by density functional theory, based on the mechanistic analysis for chain initiation and propagation. We found that the lower LUMO energy of the (BpyBph)AlCl complex accounts for its higher activity than the (salen)AlCl counterpart in MAH/epoxide copolymerizations. Inspired by the ligand effect, a structure-energy model was further established for catalytic activity (TOF value) predictions. It is found that the LUMO energies of aluminum chloride complexes and their average NBO charges of coordinating oxygen atoms correlate with the catalytic activity (TOF value) of Al complexes (R2 value of 0.98 and '3-fold' cross-validation Q2 value of 0.88). This verified that such a ligand effect is generally applicable in anhydride/epoxide ROCOP catalyzed by aluminum complex and provides hints for future catalyst design.

4.
Adv Sci (Weinh) ; 11(35): e2401398, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38992974

RESUMO

Developing efficient electrocatalysts for water splitting is of great significance for realizing sustainable energy conversion. In this work, Ru sub-nanoclusters anchored on cobalt-nickel bimetallic phosphides (Ru-CoP/Ni2P) are constructed by an interfacial confinement strategy. Remarkably, Ru-CoP/Ni2P with low noble metal loading (33.1 µg cm-2) shows superior activity for hydrogen evolution reaction (HER) in all pH values, whose turnover frequency (TOF) is 8.7, 15.3, and 124.7 times higher than that of Pt/C in acidic, alkaline, and neutral conditions, respectively. Meanwhile, it only requires the overpotential of 171 mV@10 mA cm-2 for oxygen evolution reaction (OER) and corresponding TOF is 20.3 times higher than that of RuO2. More importantly, the Ru-CoP/Ni2P||Ru-CoP/Ni2P displays superior mass activity of 4017 mA mgnoble metal -1 at 2.0 V in flowing alkaline water electrolyzer, which is 105.1 times higher than that of Pt/C||IrO2. In situ Raman spectroscopy demonstrates that the Ru sites in Ru-CoP/Ni2P play a key role for water splitting and follow the adsorption evolution mechanism toward OER. Further mechanism studies disclose the confined Ru atom contributes to the desorption of H2 during HER and the formation of O-O bond during OER, leading to fast reaction kinetics. This study emphasizes the importance of interface confinement for enhancing electrocatalytic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA