Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37384381

RESUMO

A new Vibrio strain, K08M4T, was isolated from the broad-nosed pipefish Syngnathus typhle in the Kiel Fjord. Infection experiments revealed that K08M4T was highly virulent for juvenile pipefish. Cells of strain K08M4T were Gram-stain-negative, curved rod-shaped and motile by means of a single polar flagellum. The strain grew aerobically at 9-40° C, at pH 4-10.5 and it tolerated up to 12 % (w/v) NaCl. The most prevalent (>10 %) cellular fatty acids of K08M4T were C16 : 1 ω7c and C16 : 0. Whole-genome comparisons revealed that K08M4T represents a separate evolutionary lineage that is distinct from other Vibrio species and falls within the Splendidus clade. The genome is 4,886,292 bp in size, consists of two circular chromosomes (3,298,328 and 1, 587,964 bp) and comprises 4,178 protein-coding genes and 175 RNA genes. In this study, we describe the phenotypic features of the new isolate and present the annotation and analysis of its complete genome sequence. Based on these data, the new isolate represents a new species for which we propose the name Vibrio syngnathi sp. nov. The type strain is K08M4T (=DSM 109818T=CECT 30086T).


Assuntos
Estuários , Vibrio , Animais , Ácidos Graxos/química , Filogenia , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Peixes , Vibrio/genética
2.
Physiol Plant ; 174(6): e13806, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271716

RESUMO

Drought stress is a serious issue that affects agricultural productivity all around the world. Several researchers have reported using plant growth-promoting endophytic bacteria to enhance the drought resistance of crops. However, how endophytic bacteria and endophytic fungi are effectively stimulating plant growth under drought stress is still largely unknown. In this article, a global meta-analysis was undertaken to compare the plant growth-promoting effects of bacterial and fungal endophytes and to identify the processes by which both types of endophytes stimulate plant growth under drought stress. Moreover, this meta-analysis enlightens how plant growth promotion varies across crop types (C3 vs. C4 and monocot vs. dicot), experiment types (in vitro vs. pots vs. field), and the inoculation methods (seed vs. seedling). Specifically, this research included 75 peer-reviewed publications, 170 experiments, 20 distinct bacterial genera, and eight fungal classes. On average, both endophytic bacterial and fungal inoculation increased plant dry and fresh biomass under drought stress. The effect of endophytic bacterial inoculation on plant dry biomass, shoot dry biomass, root length, photosynthetic rate, leaf area, and gibberellins productions were at least two times greater than that of fungal inoculation. In addition, under drought stress, bacterial inoculation increased the proline content of C4 plants. Overall, the findings of this meta-analysis indicate that both endophytic bacterial and fungal inoculation of plants is beneficial under drought conditions, but the extent of benefit is higher with endophytic bacteria inoculation but it varies across crop type, experiment type, and inoculation method.


Assuntos
Secas , Estresse Fisiológico , Desenvolvimento Vegetal , Endófitos , Plantas/microbiologia , Bactérias , Fungos
3.
BMC Genomics ; 21(1): 354, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393168

RESUMO

BACKGROUND: Species of the genus Vibrio, one of the most diverse bacteria genera, have undergone niche adaptation followed by clonal expansion. Niche adaptation and ultimately the formation of ecotypes and speciation in this genus has been suggested to be mainly driven by horizontal gene transfer (HGT) through mobile genetic elements (MGEs). Our knowledge about the diversity and distribution of Vibrio MGEs is heavily biased towards human pathogens and our understanding of the distribution of core genomic signatures and accessory genes encoded on MGEs within specific Vibrio clades is still incomplete. We used nine different strains of the marine bacterium Vibrio alginolyticus isolated from pipefish in the Kiel-Fjord to perform a multiscale-comparative genomic approach that allowed us to investigate [1] those genomic signatures that characterize a habitat-specific ecotype and [2] the source of genomic variation within this ecotype. RESULTS: We found that the nine isolates from the Kiel-Fjord have a closed-pangenome and did not differ based on core-genomic signatures. Unique genomic regions and a unique repertoire of MGEs within the Kiel-Fjord isolates suggest that the acquisition of gene-blocks by HGT played an important role in the evolution of this ecotype. Additionally, we found that ~ 90% of the genomic variation among the nine isolates is encoded on MGEs, which supports ongoing theory that accessory genes are predominately located on MGEs and shared by HGT. Lastly, we could show that these nine isolates share a unique virulence and resistance profile which clearly separates them from all other investigated V. alginolyticus strains and suggests that these are habitat-specific genes, required for a successful colonization of the pipefish, the niche of this ecotype. CONCLUSION: We conclude that all nine V. alginolyticus strains from the Kiel-Fjord belong to a unique ecotype, which we named the Kiel-alginolyticus ecotype. The low sequence variation of the core-genome in combination with the presence of MGE encoded relevant traits, as well as the presence of a suitable niche (here the pipefish), suggest, that this ecotype might have evolved from a clonal expansion following HGT driven niche-adaptation.


Assuntos
Variação Genética , Genoma Bacteriano , Vibrio alginolyticus/genética , Resistência a Medicamentos/genética , Evolução Molecular , Transferência Genética Horizontal , Ilhas Genômicas , Filogenia , Vibrio alginolyticus/classificação , Vibrio alginolyticus/isolamento & purificação , Vibrio alginolyticus/patogenicidade , Virulência/genética
4.
Microbiol Spectr ; 11(4): e0026223, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37378516

RESUMO

Aurelia aurita's intricate life cycle alternates between benthic polyp and pelagic medusa stages. The strobilation process, a critical asexual reproduction mechanism in this jellyfish, is severely compromised in the absence of the natural polyp microbiome, with limited production and release of ephyrae. Yet, the recolonization of sterile polyps with a native polyp microbiome can correct this defect. Here, we investigated the precise timing necessary for recolonization as well as the host-associated molecular processes involved. We deciphered that a natural microbiota had to be present in polyps prior to the onset of strobilation to ensure normal asexual reproduction and a successful polyp-to-medusa transition. Providing the native microbiota to sterile polyps after the onset of strobilation failed to restore the normal strobilation process. The absence of a microbiome was associated with decreased transcription of developmental and strobilation genes as monitored by reverse transcription-quantitative PCR. Transcription of these genes was exclusively observed for native polyps and sterile polyps that were recolonized before the initiation of strobilation. We further propose that direct cell contact between the host and its associated bacteria is required for the normal production of offspring. Overall, our findings indicate that the presence of a native microbiome at the polyp stage prior to the onset of strobilation is essential to ensure a normal polyp-to-medusa transition. IMPORTANCE All multicellular organisms are associated with microorganisms that play fundamental roles in the health and fitness of the host. Notably, the native microbiome of the Cnidarian Aurelia aurita is crucial for the asexual reproduction by strobilation. Sterile polyps display malformed strobilae and a halt of ephyrae release, which is restored by recolonizing sterile polyps with a native microbiota. Despite that, little is known about the microbial impact on the strobilation process's timing and molecular consequences. The present study shows that A. aurita's life cycle depends on the presence of the native microbiome at the polyp stage prior to the onset of strobilation to ensure the polyp-to-medusa transition. Moreover, sterile individuals correlate with reduced transcription levels of developmental and strobilation genes, evidencing the microbiome's impact on strobilation on the molecular level. Transcription of strobilation genes was exclusively detected in native polyps and those recolonized before initiating strobilation, suggesting microbiota-dependent gene regulation.


Assuntos
Microbiota , Cifozoários , Animais , Humanos , Cifozoários/genética , Estágios do Ciclo de Vida/fisiologia , Reação em Cadeia da Polimerase , Reprodução Assexuada
5.
Nat Microbiol ; 7(1): 48-61, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34969981

RESUMO

The human gut microbiome plays an important role in health, but its archaeal diversity remains largely unexplored. In the present study, we report the analysis of 1,167 nonredundant archaeal genomes (608 high-quality genomes) recovered from human gastrointestinal tract, sampled across 24 countries and rural and urban populations. We identified previously undescribed taxa including 3 genera, 15 species and 52 strains. Based on distinct genomic features, we justify the split of the Methanobrevibacter smithii clade into two separate species, with one represented by the previously undescribed 'Candidatus Methanobrevibacter intestini'. Patterns derived from 28,581 protein clusters showed significant associations with sociodemographic characteristics such as age groups and lifestyle. We additionally show that archaea are characterized by specific genomic and functional adaptations to the host and carry a complex virome. Our work expands our current understanding of the human archaeome and provides a large genome catalogue for future analyses to decipher its impact on human physiology.


Assuntos
Archaea/genética , Bases de Dados de Ácidos Nucleicos , Microbioma Gastrointestinal/genética , Genoma Arqueal/genética , Microbiota/genética , Adolescente , Adulto , Archaea/classificação , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Filogenia , Adulto Jovem
6.
Front Microbiol ; 12: 803896, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069509

RESUMO

Certain members of the Actinobacteria and Proteobacteria are known to degrade polyethylene terephthalate (PET). Here, we describe the first functional PET-active enzymes from the Bacteroidetes phylum. Using a PETase-specific Hidden-Markov-Model- (HMM-) based search algorithm, we identified several PETase candidates from Flavobacteriaceae and Porphyromonadaceae. Among them, two promiscuous and cold-active esterases derived from Aequorivita sp. (PET27) and Kaistella jeonii (PET30) showed depolymerizing activity on polycaprolactone (PCL), amorphous PET foil and on the polyester polyurethane Impranil® DLN. PET27 is a 37.8 kDa enzyme that released an average of 174.4 nmol terephthalic acid (TPA) after 120 h at 30°C from a 7 mg PET foil platelet in a 200 µl reaction volume, 38-times more than PET30 (37.4 kDa) released under the same conditions. The crystal structure of PET30 without its C-terminal Por-domain (PET30ΔPorC) was solved at 2.1 Å and displays high structural similarity to the IsPETase. PET30 shows a Phe-Met-Tyr substrate binding motif, which seems to be a unique feature, as IsPETase, LCC and PET2 all contain Tyr-Met-Trp binding residues, while PET27 possesses a Phe-Met-Trp motif that is identical to Cut190. Microscopic analyses showed that K. jeonii cells are indeed able to bind on and colonize PET surfaces after a few days of incubation. Homologs of PET27 and PET30 were detected in metagenomes, predominantly aquatic habitats, encompassing a wide range of different global climate zones and suggesting a hitherto unknown influence of this bacterial phylum on man-made polymer degradation.

7.
Viruses ; 12(12)2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261037

RESUMO

Many filamentous vibriophages encode virulence genes that lead to the emergence of pathogenic bacteria. Most genomes of filamentous vibriophages characterized up until today were isolated from human pathogens. Despite genome-based predictions that environmental Vibrios also contain filamentous phages that contribute to bacterial virulence, empirical evidence is scarce. This study aimed to characterize the bacteriophages of a marine pathogen, Vibrio alginolyticus (Kiel-alginolyticus ecotype) and to determine their role in bacterial virulence. To do so, we sequenced the phage-containing supernatant of eight different V. alginolyticus strains, characterized the phages therein and performed infection experiments on juvenile pipefish to assess their contribution to bacterial virulence. We were able to identify two actively replicating filamentous phages. Unique to this study was that all eight bacteria of the Kiel-alginolyticus ecotype have identical bacteriophages, supporting our previously established theory of a clonal expansion of the Kiel-alginolyticus ecotype. We further found that in one of the two filamentous phages, two phage-morphogenesis proteins (Zot and Ace) share high sequence similarity with putative toxins encoded on the Vibrio cholerae phage CTXΦ. The coverage of this filamentous phage correlated positively with virulence (measured in controlled infection experiments on the eukaryotic host), suggesting that this phage contributes to bacterial virulence.


Assuntos
Caudovirales/genética , Genoma Bacteriano , Inovirus/genética , Vibrio alginolyticus/genética , Vibrio alginolyticus/virologia , Animais , Carga Bacteriana , Caudovirales/classificação , Caudovirales/isolamento & purificação , DNA Viral , Doenças dos Peixes/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Inovirus/classificação , Inovirus/isolamento & purificação , Vibrioses/veterinária , Vibrio alginolyticus/classificação , Vibrio alginolyticus/patogenicidade , Virulência
8.
Viruses ; 11(2)2019 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-30813498

RESUMO

This work reports the method ClassiPhage to classify phage genomes using sequence derived taxonomic features. ClassiPhage uses a set of phage specific Hidden Markov Models (HMMs) generated from clusters of related proteins. The method was validated on all publicly available genomes of phages that are known to infect Vibrionaceae. The phages belong to the well-described phage families of Myoviridae, Podoviridae, Siphoviridae, and Inoviridae. The achieved classification is consistent with the assignments of the International Committee on Taxonomy of Viruses (ICTV), all tested phages were assigned to the corresponding group of the ICTV-database. In addition, 44 out of 58 genomes of Vibrio phages not yet classified could be assigned to a phage family. The remaining 14 genomes may represent phages of new families or subfamilies. Comparative genomics indicates that the ability of the approach to identify and classify phages is correlated to the conserved genomic organization. ClassiPhage classifies phages exclusively based on genome sequence data and can be applied on distinct phage genomes as well as on prophage regions within host genomes. Possible applications include (a) classifying phages from assembled metagenomes; and (b) the identification and classification of integrated prophages and the splitting of phage families into subfamilies.


Assuntos
Tipagem de Bacteriófagos , Bacteriófagos/classificação , Genoma Viral , Filogenia , Genômica , Lisogenia , Cadeias de Markov , Metagenoma , Podoviridae/classificação , Prófagos/classificação , Siphoviridae/classificação , Integração Viral
9.
Genome Announc ; 5(48)2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29192085

RESUMO

Here, we present the draft genome sequence of Vibrio splendidus type strain DSM 19640. V. splendidus is an abundant species among coastal vibrioplankton. The assembly resulted in a 5,729,362-bp draft genome with 5,032 protein-coding sequences, 6 rRNAs, and 117 tRNAs.

10.
J Med Microbiol ; 66(3): 286-293, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28357980

RESUMO

PURPOSE: We resequenced the genome of Clostridium difficile 630Δerm (DSM 28645), a model strain commonly used for the generation of insertion mutants. METHODOLOGY: The genome sequence was obtained by a combination of single-molecule real-timeand Illumina sequencing technology. RESULTS: Detailed manual curation and comparison to the previously published genomic sequence revealed sequence differences including inverted regions and the presence of plasmid pCD630. Manual curation of our previously deposited genome sequence of the parental strain 630 (DSM 27543) led to an improved genome sequence. In addition, the sequence of the transposon Tn5397 was completely identified. We manually revised the current manual annotation of the initial sequence of strain 630 and modified either gene names, gene product names or assigned EC numbers of 57 % of genes. The number of hypothetical and conserved hypothetical proteins was reduced by 152. This annotation was used as a template to annotate the most recent genome sequences of the strains 630Δerm and 630. CONCLUSION: Based on the genomic analysis, several new metabolic features of C. difficile are proposed and could be supported by literature and subsequent experiments.


Assuntos
Clostridioides difficile/genética , Genoma Bacteriano , Anotação de Sequência Molecular/métodos , Sequência de Bases , Ácidos e Sais Biliares , Clostridioides difficile/metabolismo , DNA Bacteriano/genética , Cromatografia Gasosa-Espectrometria de Massas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Fases de Leitura Aberta , Estresse Oxidativo/genética , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA