RESUMO
The ongoing digital revolution in the age of big data is opening new research opportunities. Culturomics and iEcology, two emerging research areas based on the analysis of online data resources, can provide novel scientific insights and inform conservation and management efforts. To date, culturomics and iEcology have been applied primarily in the terrestrial realm. Here, we advocate for expanding such applications to the aquatic realm by providing a brief overview of these new approaches and outlining key areas in which culturomics and iEcology are likely to have the highest impact, including the management of protected areas; fisheries; flagship species identification; detection and distribution of threatened, rare, and alien species; assessment of ecosystem status and anthropogenic impacts; and social impact assessment. When deployed in the right context with awareness of potential biases, culturomics and iEcology are ripe for rapid development as low-cost research approaches based on data available from digital sources, with increasingly diverse applications for aquatic ecosystems.
Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Animais Selvagens/fisiologia , Viés , Espécies em Perigo de Extinção , PesqueirosRESUMO
Understanding how organismal traits determine performance and, ultimately, fitness is a fundamental goal of evolutionary eco-morphology. However, multiple traits can interact in non-linear and context-dependent ways to affect performance, hindering efforts to place natural populations with respect to performance peaks or valleys. Here, we used an established mechanistic model of suction-feeding performance (SIFF) derived from hydrodynamic principles to estimate a theoretical performance landscape for zooplankton prey capture. This performance space can be used to predict prey capture performance for any combination of six morphological and kinematic trait values. We then mapped in situ high-speed video observations of suction feeding in a natural population of a coral reef zooplanktivore, Chromis viridis, onto the performance space to estimate the population's location with respect to the topography of the performance landscape. Although the kinematics of the natural population closely matched regions of high performance in the landscape, the population was not located on a performance peak. Individuals were furthest from performance peaks on the peak gape, ram speed and mouth opening speed trait axes. Moreover, we found that the trait combinations in the observed population were associated with higher performance than expected by chance, suggesting that these combinations are under selection. Our results provide a framework for assessing whether natural populations occupy performance optima.
Assuntos
Perciformes , Comportamento Predatório , Animais , Fenômenos Biomecânicos , Comportamento Alimentar , SucçãoRESUMO
The COVID-19 pandemic provides a rare opportunity to examine effects of people on natural systems and processes. Here, we collected fish diversity data from coral reefs at the Israeli Gulf of Aqaba during and after the COVID-19 lockdown. We examined beach entrances to the reef, nearby shallow reefs and deeper areas exposed mostly to divers. We found that the lockdown elicited a behavioral response that resulted in elevated species richness at designated reef entrances, predominantly influenced by increased evenness without changes to total abundances. This effect was observed both at the local scale and when several beach entrances were aggregated together. Consequently, non-extractive human activities may have substantial short-term impacts on fish diversity. Our insights could help designate guidelines to manage visitor impacts on coral reefs and aid in their prolonged persistence.
RESUMO
The global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from 89 different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence. However, negative effects of lockdown on conservation also emerged, as confinement resulted in some park officials being unable to perform conservation, restoration and enforcement tasks, resulting in local increases in illegal activities such as hunting. Overall, there is a complex mixture of positive and negative effects of the pandemic lockdown on nature, all of which have the potential to lead to cascading responses which in turn impact wildlife and nature conservation. While the net effect of the lockdown will need to be assessed over years as data becomes available and persistent effects emerge, immediate responses were detected across the world. Thus, initial qualitative and quantitative data arising from this serendipitous global quasi-experimental perturbation highlights the dual role that humans play in threatening and protecting species and ecosystems. Pathways to favorably tilt this delicate balance include reducing impacts and increasing conservation effectiveness.
RESUMO
Larval fishes experience extreme mortality rates, with 99% of a cohort perishing within days after starting to actively feed. While recent evidence suggests that hydrodynamic factors contribute to constraining larval feeding during early ontogeny, feeding is a complex process that involves numerous interacting behavioural and biomechanical components. How these components change throughout ontogeny and how they contribute to feeding remain unclear. Using 339 observations of larval feeding attempts, we quantified the effects of morphological and behavioural traits on feeding success of Sparus aurata larvae during early ontogeny. Feeding success was determined using high-speed videography, under both natural and increased water viscosity treatments. Successful strikes were characterized by Reynolds numbers that were an order of magnitude higher than those of failed strikes. The pattern of increasing strike success with increasing age was driven by the ontogeny of traits that facilitate the transition to higher Reynolds numbers. Hence, the physical growth of a larva plays an important role in its transition to a hydrodynamic regime of higher Reynolds numbers, in which suction feeding is more effective.
Assuntos
Comportamento Alimentar , Dourada/fisiologia , Animais , Fenômenos Biomecânicos , Hidrodinâmica , Larva/fisiologiaRESUMO
Elucidating the factors determining reproductive success has challenged scientists since Darwin, but the exact pathways that shape the evolution of life history traits by connecting extrinsic (e.g., landscape structure) and intrinsic (e.g., female's age and endosymbionts) factors and reproductive success have rarely been studied. Here we collected female fleas from wild rodents in plots differing in their densities and proportions of the most dominant rodent species. We then combined path analysis and model selection approaches to explore the network of effects, ranging from micro to macroscales, determining the reproductive success of these fleas. Our results suggest that female reproductive success is directly and positively associated with their infection by Mycoplasma bacteria and their own body mass, and with the rodent species size and total density. In addition, we found evidence for indirect effects of rodent sex and rodent community diversity on female reproductive success. These results highlight the importance of exploring interrelated factors across organization scales while studying the reproductive success of wild organisms, and they have implications for the control of vector-borne diseases.
Assuntos
Vetores Artrópodes , Infestações por Pulgas , Reprodução , Animais , Feminino , Roedores , Seleção Genética , Sifonápteros , SimbioseRESUMO
Larval fishes suffer prodigious mortality rates, eliminating 99% of the brood within a few days after first feeding. Hjort (1914) famously attributed this "critical period" of low survival to the larvae's inability to obtain sufficient food [Hjort (1914) Rapp P-v Réun Cons Int Explor Mer 20:1-228]. However, the cause of this poor feeding success remains to be identified. Here, we show that hydrodynamic constraints on the ubiquitous suction mechanism in first-feeding larvae limit their ability to capture prey, thereby reducing their feeding rates. Dynamic-scaling experiments revealed that larval size is the primary determinant of feeding rate, independent of other ontogenetic effects. We conclude that first-feeding larvae experience "hydrodynamic starvation," in which low Reynolds numbers mechanistically limit their feeding performance even under high prey densities. Our results provide a hydrodynamic perspective on feeding of larval fishes that focuses on the physical properties of the larvae and prey, rather than on prey concentration and the rate of encounters.
Assuntos
Comportamento Alimentar/fisiologia , Hidrodinâmica , Dourada/crescimento & desenvolvimento , Dourada/fisiologia , Inanição/mortalidade , Inanição/fisiopatologia , Animais , Fenômenos Biomecânicos , Ecossistema , Feminino , Pesqueiros , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Boca/fisiologia , Oceanos e Mares , Comportamento Predatório/fisiologia , Rotíferos , Gravação de Videoteipe , ViscosidadeRESUMO
Using videography to extract quantitative data on animal movement and kinematics constitutes a major tool in biomechanics and behavioral ecology. Advanced recording technologies now enable acquisition of long video sequences encompassing sparse and unpredictable events. Although such events may be ecologically important, analysis of sparse data can be extremely time-consuming and potentially biased; data quality is often strongly dependent on the training level of the observer and subject to contamination by observer-dependent biases. These constraints often limit our ability to study animal performance and fitness. Using long videos of foraging fish larvae, we provide a framework for the automated detection of prey acquisition strikes, a behavior that is infrequent yet critical for larval survival. We compared the performance of four video descriptors and their combinations against manually identified feeding events. For our data, the best single descriptor provided a classification accuracy of 77-95% and detection accuracy of 88-98%, depending on fish species and size. Using a combination of descriptors improved the accuracy of classification by â¼2%, but did not improve detection accuracy. Our results indicate that the effort required by an expert to manually label videos can be greatly reduced to examining only the potential feeding detections in order to filter false detections. Thus, using automated descriptors reduces the amount of manual work needed to identify events of interest from weeks to hours, enabling the assembly of an unbiased large dataset of ecologically relevant behaviors.
Assuntos
Comportamento Alimentar/fisiologia , Peixes/fisiologia , Estatística como Assunto/métodos , Gravação em Vídeo , Animais , Automação , Fenômenos Biomecânicos , Peixes/crescimento & desenvolvimento , Larva/fisiologia , Estágios do Ciclo de Vida , Boca/fisiologia , Análise Espaço-Temporal , Fatores de TempoRESUMO
Sampling issues preclude the direct use of the discovery rate of exotic species as a robust estimate of their rate of introduction. Recently, a method was advanced that allows maximum-likelihood estimation of both the observational probability and the introduction rate from the discovery record. Here, we propose an alternative approach that utilizes the discovery record of native species to control for sampling effort. Implemented in a Bayesian framework using Markov chain Monte Carlo simulations, the approach provides estimates of the rate of introduction of the exotic species, and of additional parameters such as the size of the species pool from which they are drawn. We illustrate the approach using Red Sea fishes recorded in the eastern Mediterranean, after crossing the Suez Canal, and show that the two approaches may lead to different conclusions. The analytical framework is highly flexible and could provide a basis for easy modification to other systems for which first-sighting data on native and introduced species are available.
Assuntos
Ecossistema , Peixes/fisiologia , Animais , Teorema de Bayes , Demografia , Cadeias de Markov , Mar Mediterrâneo , Método de Monte Carlo , Fatores de TempoRESUMO
Larval fishes suffer prodigious mortality rates, eliminating 99% of the cohort within a few days after their first feeding. Hjort (1914) famously attributed this "critical period" of low survival to larval inability to obtain sufficient food. We discuss recent experimental and modeling work, suggesting that the viscous hydrodynamic regime have marked effects on the mechanism of suction feeding in larval fish. As larvae grow, the size of the gape and associated volume of the mouth increase. At the same time, larvae swim faster and can generate faster suction flows, thus transiting to a hydrodynamic regime of higher Reynolds numbers. This hydrodynamic regime further leads to changes in the spatio-temporal patterns of flow in front of the mouth, and an increasing ability in larger larvae to exert suction forces on the prey. Simultaneously, the increase in swimming speed and the distance from which the prey is attacked result in higher rates of encountering prey by larger (older) larvae. In contrast, during the first few days after feeding commence the lower rates of encounter and success in feeding translate to low feeding rates. We conclude that young larvae experience "hydrodynamic starvation," in which low Reynolds numbers mechanically limit their feeding performance even under high densities of prey.