Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Int Endod J ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888425

RESUMO

AIM: (i) To characterize Enterococcus faecalis biofilm formation pathways by semi-targeted metabolomics and targeted nitrogen panel analysis of strong (Ef63) and weak (Ef 64) biofilm forming E. faecalis clinical isolates and (ii) to validate the identified metabolic markers using targeted inhibitors. METHODOLOGY: Previous proteomics profiling of E. faecalis clinical isolates with strong and weak biofilm formation revealed that differences in metabolic activity levels of small molecule, nucleotide and nitrogen compound metabolic processes and biosynthetic pathways, cofactor metabolic process, cellular amino acid and derivative metabolic process and lyase activity were associated with differences in biofilm formation. Hence, semi-targeted analysis of Ef 63, Ef 64 and ATC control strain Ef 29212 was performed by selecting metabolites that were part of both the previously identified pathways and a curated library with confirmed physical and chemical identity, followed by confirmatory targeted nitrogen panel analysis. Significantly regulated metabolites (p < .05) were selected based on fold change cut-offs of 1.2 and 0.8 for upregulation and downregulation, respectively, and subjected to pathway enrichment analysis. The identified metabolites and pathways were validated by minimum biofilm inhibitory concentration (MBIC) and colony forming unit (CFU) assays with targeted inhibitors. RESULTS: Metabolomics analysis showed upregulation of betaine, hypoxanthine, glycerophosphorylcholine, tyrosine, inosine, allantoin and citrulline in Ef 63 w.r.t Ef 64 and Ef 29212, and thesemetabolites mapped to purinemetabolism, urea cycle and aspartate metabolism pathways. MBIC and CFU assays using compounds against selected metabolites and metabolic pathways, namely glutathione against hypoxanthine and hydroxylamine against aspartate metabolism showed inhibitory effects against E. faecalis biofilm formation. CONCLUSIONS: The study demonstrated the importance of oxidative stress inducers such as hypoxanthine and aspartate metabolism pathway in E. faecalis biofilm formation. Targeted therapeutics against these metabolic markers can reduce the healthcare burden associated with E. faecalis infections.

2.
Kidney Int ; 104(6): 1135-1149, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37843477

RESUMO

Diabetic nephropathy (DN) is characterized by abnormal kidney energy metabolism, but its causes and contributions to DN pathogenesis are not clear. To examine this issue, we carried out targeted metabolomics profiling in a mouse model of DN that develops kidney disease resembling the human disorder. We found a distinct profile of increased lactate levels and impaired energy metabolism in kidneys of mice with DN, and treatment with an angiotensin-receptor blocker (ARB) reduced albuminuria, attenuated kidney pathology and corrected many metabolic abnormalities, restoring levels of lactate toward normal while increasing kidney ATP content. We also found enhanced expression of lactate dehydrogenase isoforms in DN. Expression of both the LdhA and LdhB isoforms were significantly increased in kidneys of mice, and treatment with ARB significantly reduced their expression. Single-cell sequencing studies showed specific up-regulation of LdhA in the proximal tubule, along with enhanced expression of oxidative stress pathways. There was a significant correlation between albuminuria and lactate in mice, and also in a Southeast Asian patient cohort consisting of individuals with type 2 diabetes and impaired kidney function. In the individuals with diabetes, this association was independent of ARB and angiotensin-converting enzyme inhibitor use. Furthermore, urinary lactate levels predicted the clinical outcomes of doubling of serum creatinine or development of kidney failure, and there was a significant correlation between urinary lactate levels and biomarkers of tubular injury and epithelial stress. Thus, we suggest that kidney metabolic disruptions leading to enhanced generation of lactate contribute to the pathogenesis of DN and increased urinary lactate levels may be a potential biomarker for risk of kidney disease progression.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Insuficiência Renal , Humanos , Animais , Camundongos , Nefropatias Diabéticas/etiologia , Ácido Láctico , Albuminúria/etiologia , Antagonistas de Receptores de Angiotensina/farmacologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Rim , Isoformas de Proteínas
3.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768551

RESUMO

Major depressive disorder (MDD) is a highly prevalent and disabling condition with a high disease burden. There are currently no validated biomarkers for the diagnosis and treatment of MDD. This study assessed serum amino acid metabolite changes between MDD patients and healthy controls (HCs) and their association with disease severity and diagnostic utility. In total, 70 MDD patients and 70 HCs matched in age, gender, and ethnicity were recruited for the study. For amino acid profiling, serum samples were analysed and quantified by liquid chromatography-mass spectrometry (LC-MS). Receiver-operating characteristic (ROC) curves were used to classify putative candidate biomarkers. MDD patients had significantly higher serum levels of glutamic acid, aspartic acid and glycine but lower levels of 3-Hydroxykynurenine; glutamic acid and phenylalanine levels also correlated with depression severity. Combining these four metabolites allowed for accurate discrimination of MDD patients and HCs, with 65.7% of depressed patients and 62.9% of HCs correctly classified. Glutamic acid, aspartic acid, glycine and 3-Hydroxykynurenine may serve as potential diagnostic biomarkers, whereas glutamic acid and phenylalanine may be markers for depression severity. To elucidate the association between these indicators and clinical features, it is necessary to conduct additional studies with larger sample sizes that involve a spectrum of depressive symptomatology.


Assuntos
Aminoácidos , Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/tratamento farmacológico , Ácido Glutâmico , Ácido Aspártico , Depressão , Biomarcadores , Fenilalanina/uso terapêutico , Glicina/uso terapêutico
4.
Hum Mol Genet ; 29(2): 189-201, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31628463

RESUMO

Metabolites are small intermediate products of cellular metabolism perturbed in a variety of complex disorders. Identifying genetic markers associated with metabolite concentrations could delineate disease-related metabolic pathways in humans. We tested genetic variants for associations with 136 metabolites in 1954 Chinese from Singapore. At a conservative genome-wide threshold (3.7 × 10-10), we detected 1899 variant-metabolite associations at 16 genetic loci. Three loci (ABCA7, A4GALT, GSTM2) represented novel associations with metabolites, with the strongest association observed between ABCA7 and d18:1/24:1 dihexosylceramide. Among 13 replicated loci, we identified six new variants independent of previously reported metabolite or lipid signals. We observed variant-metabolite associations at two loci (ABCA7, CHCHD2) that have been linked to neurodegenerative diseases. At SGPP1 and SPTLC3 loci, genetic variants showed preferential selectivity for sphingolipids with d16 (rather than d18) sphingosine backbone, including sphingosine-1-phosphate (S1P). Our results provide new genetic associations for metabolites and highlight the role of metabolites as intermediate modulators in disease metabolic pathways.


Assuntos
Doença de Alzheimer/genética , Povo Asiático/genética , Glicoesfingolipídeos/metabolismo , Doença de Parkinson/genética , Esfingolipídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Doença de Alzheimer/metabolismo , Carnitina/análogos & derivados , Carnitina/metabolismo , China , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Glicoesfingolipídeos/genética , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Lisofosfolipídeos/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Doença de Parkinson/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Serina/metabolismo , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/química , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Espectrometria de Massas em Tandem , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Int J Mol Sci ; 23(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35806086

RESUMO

The immediate and delayed metabolic changes in rats treated with valproate (VPA), a drug used for the treatment of epilepsy, were profiled. An established approach using dried blood spots (DBS) as sample matrices for gas chromatography/mass spectrometry-based metabolomics profiling was modified using double solvents in the extraction of analytes. With the modified method, some of the previously undetectable metabolites were recovered and subtle differences in the metabolic changes upon exposure to a single dose of VPA between males and female rats were identified. In male rats, changes in 2-hydroxybutyric acid, pipecolic acid, tetratriacontane and stearic acid were found between the control and treatment groups at various time points from 2.5 h up to 24 h. In contrast, such differences were not observed in female rats, which could be caused by the vast inter-individual variations in metabolite levels within the female group. Based on the measured DBS drug concentrations, clearance and apparent volume of distribution of VPA were estimated and the values were found to be comparable to those estimated previously from full blood drug concentrations. The current study indicated that DBS is a powerful tool to monitor drug levels and metabolic changes in response to drug treatment.


Assuntos
Epilepsia , Ácido Valproico , Animais , Teste em Amostras de Sangue Seco/métodos , Epilepsia/tratamento farmacológico , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Masculino , Metabolômica , Ratos
6.
J Mol Cell Cardiol ; 158: 63-71, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34033835

RESUMO

BACKGROUND: Ageing and insulin resistant states such as diabetes mellitus frequently coexist and increase the risk of cardiovascular disease development among older adults. Here we investigate metabolic differences in amino acid profiles between ageing and diabetes mellitus, and their associations with cardiovascular function. METHODS: In a group of community older adults we performed echocardiography, cardiac magnetic resonance imaging as well as cross sectional and longitudinal metabolomics profiling based on current and archived sera obtained fifteen years prior to examination. RESULTS: We studied a total of 515 participants (women 50%, n = 255) with a mean age 73 (SD = 4.3) years. Diabetics had higher alanine (562 vs 448, p < 0.0001), higher glutamate (107 vs 95, p = 0.016), higher proline (264 vs 231, p = 0.008) and lower arginine (107 vs 117, p = 0.043), lower citrulline (30 vs 38, p = 0.006) levels (µM) compared to non-diabetics. Over time, changes in amino acid profiles differentiated diabetic older adults from non-diabetic older adults, with greater accumulation of alanine (p = 0.002), proline (p = 0.008) and (non-significant) trend towards greater accumulation of glycine (p = 0.057) among the older diabetics compared to the older non-diabetics. However, independent of diabetes status, amino acids were associated with cardiovascular functions in ageing, [archived valine (p = 0.011), leucine (p = 0.011), archived isoleucine (p = 0.0006), archived serine (p = 0.008), archived glycine (p = 0.006) methionine (p = 0.003)] which were associated with impairments in E/A ratio. CONCLUSION: Markers of branched chain amino acids and one ­carbon metabolism pathways were associated with changes in cardiovascular function in older adults regardless of diabetes status. However, nitrogen handling pathways were specifically altered among older adults with diabetes. These findings broaden our understanding into specific amino acid pathways that may be altered between diabetic and non-diabetic older adults, and their relevance to cardiovascular function in ageing. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02791139.


Assuntos
Envelhecimento/sangue , Aminoácidos de Cadeia Ramificada/sangue , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/epidemiologia , Diabetes Mellitus/sangue , Diabetes Mellitus/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Doenças Cardiovasculares/diagnóstico por imagem , China/epidemiologia , Comorbidade , Estudos Transversais , Ecocardiografia/métodos , Feminino , Humanos , Estudos Longitudinais , Espectroscopia de Ressonância Magnética/métodos , Masculino , Metaboloma , Metabolômica/métodos , Estudos Prospectivos , Fatores de Risco
7.
Am J Nephrol ; 52(10-11): 771-787, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34753140

RESUMO

BACKGROUND: The kynurenine pathway (KP) is the major catabolic pathway for tryptophan degradation. The KP plays an important role as the sole de novo nicotinamide adenine dinucleotide (NAD+) biosynthetic pathway in normal human physiology and functions as a counter-regulatory mechanism to mitigate immune responses during inflammation. Although the KP has been implicated in a variety of disorders including Huntington's disease, seizures, cardiovascular disease, and osteoporosis, its role in renal diseases is seldom discussed. SUMMARY: This review summarizes the roles of the KP and its metabolites in acute kidney injury (AKI) and chronic kidney disease (CKD) based on current literature evidence. Metabolomics studies demonstrated that the KP metabolites were significantly altered in patients and animal models with AKI or CKD. The diagnostic and prognostic values of the KP metabolites in AKI and CKD were highlighted in cross-sectional and longitudinal human observational studies. The biological impact of the KP on the pathophysiology of AKI and CKD has been studied in experimental models of different etiologies. In particular, the activation of the KP was found to confer protection in animal models of glomerulonephritis, and its immunomodulatory mechanism may involve the regulation of T cell subsets such as Th17 and regulatory T cells. Manipulation of the KP to increase NAD+ production or diversion toward specific KP metabolites was also found to be beneficial in animal models of AKI. Key Messages: KP metabolites are reported to be dysregulated in human observational and animal experimental studies of AKI and CKD. In AKI, the magnitude and direction of changes in the KP depend on the etiology of the damage. In CKD, KP metabolites are altered with the onset and progression of CKD all the way to advanced stages of the disease, including uremia and its related vascular complications. The activation of the KP and diversion to specific sub-branches are currently being explored as therapeutic strategies in these diseases, especially with regards to the immunomodulatory effects of certain KP metabolites. Further elucidation of the KP may hold promise for the development of biomarkers and targeted therapies for these kidney diseases.


Assuntos
Injúria Renal Aguda/etiologia , Cinurenina/fisiologia , Insuficiência Renal Crônica/etiologia , Animais , Humanos
8.
PLoS Biol ; 16(2): e2004285, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29485983

RESUMO

The use of consumer-grade wearables for purposes beyond fitness tracking has not been comprehensively explored. We generated and analyzed multidimensional data from 233 normal volunteers, integrating wearable data, lifestyle questionnaires, cardiac imaging, sphingolipid profiling, and multiple clinical-grade cardiovascular and metabolic disease markers. We show that subjects can be stratified into distinct clusters based on daily activity patterns and that these clusters are marked by distinct demographic and behavioral patterns. While resting heart rates (RHRs) performed better than step counts in being associated with cardiovascular and metabolic disease markers, step counts identified relationships between physical activity and cardiac remodeling, suggesting that wearable data may play a role in reducing overdiagnosis of cardiac hypertrophy or dilatation in active individuals. Wearable-derived activity levels can be used to identify known and novel activity-modulated sphingolipids that are in turn associated with insulin sensitivity. Our findings demonstrate the potential for wearables in biomedical research and personalized health.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Monitores de Aptidão Física , Esfingolipídeos/sangue , Adulto , Cardiomegalia/diagnóstico , Exercício Físico , Feminino , Voluntários Saudáveis , Frequência Cardíaca , Humanos , Resistência à Insulina , Estilo de Vida , Masculino , Uso Excessivo dos Serviços de Saúde/prevenção & controle , Pessoa de Meia-Idade , Inquéritos e Questionários , Remodelação Ventricular
9.
Crit Rev Microbiol ; 46(6): 759-778, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33030973

RESUMO

The advent of omics technologies has greatly improved our understanding of microbial biology, particularly in the last two decades. The field of microbial biofilms is, however, relatively new, consolidated in the 1980s. The morphogenic switching by microbes from planktonic to biofilm phenotype confers numerous survival advantages such as resistance to desiccation, antibiotics, biocides, ultraviolet radiation, and host immune responses, thereby complicating treatment strategies for pathogenic microorganisms. Hence, understanding the mechanisms governing the biofilm phenotype can result in efficient treatment strategies directed specifically against molecular markers mediating this process. The application of omics technologies for studying microbial biofilms is relatively less explored and holds great promise in furthering our understanding of biofilm biology. In this review, we provide an overview of the application of omics tools such as transcriptomics, proteomics, and metabolomics as well as multi-omics approaches for studying microbial biofilms in the current literature. We also highlight how the use of omics tools directed at various stages of the biological information flow, from genes to metabolites, can be integrated via multi-omics platforms to provide a holistic view of biofilm biology. Following this, we propose a future artificial intelligence-based multi-omics platform that can predict the pathways associated with different biofilm phenotypes.


Assuntos
Biofilmes , Genômica/tendências , Metabolômica/tendências , Inteligência Artificial , Bactérias/genética , Bactérias/efeitos da radiação , Biofilmes/efeitos da radiação , Humanos
10.
Proc Natl Acad Sci U S A ; 114(15): 3981-3986, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28356518

RESUMO

ZBTB transcription factors orchestrate gene transcription during tissue development. However, their roles in glioblastoma (GBM) remain unexplored. Here, through a functional screening of ZBTB genes, we identify that BCL6 is required for GBM cell viability and that BCL6 overexpression is associated with worse prognosis. In a somatic transgenic mouse model, depletion of Bcl6 inhibits the progression of KrasG12V-driven high-grade glioma. Transcriptome analysis demonstrates the involvement of BCL6 in tumor protein p53 (TP53), erythroblastic leukemia viral oncogene homolog (ErbB), and MAPK signaling pathways. Indeed, BCL6 represses the expression of wild-type p53 and its target genes in GBM cells. Knockdown of BCL6 augments the activation of TP53 pathway in response to radiation. Importantly, we discover that receptor tyrosine kinase AXL is a transcriptional target of BCL6 in GBM and mediates partially the regulatory effects of BCL6 on both MEK-ERK (mitogen-activated protein/extracellular signal-regulated kinase kinase-extracellular signal-regulated kinase) and S6K-RPS6 (ribosomal protein S6 kinase-ribosomal protein S6) axes. Similar to BCL6 silencing, depletion of AXL profoundly attenuates GBM proliferation both in vitro and in vivo. Moreover, targeted inhibition of BCL6/nuclear receptor corepressor 1 (NCoR) complex by peptidomimetic inhibitor not only significantly decreases AXL expression and the activity of MEK-ERK and S6K-RPS6 cascades but also displays a potent antiproliferative effect against GBM cells. Together, these findings uncover a glioma-promoting role of BCL6 and provide the rationale of targeting BCL6 as a potential therapeutic approach.


Assuntos
Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Gefitinibe , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Humanos , MAP Quinase Quinase Quinases/metabolismo , Camundongos Mutantes , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-6/genética , Quinazolinas/farmacologia , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl
11.
J Biol Chem ; 291(46): 23978-23988, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27703011

RESUMO

The accumulation of sphingolipids in obesity leads to impairments in insulin sensitivity and mitochondrial metabolism, but the precise species driving these defects is unclear. We have modeled these obesity-induced effects in cultured C2C12 myotubes, using BSA-conjugated palmitate to increase synthesis of endogenous sphingolipids and to inhibit insulin signaling and oxidative phosphorylation. Palmitate (a) induced the accumulation of sphingomyelin (SM) precursors such as sphinganine, dihydroceramide, and ceramide; (b) inhibited insulin stimulation of a central modulator of anabolic metabolism, Akt/PKB; (c) inhibited insulin-stimulated glycogen synthesis; and (d) decreased oxygen consumption and ATP synthesis. Under these conditions, palmitate failed to alter levels of SMs, which are the most abundant sphingolipids, suggesting that they are not the primary intermediates accounting for the deleterious palmitate effects. Treating cells with a pharmacological inhibitor of SM synthase or using CRISPR to knock out the Sms2 gene recapitulated the palmitate effects by inducing the accumulation of SM precursors and impairing insulin signaling and mitochondrial metabolism. To profile the sphingolipids that accumulate in obesity, we performed lipidomics on quadriceps muscles from obese mice with impaired glucose tolerance. Like the cultured myotubes, these tissues accumulated ceramides but not SMs. Collectively, these data suggest that SM precursors such as ceramides, rather than SMs, are likely nutritional antagonists of metabolic function in skeletal muscle.


Assuntos
Ceramidas/metabolismo , Insulina/metabolismo , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Esfingomielinas/metabolismo , Animais , Linhagem Celular , Ceramidas/genética , Deleção de Genes , Insulina/genética , Camundongos , Mitocôndrias Musculares/genética , Obesidade/genética , Consumo de Oxigênio/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esfingomielinas/genética , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
12.
J Biol Chem ; 289(2): 723-34, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24214972

RESUMO

Inhibitors of sphingolipid synthesis protect mice from diet induced-insulin resistance, and sphingolipids such as ceramides and glucosylated-ceramides (e.g., GM3) are putative nutritional intermediates linking obesity to diabetes risk. Herein we investigated the role of each of these sphingolipids in muscle and adipose tissue and conclude that they are independent and separable antagonists of insulin signaling. Of particular note, ceramides antagonize insulin signaling in both myotubes and adipocytes, whereas glucosyceramides are only efficacious in adipocytes: 1) In myotubes exposed to saturated fats, inhibitors of enzymes required for ceramide synthesis enhance insulin signaling, but those targeting glucosylceramide synthase have no effect. 2) Exogenous ceramides antagonize insulin signaling in myotubes, whereas ganglioside precursors do not. 3) Overexpression of glucosylceramide synthase in myotubes induces glucosylceramide but enhances insulin signaling. In contrast, glucosylated ceramides have profound effects in adipocytes. For example, either ganglioside addition or human glucosylceramide synthase overexpression suppresses insulin signaling in adipocytes. These data have important mechanistic implications for understanding how these sphingolipids contribute to energy sensing and the disruption of anabolism under conditions of nutrient oversupply.


Assuntos
Ceramidas/metabolismo , Glucosilceramidas/metabolismo , Insulina/metabolismo , Transdução de Sinais/fisiologia , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Ceramidas/farmacologia , Dieta Hiperlipídica , Glucosilceramidas/fisiologia , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Humanos , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos
13.
Hepatology ; 59(4): 1366-80, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23929677

RESUMO

UNLABELLED: Caffeine is one of the world's most consumed drugs. Recently, several studies showed that its consumption is associated with lower risk for nonalcoholic fatty liver disease (NAFLD), an obesity-related condition that recently has become the major cause of liver disease worldwide. Although caffeine is known to stimulate hepatic fat oxidation, its mechanism of action on lipid metabolism is still not clear. Here, we show that caffeine surprisingly is a potent stimulator of hepatic autophagic flux. Using genetic, pharmacological, and metabolomic approaches, we demonstrate that caffeine reduces intrahepatic lipid content and stimulates ß-oxidation in hepatic cells and liver by an autophagy-lysosomal pathway. Furthermore, caffeine-induced autophagy involved down-regulation of mammalian target of rapamycin signaling and alteration in hepatic amino acids and sphingolipid levels. In mice fed a high-fat diet, caffeine markedly reduces hepatosteatosis and concomitantly increases autophagy and lipid uptake in lysosomes. CONCLUSION: These results provide novel insight into caffeine's lipolytic actions through autophagy in mammalian liver and its potential beneficial effects in NAFLD.


Assuntos
Autofagia/efeitos dos fármacos , Cafeína/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Lisossomos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Autofagia/fisiologia , Cafeína/uso terapêutico , Linhagem Celular Tumoral , Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo/efeitos dos fármacos , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Fígado Gorduroso/prevenção & controle , Células Hep G2 , Humanos , Técnicas In Vitro , Lipólise/efeitos dos fármacos , Lipólise/fisiologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Oxirredução/efeitos dos fármacos , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo
14.
Front Cardiovasc Med ; 11: 1346443, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486706

RESUMO

Background: Pulmonary artery (PA) strain is associated with structural and functional alterations of the vessel and is an independent predictor of cardiovascular events. The relationship of PA strain to metabolomics in participants without cardiovascular disease is unknown. Methods: In the current study, community-based older adults, without known cardiovascular disease, underwent simultaneous cine cardiovascular magnetic resonance (CMR) imaging, clinical examination, and serum sampling. PA global longitudinal strain (GLS) analysis was performed by tracking the change in distance from the PA bifurcation to the pulmonary annular centroid, using standard cine CMR images. Circulating metabolites were measured by cross-sectional targeted metabolomics analysis. Results: Among n = 170 adults (mean age 71 ± 6.3 years old; 79 women), mean values of PA GLS were 16.2 ± 4.4%. PA GLS was significantly associated with age (ß = -0.13, P = 0.017), heart rate (ß = -0.08, P = 0.001), dyslipidemia (ß = -2.37, P = 0.005), and cardiovascular risk factors (ß = -2.49, P = 0.001). Alanine (ß = -0.007, P = 0.01) and proline (ß = -0.0009, P = 0.042) were significantly associated with PA GLS after adjustment for clinical risk factors. Medium and long-chain acylcarnitines were significantly associated with PA GLS (C12, P = 0.027; C12-OH/C10-DC, P = 0.018; C14:2, P = 0.036; C14:1, P = 0.006; C14, P = 0.006; C14-OH/C12-DC, P = 0.027; C16:3, P = 0.019; C16:2, P = 0.006; C16:1, P = 0.001; C16:2-OH, P = 0.016; C16:1-OH/C14:1-DC, P = 0.028; C18:1-OH/C16:1-DC, P = 0.032). Conclusion: By conventional CMR, PA GLS was associated with aging and vascular risk factors among a contemporary cohort of older adults. Metabolic pathways involved in PA stiffness may include gluconeogenesis, collagen synthesis, and fatty acid oxidation.

15.
Commun Med (Lond) ; 4(1): 80, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704414

RESUMO

BACKGROUND: We previously reported changes in the serum metabolome associated with impaired myocardial relaxation in an asymptomatic older community cohort. In this prospective parallel-group randomized control pilot trial, we subjected community adults without cardiovascular disease to exercise intervention and evaluated the effects on serum metabolomics. METHODS: Between February 2019 to November 2019, thirty (83% females) middle-aged adults (53 ± 4 years) were randomized with sex stratification to either twelve weeks of moderate-intensity exercise training (Intervention) (n = 15) or Control (n = 15). The Intervention group underwent once-weekly aerobic and strength training sessions for 60 min each in a dedicated cardiac exercise laboratory for twelve weeks (ClinicalTrials.gov: NCT03617653). Serial measurements were taken pre- and post-intervention, including serum sampling for metabolomic analyses. RESULTS: Twenty-nine adults completed the study (Intervention n = 14; Control n = 15). Long-chain acylcarnitine C20:2-OH/C18:2-DC was reduced in the Intervention group by a magnitude of 0.714 but increased in the Control group by a magnitude of 1.742 (mean difference -1.028 age-adjusted p = 0.004). Among Controls, alanine correlated with left ventricular mass index (r = 0.529, age-adjusted p = 0.018) while aspartate correlated with Lateral e' (r = -764, age-adjusted p = 0.016). C20:3 correlated with E/e' ratio fold-change in the Intervention group (r = -0.653, age-adjusted p = 0.004). Among Controls, C20:2/C18:2 (r = 0.795, age-adjusted p = 0.005) and C20:2-OH/C18:2-DC fold-change (r = 0.742, age-adjusted p = 0.030) correlated with change in E/A ratio. CONCLUSIONS: Corresponding relationships between serum metabolites and cardiac function in response to exercise intervention provided pilot observations. Future investigations into cellular fuel oxidation or central carbon metabolism pathways that jointly impact the heart and related metabolic systems may be critical in preventive trials.


Prior studies have found changes in cellular biological processes in both cardiac aging and heart failure suggesting a common underlying mechanism. I has also been shown that exercise in healthy participants can reverse the signs of early cardiac aging. In this experimental study, we examined the effects of exercise on biological markers and cardiac function among healthy community older adults. After twelve weeks of exercise, there were changes in biological components associated with cardiac function. These findings highlight the potential of exercise as a strategy to target biological alterations in early cardiac aging and potentially prevent it.

16.
Geroscience ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38514519

RESUMO

Aging-induced aortic stiffness has been associated with altered fatty acid metabolism. We studied aortic stiffness using cardiac magnetic resonance (CMR)-assessed ventriculo-arterial coupling (VAC) and novel aortic (AO) global longitudinal strain (GLS) combined with targeted metabolomic profiling. Among community older adults without cardiovascular disease, VAC was calculated as aortic pulse wave velocity (PWV), a marker of arterial stiffness, divided by left ventricular (LV) GLS. AOGLS was the maximum absolute strain measured by tracking the phasic distance between brachiocephalic artery origin and aortic annulus. In 194 subjects (71 ± 8.6 years; 88 women), AOGLS (mean 5.6 ± 2.1%) was associated with PWV (R = -0.3644, p < 0.0001), LVGLS (R = 0.2756, p = 0.0001) and VAC (R = -0.3742, p <0.0001). Stiff aorta denoted by low AOGLS <4.26% (25th percentile) was associated with age (OR 1.13, 95% CI 1.04-1.24, p = 0.007), body mass index (OR 1.12, 95% CI 1.01-1.25, p = 0.03), heart rate (OR 1.04, 95% CI 1.01-1.06, p = 0.011) and metabolites of medium-chain fatty acid oxidation: C8 (OR 1.005, p = 0.026), C10 (OR 1.003, p = 0.036), C12 (OR 1.013, p = 0.028), C12:2-OH/C10:2-DC (OR 1.084, p = 0.032) and C16-OH (OR 0.82, p = 0.006). VAC was associated with changes in long-chain hydroxyl and dicarboxyl carnitines. Multivariable models that included acyl-carnitine metabolites, but not amino acids, significantly increased the discrimination over clinical risk factors for prediction of AOGLS (AUC [area-under-curve] 0.73 to 0.81, p = 0.037) and VAC (AUC 0.78 to 0.87, p = 0.0044). Low AO GLS and high VAC were associated with altered medium-chain and long-chain fatty acid oxidation, respectively, which may identify early metabolic perturbations in aging-associated aortic stiffening. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02791139.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38546133

RESUMO

CONTEXT: Metabolites in tricarboxylic acid (TCA) pathway have pleiotropic functions. OBJECTIVE: To study the association between urine TCA cycle metabolites and the risk for chronic kidney disease (CKD) progression in individuals with type 2 diabetes. DESIGN, SETTING AND PARTICIPANTS: A prospective study in a discovery (n = 1826) and a validation (n = 1235) cohort of type 2 diabetes in a regional hospital and a primary care facility. EXPOSURE AND OUTCOME: Urine lactate, pyruvate, citrate, alpha-ketoglutarate, succinate, fumarate and malate were measured by mass spectrometry. CKD progression was defined as a composite of sustained eGFR below 15 ml/min/1.73 m2 , dialysis, renal death or doubling of serum creatinine. RESULTS: During a median of 9.2 (IQR 8.1-9.7) and 4.0 (3.2-5.1) years of follow-up, 213 and 107 renal events were identified. Cox regression suggested that urine lactate, fumarate and malate were associated with an increased risk (adjusted hazard ratio, aHR [95% CI] 1.63 [1.16-2.28], 1.82 [1.17-2.82] and 1.49 [1.05-2.11], per SD), while citrate was associated with a low risk (aHR 0.83 [0.72-0.96] per SD) for the renal outcome after adjustment for cardio-renal risk factors. These findings were reproducible in the validation cohort. Noteworthy, fumarate and citrate were independently associated with the renal outcome after additional adjustment for other metabolites. CONCLUSION: Urine fumarate and citrate predict the risk for progression to ESKD independent of clinical risk factors and other urine metabolites. These two metabolites in TCA cycle pathway may play important roles in the pathophysiological network underpinning progressive loss of kidney function in patients with type 2 diabetes.

18.
Mech Ageing Dev ; 211: 111787, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36736919

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder that affects millions of people worldwide. Growing evidence suggests that the gut microbiome (GM) plays a pivotal role in the pathogenesis of AD through the microbiota-gut-brain axis (MGB). Alterations in GM composition and diversity have been observed in both animal models and in human patients with AD. GM dysbiosis has been implicated in increased intestinal permeability, blood-brain barrier (BBB) impairment, neuroinflammation and the development of hallmarks of AD. Further elucidation of the role of GM in AD could pave way for the development of holistic predictive methods for determining AD risk and progression of disease. Furthermore, accumulating evidence suggests that GM modulation could alleviate adverse symptoms of AD or serve as a preventive measure. In addition, increasing evidence shows that Type 2 Diabetes Mellitus (T2DM) is often comorbid with AD, with common GM alterations and inflammatory response, which could chart the development of GM-related treatment interventions for both diseases. We conclude by exploring the therapeutic potential of GM in alleviating symptoms of AD and in reducing risk. Furthermore, we also propose future directions in AD research, namely fecal microbiota transplantation (FMT) and precision medicine.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Animais , Humanos , Doença de Alzheimer/patologia , Microbioma Gastrointestinal/fisiologia , Eixo Encéfalo-Intestino , Encéfalo/patologia
19.
Bio Protoc ; 13(13): e4773, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37456342

RESUMO

Non-alcoholic steatohepatitis (NASH) is a condition characterized by inflammation and hepatic injury/fibrosis caused by the accumulation of ectopic fats in the liver. Recent advances in lipidomics have allowed the identification and characterization of lipid species and have revealed signature patterns of various diseases. Here, we describe a lipidomics workflow to assess the lipid profiles of liver homogenates taken from a NASH mouse model. The protocol described below was used to extract and analyze the metabolites from the livers of mice with NASH by liquid chromatography-mass spectrometry (LC-MS); however, it can be applied to other tissue homogenate samples. Using this method, over 1,000 species of lipids from five classes can be analyzed in a single run on the LC-MS. Also, partial elucidation of the identity of neutral lipid (triacylglycerides and diacylglycerides) aliphatic chains can be performed with this simple LC-MS setup. Key features Over 1,000 lipid species (sphingolipids, cholesteryl esters, neutral lipids, phospholipids, fatty acids) are analyzed in one run. Analysis of liver lipids in non-alcoholic steatohepatitis (NASH) mouse model. Normal-phase chromatography coupled to a triple quadrupole mass spectrometer.

20.
Clin Dysmorphol ; 32(3): 106-111, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37195341

RESUMO

BACKGROUND: Leukodystrophies are a heterogeneous group of disorders affecting the white matter of the central nervous system, with or without affecting the peripheral nervous system. Biallelic variants in DEGS1 , coding for desaturase 1 (Des1) protein, were recently reported to be associated with hypomyelinating leukodystrophy (HLD), a subclass of leukodystrophies where the formation of the myelin sheath is affected. METHODS: Genomic sequencing was performed on our index patient with severe developmental delay, severe failure to thrive, dystonia, seizures, and hypomyelination on brain imaging. Sphingolipid analysis was performed and dihydroceramide/ceramide (dhCer/Cer) ratios were obtained by the measurement of ceramide and dihydroceramide species. RESULTS: A homozygous missense variant was identified in DEGS1 (c.565A > G:p Asn189Asp). The identified DEGS1 variant has been annotated as "conflicting reports of pathogenicity" on ClinVar. Follow-up sphingolipid analysis on our patient showed significantly raised dhCer/Cer and this was consistent with dysfunction of the Des1 protein, providing additional evidence to support the pathogenicity of this variant. CONCLUSION: While rare, pathogenic variants in DEGS1 should be considered in patients with HLD phenotype. To date, 25 patients have been reported across four studies on DEGS1 -related HLD, and, in this report, we summarize the literature. More such reports will enable deeper phenotypic characterization of this disorder.


Assuntos
Ceramidas , Doenças Neurodegenerativas , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Mutação de Sentido Incorreto , Convulsões/patologia , Doenças Neurodegenerativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA