Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Biol Chem ; 299(12): 105366, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863264

RESUMO

Hypoxic responses in plants involve Plant Cysteine Oxidases (PCOs). They catalyze the N-terminal cysteine oxidation of Ethylene Response Factors VII (ERF-VII) in an oxygen-dependent manner, leading to their degradation via the cysteine N-degron pathway (Cys-NDP) in normoxia. In hypoxia, PCO activity drops, leading to the stabilization of ERF-VIIs and subsequent hypoxic gene upregulation. Thus far, no chemicals have been described to specifically inhibit PCO enzymes. In this work, we devised an in vivo pipeline to discover Cys-NDP effector molecules. Budding yeast expressing AtPCO4 and plant-based ERF-VII reporters was deployed to screen a library of natural-like chemical scaffolds and was further combined with an Arabidopsis Cys-NDP reporter line. This strategy allowed us to identify three PCO inhibitors, two of which were shown to affect PCO activity in vitro. Application of these molecules to Arabidopsis seedlings led to an increase in ERF-VII stability, induction of anaerobic gene expression, and improvement of tolerance to anoxia. By combining a high-throughput heterologous platform and the plant model Arabidopsis, our synthetic pipeline provides a versatile system to study how the Cys-NDP is modulated. Its first application here led to the discovery of at least two hypoxia-mimicking molecules with the potential to impact plant tolerance to low oxygen stress.


Assuntos
Proteínas de Arabidopsis , Cisteína Dioxigenase , Inibidores Enzimáticos , Bibliotecas de Moléculas Pequenas , Humanos , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cisteína/metabolismo , Cisteína Dioxigenase/antagonistas & inibidores , Cisteína Dioxigenase/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Plântula/efeitos dos fármacos , Anaerobiose , Degrons , Ativação Enzimática/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia
2.
New Phytol ; 238(5): 2236-2246, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36942932

RESUMO

Different plant species employ different jasmonates to activate a conserved signalling pathway in land plants, where (+)-7-iso-JA-Ile (JA-Ile) is the ligand for the COI1/JAZ receptor in angiosperms and dn-cis-OPDA, dn-iso-OPDA and Δ4 -dn-iso-OPDA act as ligands in Marchantia polymorpha. In addition, some jasmonates play a COI1-independent role. To understand the distribution of bioactive jasmonates in the green lineage and how their biosynthetic pathways evolved, we performed phylogenetic analyses and systematic jasmonates profiling in representative species from different lineages. We found that both OPDA and dn-OPDA are ubiquitous in all tested land plants and present also in charophyte algae, underscoring their importance as ancestral signalling molecules. By contrast, JA-Ile biosynthesis emerged within lycophytes coincident with the evolutionary appearance of JAR1 function. We identified that the OPR3-independent JA biosynthesis pathway is ancient and predates the evolutionary appearance of the OPR3-dependent pathway. Moreover, we identified a negative correlation between dn-iso-OPDA and JA-Ile in land plants, which supports that in bryophytes and lycophytes dn-iso-OPDA represents the analogous hormone to JA-Ile in other vascular plants.


Assuntos
Vias Biossintéticas , Oxilipinas , Ligantes , Filogenia , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Isoleucina/metabolismo , Plantas/metabolismo
3.
Plant Physiol ; 187(3): 1399-1413, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618088

RESUMO

The phytohormone jasmonoyl-L-isoleucine (JA-Ile) regulates many stress responses and developmental processes in plants. A co-receptor complex formed by the F-box protein Coronatine Insensitive 1 (COI1) and a Jasmonate (JA) ZIM-domain (JAZ) repressor perceives the hormone. JA-Ile antagonists are invaluable tools for exploring the role of JA-Ile in specific tissues and developmental stages, and for identifying regulatory processes of the signaling pathway. Using two complementary chemical screens, we identified three compounds that exhibit a robust inhibitory effect on both the hormone-mediated COI-JAZ interaction and degradation of JAZ1 and JAZ9 in vivo. One molecule, J4, also restrains specific JA-induced physiological responses in different angiosperm plants, including JA-mediated gene expression, growth inhibition, chlorophyll degradation, and anthocyanin accumulation. Interaction experiments with purified proteins indicate that J4 directly interferes with the formation of the Arabidopsis (Arabidopsis thaliana) COI1-JAZ complex otherwise induced by JA. The antagonistic effect of J4 on COI1-JAZ also occurs in the liverwort Marchantia polymorpha, suggesting the mode of action is conserved in land plants. Besides JA signaling, J4 works as an antagonist of the closely related auxin signaling pathway, preventing Transport Inhibitor Response1/Aux-indole-3-acetic acid interaction and auxin responses in planta, including hormone-mediated degradation of an auxin repressor, gene expression, and gravitropic response. However, J4 does not affect other hormonal pathways. Altogether, our results show that this dual antagonist competes with JA-Ile and auxin, preventing the formation of phylogenetically related receptor complexes. J4 may be a useful tool to dissect both the JA-Ile and auxin pathways in particular tissues and developmental stages since it reversibly inhibits these pathways. One-sentence summary: A chemical screen identified a molecule that antagonizes jasmonate perception by directly interfering with receptor complex formation in phylogenetically distant vascular and nonvascular plants.


Assuntos
Arabidopsis/fisiologia , Ciclopentanos/metabolismo , Ácidos Indolacéticos/metabolismo , Marchantia/fisiologia , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
4.
Environ Microbiol ; 23(12): 7396-7411, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33818002

RESUMO

Multidrug efflux pumps are ancient elements encoded in every genome, from bacteria to humans. In bacteria, in addition to antibiotics, efflux pumps extrude a wide range of substrates, including quorum sensing signals, bacterial metabolites, or plant-produced compounds. This indicates that their original functions may differ from their recently acquired role in the extrusion of antibiotics during human infection. Concerning plant-produced compounds, some of them are substrates and inducers of the same efflux pump, suggesting a coordinated plant/bacteria coevolution. Herein we analyse the ability of 1243 compounds from a Natural Product-Like library to induce the expression of P. aeruginosa mexCD-oprJ or mexAB-oprM efflux pumps' encoding genes. We further characterized natural-like compounds that do not trigger antibiotic resistance in P. aeruginosa and that act as virulence inhibitors, choosing those that were not only inducers but substrates of the same efflux pump. Four compounds impair swarming motility, exotoxin secretion through the Type 3 Secretion System (T3SS) and the ability to kill Caenorhabditis elegans, which might be explained by the downregulation of genes encoding flagellum and T3SS. Our results emphasize the possibility of discovering new anti-virulence drugs by screening natural or natural-like libraries for compounds that behave as both, inducers and substrates of efflux pumps.


Assuntos
Proteínas da Membrana Bacteriana Externa , Pseudomonas aeruginosa , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Virulência
5.
Nat Chem Biol ; 14(2): 171-178, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29291349

RESUMO

Biosynthesis of the phytohormone jasmonoyl-isoleucine (JA-Ile) requires reduction of the JA precursor 12-oxo-phytodienoic acid (OPDA) by OPDA reductase 3 (OPR3). Previous analyses of the opr3-1 Arabidopsis mutant suggested an OPDA signaling role independent of JA-Ile and its receptor COI1; however, this hypothesis has been challenged because opr3-1 is a conditional allele not completely impaired in JA-Ile biosynthesis. To clarify the role of OPR3 and OPDA in JA-independent defenses, we isolated and characterized a loss-of-function opr3-3 allele. Strikingly, opr3-3 plants remained resistant to necrotrophic pathogens and insect feeding, and activated COI1-dependent JA-mediated gene expression. Analysis of OPDA derivatives identified 4,5-didehydro-JA in wounded wild-type and opr3-3 plants. OPR2 was found to reduce 4,5-didehydro-JA to JA, explaining the accumulation of JA-Ile and activation of JA-Ile-responses in opr3-3 mutants. Our results demonstrate that in the absence of OPR3, OPDA enters the ß-oxidation pathway to produce 4,5-ddh-JA as a direct precursor of JA and JA-Ile, thus identifying an OPR3-independent pathway for JA biosynthesis.


Assuntos
Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Resistência à Doença , Isoleucina/análogos & derivados , Oxilipinas/metabolismo , Doenças das Plantas/prevenção & controle , Alelos , Alternaria , Animais , Proteínas de Arabidopsis/metabolismo , Bioensaio , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Homozigoto , Insetos , Isoleucina/metabolismo , Mutação , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais
6.
Nucleic Acids Res ; 46(21): 11229-11238, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30500953

RESUMO

The majority of clinically used antibiotics originate from bacteria. As the need for new antibiotics grows, large-scale genome sequencing and mining approaches are being used to identify novel antibiotics. However, this task is hampered by the fact that many antibiotic biosynthetic clusters are not expressed under laboratory conditions. One strategy to overcome this limitation is the identification of signals that activate the expression of silent biosynthetic pathways. Here, we report the use of high-throughput screening to identify signals that control the biosynthesis of the acetyl-CoA carboxylase inhibitor antibiotic andrimid in the broad-range antibiotic-producing rhizobacterium Serratia plymuthica A153. We reveal that the pathway-specific transcriptional activator AdmX recognizes the auxin indole-3-acetic acid (IAA). IAA binding causes conformational changes in AdmX that result in the inhibition of the expression of the andrimid cluster and the suppression of antibiotic production. We also show that IAA synthesis by pathogenic and beneficial plant-associated bacteria inhibits andrimid production in A153. Because IAA is a signalling molecule that is present across all domains of life, this study highlights the importance of intra- and inter-kingdom signalling in the regulation of antibiotic synthesis. Our discovery unravels, for the first time, an IAA-dependent molecular mechanism for the regulation of antibiotic synthesis.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Ácidos Indolacéticos/farmacologia , Serratia/efeitos dos fármacos , Fatores de Transcrição/genética , Acetil-CoA Carboxilase/antagonistas & inibidores , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Inibidores Enzimáticos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Ensaios de Triagem em Larga Escala , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Plasmídeos/química , Plasmídeos/metabolismo , Polienos/metabolismo , Ligação Proteica , Pirróis/metabolismo , Pythium/efeitos dos fármacos , Pythium/crescimento & desenvolvimento , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serratia/genética , Serratia/metabolismo , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Ativação Transcricional
7.
J Exp Bot ; 69(12): 3095-3102, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29590430

RESUMO

Jasmonates are signaling compounds that regulate plant responses to stress. Jasmonic acid (JA) is the direct precursor of the bioactive plant hormone JA-isoleucine (JA-Ile), the ligand of the CORONATINE INSENSITIVE 1-jasmonate ZIM-domain (COI1-JAZ) co-receptor complex. JA, its methyl ester, and three furanonyl esters were recently isolated from the grapevine pathogen Lasiodiplodia mediterranea. The JA ester lasiojasmonate A (LasA) is the first reported naturally occurring JA-furanone, and its mode of action has not yet been elucidated. Here, we show that LasA activates many JA-regulated responses in planta, including protein degradation, gene expression, and physiological processes. These in vivo effects require LasA conversion into JA, formation of JA-Ile, and its recognition by the plant JA-Ile perception complex. These findings suggest a mode of action of the natural fungal LasA as an inactive JA pool that can be transformed into the bioactive JA-Ile form. We propose that fungal production of JA derivates such as LasA occurs at late infection stages to induce plant JA responses such as cell death, and can facilitate fungal infection.


Assuntos
Arabidopsis/fisiologia , Ascomicetos/fisiologia , Ciclopentanos/metabolismo , Micotoxinas/metabolismo , Oxilipinas/metabolismo , Transdução de Sinais , Arabidopsis/microbiologia , Isoleucina/metabolismo
8.
New Phytol ; 213(3): 1378-1392, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28005270

RESUMO

Coronatine (COR) facilitates entry of bacteria into the plant apoplast by stimulating stomata opening. COR-induced signaling events at stomata remain unclear. We found that the COR and jasmonate isoleucine (JA-Ile) co-receptor JAZ2 is constitutively expressed in guard cells and modulates stomatal dynamics during bacterial invasion We analyzed tissue expression patterns of AtJAZ genes and measured stomata opening and pathogen resistance in loss- and gain-of-function mutants. Arabidopsis jaz2 mutants are partially impaired in pathogen-induced stomatal closing and more susceptible to Pseudomonas. Gain-of-function mutations in JAZ2 prevent stomatal reopening by COR and are highly resistant to bacterial penetration. The JAZ2 targets MYC2, MYC3 and MYC4 directly regulate the expression of ANAC19, ANAC55 and ANAC72 to modulate stomata aperture. Due to the antagonistic interactions between the salicylic acid (SA) and JA defense pathways, efforts to increase resistance to biotrophs result in enhanced susceptibility to necrotrophs, and vice versa. Remarkably, dominant jaz2Δjas mutants are resistant to Pseudomonas syringae but retain unaltered resistance against necrotrophs. Our results demonstrate the existence of a COI1-JAZ2-MYC2,3,4-ANAC19,55,72 module responsible for the regulation of stomatal aperture that is hijacked by bacterial COR to promote infection. They also provide novel strategies for crop protection against biotrophs without compromising resistance to necrotrophs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Estômatos de Plantas/microbiologia , Proteínas Repressoras/metabolismo , Aminoácidos/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Resistência à Doença/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes Dominantes , Indenos/farmacologia , Mutação/genética , Especificidade de Órgãos/genética , Doenças das Plantas/microbiologia , Estômatos de Plantas/citologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Pseudomonas syringae/efeitos dos fármacos , Pseudomonas syringae/patogenicidade , Proteínas Repressoras/genética
9.
Plant Cell ; 26(5): 1967-1980, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24824488

RESUMO

Reduction of the red/far-red (R/FR) light ratio that occurs in dense canopies promotes plant growth to outcompete neighbors but has a repressive effect on jasmonate (JA)-dependent defenses. The molecular mechanism underlying this trade-off is not well understood. We found that the JA-related transcription factors MYC2, MYC3, and MYC4 are short-lived proteins degraded by the proteasome, and stabilized by JA and light, in Arabidopsis thaliana. Dark and CONSTITUTIVE PHOTOMORPHOGENIC1 destabilize MYC2, MYC3, and MYC4, whereas R and blue (B) lights stabilize them through the activation of the corresponding photoreceptors. Consistently, phytochrome B inactivation by monochromatic FR light or shade (FR-enriched light) destabilizes these three proteins and reduces their stabilization by JA. In contrast to MYCs, simulated shade conditions stabilize seven of their 10 JAZ repressors tested and reduce their degradation by JA. MYC2, MYC3, and MYC4 are required for JA-mediated defenses against the necrotrophic pathogen Botrytis cinerea and for the shade-triggered increased susceptibility, indicating that this negative effect of shade on defense is likely mediated by shade-triggered inactivation of MYC2, MYC3, and MYC4. The opposite regulation of protein stability of MYCs and JAZs by FR-enriched light help explain (on the molecular level) the long-standing observation that canopy shade represses JA-mediated defenses, facilitating reallocation of resources from defense to growth.

10.
PLoS Biol ; 12(2): e1001792, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24558350

RESUMO

Pathogenicity of Pseudomonas syringae is dependent on a type III secretion system, which secretes a suite of virulence effector proteins into the host cytoplasm, and the production of a number of toxins such as coronatine (COR), which is a mimic of the plant hormone jasmonate-isoleuce (JA-Ile). Inside the plant cell, effectors target host molecules to subvert the host cell physiology and disrupt defenses. However, despite the fact that elucidating effector action is essential to understanding bacterial pathogenesis, the molecular function and host targets of the vast majority of effectors remain largely unknown. Here, we found that effector HopX1 from Pseudomonas syringae pv. tabaci (Pta) 11528, a strain that does not produce COR, interacts with and promotes the degradation of JAZ proteins, a key family of JA-repressors. We show that hopX1 encodes a cysteine protease, activity that is required for degradation of JAZs by HopX1. HopX1 associates with JAZ proteins through its central ZIM domain and degradation occurs in a COI1-independent manner. Moreover, ectopic expression of HopX1 in Arabidopsis induces the expression of JA-dependent genes, represses salicylic acid (SA)-induced markers, and complements the growth of a COR-deficient P. syringae pv. tomato (Pto) DC3000 strain during natural bacterial infections. Furthermore, HopX1 promoted susceptibility when delivered by the natural type III secretion system, to a similar extent as the addition of COR, and this effect was dependent on its catalytic activity. Altogether, our results indicate that JAZ proteins are direct targets of bacterial effectors to promote activation of JA-induced defenses and susceptibility in Arabidopsis. HopX1 illustrates a paradigm of an alternative evolutionary solution to COR with similar physiological outcome.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Bactérias/fisiologia , Ciclopentanos/metabolismo , Cisteína Proteases/fisiologia , Oxilipinas/metabolismo , Pseudomonas syringae/enzimologia , Proteínas Repressoras/metabolismo , Arabidopsis/microbiologia , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Proteínas Nucleares/metabolismo , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteólise , Fatores de Transcrição/metabolismo
11.
Nat Chem Biol ; 10(8): 671-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24997606

RESUMO

(+)-7-iso-Jasmonoyl-L-isoleucine (JA-Ile) regulates developmental and stress responses in plants. Its perception involves the formation of a ternary complex with the F-box COI1 and a member of the JAZ family of co-repressors and leads to JAZ degradation. Coronatine (COR) is a bacterial phytotoxin that functionally mimics JA-Ile and interacts with the COI1-JAZ co-receptor with higher affinity than JA-Ile. On the basis of the co-receptor structure, we designed ligand derivatives that spatially impede the interaction of the co-receptor proteins and, therefore, should act as competitive antagonists. One derivative, coronatine-O-methyloxime (COR-MO), has strong activity in preventing the COI1-JAZ interaction, JAZ degradation and the effects of JA-Ile or COR on several JA-mediated responses in Arabidopsis thaliana. Moreover, it potentiates plant resistance, preventing the effect of bacterially produced COR during Pseudomonas syringae infections in different plant species. In addition to the utility of COR-MO for plant biology research, our results underscore its biotechnological potential for safer and sustainable agriculture.


Assuntos
Aminoácidos Neutros/farmacologia , Aminoácidos/química , Ciclopentanos/metabolismo , Indenos/química , Oximas/farmacologia , Oxilipinas/metabolismo , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Antocianinas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/patogenicidade , Ciclopentanos/farmacologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Desenho de Fármacos , Regulação da Expressão Gênica de Plantas , Indenos/metabolismo , Indenos/farmacologia , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Isoleucina/farmacologia , Ligantes , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Pseudomonas syringae/patogenicidade , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo
12.
Plant Cell ; 23(2): 701-15, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21335373

RESUMO

Jasmonates (JAs) trigger an important transcriptional reprogramming of plant cells to modulate both basal development and stress responses. In spite of the importance of transcriptional regulation, only one transcription factor (TF), the Arabidopsis thaliana basic helix-loop-helix MYC2, has been described so far as a direct target of JAZ repressors. By means of yeast two-hybrid screening and tandem affinity purification strategies, we identified two previously unknown targets of JAZ repressors, the TFs MYC3 and MYC4, phylogenetically closely related to MYC2. We show that MYC3 and MYC4 interact in vitro and in vivo with JAZ repressors and also form homo- and heterodimers with MYC2 and among themselves. They both are nuclear proteins that bind DNA with sequence specificity similar to that of MYC2. Loss-of-function mutations in any of these two TFs impair full responsiveness to JA and enhance the JA insensitivity of myc2 mutants. Moreover, the triple mutant myc2 myc3 myc4 is as impaired as coi1-1 in the activation of several, but not all, JA-mediated responses such as the defense against bacterial pathogens and insect herbivory. Our results show that MYC3 and MYC4 are activators of JA-regulated programs that act additively with MYC2 to regulate specifically different subsets of the JA-dependent transcriptional response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Transativadores/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Regulação da Expressão Gênica de Plantas , Mutação , Filogenia , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Repressoras/metabolismo , Especificidade por Substrato , Transativadores/genética , Técnicas do Sistema de Duplo-Híbrido
13.
iScience ; 27(7): 110191, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38974968

RESUMO

Significant progress has been recently made in our understanding of the evolution of jasmonates biosynthesis and signaling. The bioactive jasmonate activating COI1-JAZ co-receptor differs in bryophytes and vascular plants. Dinor-iso-12-oxo-phytodienoic acid (dn-iso-OPDA) is the bioactive hormone in bryophytes and lycophytes. However, further studies showed that the full activation of hormone signaling in Marchantia polymorpha requires additional unidentified hormones. Δ4-dn-OPDAs were previously identified as novel bioactive jasmonates in M. polymorpha. In this paper, we describe the major bioactive isomer of Δ4-dn-OPDAs as Δ4-dn-iso-OPDA through chemical synthesis, receptor binding assay, and biological activity in M. polymorpha. In addition, we disclosed that Δ4-dn-cis-OPDA is a biosynthetic precursor of Δ4-dn-iso-OPDA. We demonstrated that in planta cis-to-iso conversion of Δ4-dn-cis-OPDA occurs in the biosynthesis of Δ4-dn-iso-OPDA, defining a key biosynthetic step in the chemical evolution of hormone structure. We predict that these findings will facilitate further understanding of the molecular evolution of plant hormone signaling.

14.
Commun Biol ; 6(1): 320, 2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966228

RESUMO

Severe genetic redundancy is particularly clear in gene families encoding plant hormone receptors, each subtype sharing redundant and specific functions. Genetic redundancy of receptor family members represents a major challenge for the functional dissection of each receptor subtype. A paradigmatic example is the perception of the hormone (+)-7-iso-jasmonoyl-L-isoleucine, perceived by several COI1-JAZ complexes; the specific role of each receptor subtype still remains elusive. Subtype-selective agonists of the receptor are valuable tools for analyzing the responses regulated by individual receptor subtypes. We constructed a stereoisomer library consisting of all stereochemical isomers of coronatine (COR), a mimic of the plant hormone (+)-7-iso-jasmonoyl-L-isoleucine, to identify subtype-selective agonists for COI1-JAZ co-receptors in Arabidopsis thaliana and Solanum lycopersicum. An agonist selective for the Arabidopsis COI1-JAZ9 co-receptor efficiently revealed that JAZ9 is not involved in most of the gene downregulation caused by COR, and the degradation of JAZ9-induced defense without inhibiting growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Isoleucina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Repressoras/metabolismo , Estereoisomerismo , Arabidopsis/genética , Arabidopsis/metabolismo
15.
Mol Plant ; 15(11): 1710-1724, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36153646

RESUMO

In Arabidopsis, photoperiodic flowering is controlled by the regulatory hub gene CONSTANS (CO), whereas floral organ senescence is regulated by the jasmonates (JAs). Because these processes are chronologically ordered, it remains unknown whether there are common regulators of both processes. In this study, we discovered that CO protein accumulates in Arabidopsis flowers after floral induction, and it displays a diurnal pattern in floral organs different from that in the leaves. We observed that altered CO expression could affect flower senescence and abscission by interfering with JA response, as shown by petal-specific transcriptomic analysis as well as CO overexpression in JA synthesis and signaling mutants. We found that CO has a ZIM (ZINC-FINGER INFLORESCENCE MERISTEM) like domain that mediates its interaction with the JA response repressor JAZ3 (jasmonate ZIM-domain 3). Their interaction inhibits the repressor activity of JAZ3, resulting in activation of downstream transcription factors involved in promoting flower senescence. Furthermore, we showed that CO, JAZ3, and the E3 ubiquitin ligase COI1 (Coronatine Insensitive 1) could form a protein complex in planta, which promotes the degradation of both CO and JAZ3 in the presence of JAs. Taken together, our results indicate that CO, a key regulator of photoperiodic flowering, is also involved in promoting flower senescence and abscission by augmenting JA signaling and response. We propose that coordinated recruitment of photoperiodic and JA signaling pathways could be an efficient way for plants to chronologically order floral processes and ensure the success of offspring production.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
New Phytol ; 192(2): 471-82, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21762165

RESUMO

Multidrug and toxic compound extrusion (MATE) proteins comprise the most recently identified family of multidrug transporters. In plants, the numbers of MATE proteins has undergone a remarkable expansion, underscoring the importance of these transporters within this kingdom. Here, we describe the identification and characterization of Activated Disease Susceptibility 1 (ADS1) which encodes a putative MATE transport protein. An activation tagging screen uncovered the ads1-Dominant (ads1-D) mutant, which was subsequently characterized by molecular, genetic and biochemical approaches. The ads1-D mutant was compromised in both basal and nonhost resistance against microbial pathogens. Further, plant defence responses conferred by RPS4 were also disabled in ads1-D plants. By contrast, depletion of ADS1 transcripts by RNA-interference (RNAi) promoted basal disease resistance. Unexpectedly, ads1-D plants were found to constitutively accumulate reactive oxygen intermediates (ROIs). However, analysis of ads1-D Arabidopsis thaliana respiratory burst oxidase (atrboh) double and triple mutants indicated that an increase in ROIs did not impact ads1-D-mediated disease susceptibility. Our findings imply that ADS1 negatively regulates the accumulation of the plant immune activator salicylic acid (SA) and cognate Pathogenesis-Related 1 (PR1) gene expression. Collectively, these data highlight an important role for MATE proteins in the establishment of plant disease resistance.


Assuntos
Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Botrytis/metabolismo , Resistência à Doença , Suscetibilidade a Doenças , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Plantas/metabolismo , Pseudomonas syringae/metabolismo , Ácido Salicílico/metabolismo
17.
Nat Chem Biol ; 5(5): 344-50, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19349968

RESUMO

Hormone-triggered activation of the jasmonate signaling pathway in Arabidopsis thaliana requires SCF(COI1)-mediated proteasome degradation of JAZ repressors. (-)-JA-L-Ile is the proposed bioactive hormone, and SCF(COI1) is its likely receptor. We found that the biological activity of (-)-JA-L-Ile is unexpectedly low compared to coronatine and the synthetic isomer (+)-JA-L-Ile, which suggests that the stereochemical orientation of the cyclopentanone-ring side chains greatly affects receptor binding. Detailed GC-MS and HPLC analyses showed that the (-)-JA-L-Ile preparations currently used in ligand binding studies contain small amounts of the C7 epimer (+)-7-iso-JA-L-Ile. Purification of each of these molecules demonstrated that pure (-)-JA-L-Ile is inactive and that the active hormone is (+)-7-iso-JA-L-Ile, which is also structurally more similar to coronatine. In addition, we show that pH changes promote conversion of (+)-7-iso-JA-L-Ile to the inactive (-)-JA-L-Ile form, thus providing a simple mechanism that can regulate hormone activity through epimerization.


Assuntos
Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Isoleucina/análogos & derivados , Cromatografia Líquida de Alta Pressão , Esterificação , Isoleucina/metabolismo , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
18.
Plant J ; 59(1): 77-87, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19309455

RESUMO

Discovery of the jasmonate ZIM-domain (JAZ) repressors defined the core jasmonate (JA) signalling module as COI1-JAZ-MYC2, and allowed a full view of the JA signalling pathway from hormone perception to transcriptional reprogramming. JAZ proteins are repressors of MYC2 and targets of SCF(COI1), which is the likely jasmonate receptor. Upon hormone perception, JAZ repressors are degraded by the proteasome releasing MYC2 and allowing the activation of JA responses. All members of the JAZ family share two conserved domains, the Jas motif, required for JAZ interactions with MYC2 and COI1, and the ZIM domain, the function of which is so far unknown. Here, we show that the ZIM domain acts as a protein-protein interaction domain mediating homo- and heteromeric interactions between JAZ proteins. These JAZ-JAZ interactions are independent of the presence of the hormone. The observation that only a few members of the JAZ family form homo- and heteromers may suggest the relevance of these proteins in the regulation of JA signalling. Interestingly, the JAZ3DeltaJas protein interacts with several JAZ proteins, providing new clues to understanding the dominant JA insensitivity promoted by truncated JAZDeltaJas proteins. We also provide evidence that the Jas motif mediates the hormone-dependent interaction between Arabidopsis JAZ3 and COI1, and further confirm that the Jas motif is required and sufficient for Arabidopsis JAZ3-MYC2 interaction. Finally, we show that interaction with MYC2 is a common feature of the JAZ family, as most JAZ proteins can bind MYC2 in pull-down and yeast two-hybrid assays.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Repressoras/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética
19.
Curr Opin Plant Biol ; 11(5): 486-94, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18653378

RESUMO

Jasmonates (JAs) are essential hormones for plant defense and development. In spite of their importance, the molecular details of their signaling pathways remain largely unknown. A new family of regulators of JA signaling named JAZ, jasmonate ZIM-domain proteins, has recently been described. JAZ proteins repress of JA signaling and are targeted by the E3-ubiquitin ligase SCF(COI1) for proteasome degradation in response to JA. Hormone binding depends on a functional COI1 protein suggesting that COI1 is the JA receptor. MYC2, a positive regulator of JA-dependent responses, has been identified as a target of JAZ repressors. Interestingly, MYC2 and JAZ proteins are involved in a negative regulatory feedback loop, suggesting a model to explain how transcriptional reprogramming is turned on and off in response to JA. The discovery of JAZ repressors provides a new framework to understand JA-signaling pathways from hormonal perception to transcriptional activation.


Assuntos
Proteínas de Arabidopsis/fisiologia , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Proteínas Repressoras/fisiologia , Transdução de Sinais/fisiologia , Motivos de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Retroalimentação Fisiológica , Modelos Biológicos , Família Multigênica , Filogenia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/fisiologia
20.
Curr Biol ; 30(6): 962-971.e3, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32142692

RESUMO

The jasmonate signaling pathway regulates development, growth, and defense responses in plants. Studies in the model eudicot, Arabidopsis thaliana, have identified the bioactive hormone (jasmonoyl-isoleucine [JA-Ile]) and its Coronatine Insensitive 1 (COI1)/Jasmonate-ZIM Domain (JAZ) co-receptor. In bryophytes, a conserved signaling pathway regulates similar responses but uses a different ligand, the JA-Ile precursor dinor-12-oxo-10,15(Z)-phytodienoic acid (dn-OPDA), to activate a conserved co-receptor. Jasmonate responses independent of JA-Ile and COI1, thought to be mediated by the cyclopentenone OPDA, have also been suggested, but experimental limitations in Arabidopsis have hindered attempts to uncouple OPDA and JA-Ile biosynthesis. Thus, a clear understanding of this pathway remains elusive. Here, we address the role of cyclopentenones in COI1-independent responses using the bryophyte Marchantia polymorpha, which is unable to synthesize JA-Ile but does accumulate OPDA and dn-OPDA. We demonstrate that OPDA and dn-OPDA activate a COI1-independent pathway that regulates plant thermotolerance genes, and consequently, treatment with these oxylipins protects plants against heat stress. Furthermore, we identify that these molecules signal through their electrophilic properties. By performing comparative analyses between M. polymorpha and two evolutionary distant species, A. thaliana and the charophyte alga Klebsormidium nitens, we demonstrate that this pathway is conserved in streptophyte plants and pre-dates the evolutionary appearance of the COI1-dependent jasmonate pathway, which later co-opted the pre-existing dn-OPDA as its ligand. Taken together, our data indicate that cyclopentenone-regulated COI1-independent signaling is an ancient conserved pathway, whose ancestral role was to protect plants against heat stress. This pathway was likely crucial for plants' successful land colonization and will be critical for adaption to current climate warming.


Assuntos
Regulação da Expressão Gênica de Plantas , Marchantia/fisiologia , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Termotolerância/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carofíceas/genética , Carofíceas/fisiologia , Ciclopentanos/metabolismo , Genes de Plantas , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Marchantia/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA